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The beam propagation method (BPM) can be viewed as a chain of alternating convolutions and multiplications,
as filtering operations alternately in the space and frequency domains or as multiplication operations sandwiched
between linear canonical or fractional Fourier transforms. These structures provide alternative models of inho-
mogeneous media and potentially allow mathematical tools and algorithms associated with these transforms to be
applied to the BPM. As an example, in the case where quadratic approximation is possible, it is shown that the BPM
can be represented as a single LCT system, leading to significantly faster computation of the output field. © 2022

Optica Publishing Group

https://doi.org/10.1364/AO.472113

1. INTRODUCTION

The beam propagation method (BPM) is an important compu-
tational tool for solving the time-harmonic Helmholtz equation
under the slowly varying envelope approximation (SVEA)
[1–4]. It can be used for beam propagation calculations in inho-
mogeneous media in which refractive index changes are small
relative to the average index, such that the SVEA can hold. It is
mostly used to simulate and study optical waveguides and other
optical devices with inhomogeneous refractive index distribu-
tions. It has also been modified for use in analysis of diffraction
gratings and for use in anisotropic media [5,6].

Quadratic-phase systems (QPSs), mathematically known
as linear canonical transforms (LCTs) [7,8], can model a broad
class of optical systems including thin lenses, sections of free
space in the Fresnel approximation, sections of quadratic
graded-index (GRIN) media, and arbitrary concatenations of
any number of these. Such concatenations of these basic com-
ponents are sometimes referred to as first-order optical systems
[9–13]. Fractional Fourier transforms (FRTs) [14,15], scaling
operations, and chirp multiplication (CM) and chirp convo-
lution (CC) operations—the latter also known as the Fresnel
transform—are special cases of QPSs [9].

Arbitrary QPSs or LCTs, no matter how many lenses and sec-
tions of free space they are composed of, can be decomposed into
a sequence of three or four elementary operations, such as the
forms CC-CM-CC or CM-CC-CM, or other sequences involv-
ing FRTs and scaling [9]. The term Fourier-optical systems
(FOSs) refers to the class of systems consisting of multiplicative
spatial filters sandwiched between QPSs. FOSs include arbitrary

sequences of lenses, free space, spatial filters, and quadratic
GRIN media. It has been shown that arbitrary FOSs can be
expressed as multiplicative spatial filters sandwiched between
FRT stages [16]; therefore, such systems can be modeled as
multi-stage fractional Fourier domain filtering systems [17–20],
where several multiplicative filters are applied in consecu-
tive FRT domains. Furthermore, it has been shown that such
consecutive FRT filtering operations are equivalent to the appli-
cation of spatial filters alternately in the space and frequency
domains [21]. Therefore, FOSs can be modeled as repeated
filtering alternately in the space and frequency domains, which
is also equivalent to an alternating chain of convolution and
multiplication operations.

QPSs or LCTs are capable of exactly representing quadratic
GRIN media [22], in which the inhomogeneous refractive
index distribution is given by n2(x )= n2

1[1− (n2/n1)x 2
],

where n1 and n2 are the medium parameters and x is the trans-
verse coordinate. The parameters n1 and n2 are assumed to be
constants along the propagation direction.

Thus, any FOS can be represented in any of the following
equivalent forms:

1. Multiplicative filters sandwiched between LCTs.
2. Multiplicative filters sandwiched between FRTs.
3. Multiplicative filters sandwiched between FTs.
4. Alternating multiplications and convolutions.
5. Multiplicative filters sandwiched between Fresnel trans-

forms (sections of free space or other homogeneous
media).
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In this paper, we show that the BPM method can be viewed as
the alternate application of any of the following: multiplications
and LCTs/QPSs, multiplications and FRTs, multiplications and
FTs, multiplications and convolutions, or multiplications and
homogeneous propagation. This is also consistent with the view
of modeling an inhomogeneous medium such as the cascade of
a large number of spatial filters and narrow sections of propa-
gation. The narrow sections of propagation can be represented
as QPSs/LCTs or FRTs, in addition to the traditional choice of
Fresnel transforms.

We will further show that, under certain circumstances, each
layer in the BPM can be approximately represented by a cascade
of two fundamental operations: CC and CM. The former CC
step corresponds to Fresnel propagation in a homogeneous
medium, and the latter CM step corresponds to the approxi-
mated phase correction. When this approximation is acceptable,
the CC and CM operations for all layers can be collapsed into
a single equivalent QPS, which can be computed for about the
same cost as an ordinary Fourier transform. This leads to very
substantial computational savings.

The paper is organized as follows. In Sections 2 and 3, we
summarize the basics of the BPM and QPS, respectively. In
Section 4, we derive the relation between the BPM and QPSs. In
Section 5, we present examples of our method, and Section 6 is
devoted to concluding remarks.

2. BASICS OF THE BEAM PROPAGATION
METHOD

In this section, we summarize the basic structure of the BPM.
We consider the 2D case with propagation in the z direction
and with x representing the transverse direction. We have an
inhomogeneous medium with refractive index distribution
n(x , z). We consider a time-harmonic monochromatic wave
field E (x , z, t)=Re{U(x , z)e− jωt

} that propagates in this
inhomogeneous medium. U(x , z) is the complex amplitude,
and ω is the angular frequency. The scalar wave equation is
given by

∂2 E
∂t2
=

c 2

n2
∇

2 E , (1)

where c is the speed of light and ∇2
= ∂2/∂x 2

+ ∂2/∂z2. By
using the time-harmonic assumption, the wave equation is
simplified to the Helmholtz equation in an inhomogeneous
medium:

(∇2
+ n2k2

0)U(x , z)= 0, (2)

where k0 = 2π/λ0 andλ0 is the free-space wavelength.
The first key assumption of the BPM is that we have a refrac-

tive index distribution of the form n(x , z)= n̄ +1n(x , z),
where 1n� n, meaning that the inhomogeneous medium is
such that the refractive index varies within a small neighborhood
of an average value n̄ (weak index modulation). Additionally,
when we make the paraxial approximation and assume that the
wave propagation is along directions making very small angles
with the z direction, U(x , z) can be written as

U(x , z)= Ū(x , z)e− j n̄k0z, (3)

where Ū(x , z) is a slowly varying function of x and z.
The slowly varying envelope approximation is justified by
the assumptions of weak index modulation and paraxial
propagation. By substituting Eq. (3) into Eq. (2), we get(

∇
2
− 2 j n̄k0

∂

∂z
+ n2
− n̄2

)
Ū = 0. (4)

The SVEA allows us to neglect the second-order partial
derivative of Ū with respect to z in Eq. (4), leading to the
paraxial wave equation for inhomogeneous media [1],

∂

∂z
Ū =

− j
2n̄k0

[
∂2Ū
∂x 2
+ (n2

− n̄2)k0Ū
]

. (5)

Equation (5), which is fundamental to the BPM, can be solved
by an iterative approach. To implement Eq. (5), we can divide
the z axis into N slices of length 1z and treat each slice as a
combination of (i) propagation over a distance 1z in a homo-
geneous media of refractive index n̄i , where i = 1, 2, . . . , N
denote the average refractive index value along the correspond-
ing slice, and (ii) passage through a phase filter. The phase filter
exp(− j (n(x , zi )− n̄i )1z) accounts for the slowly varying
index distribution, which models the inhomogeneous media.
Note that zi = i1z and z0 is the input plane. Starting from an
initial wave field at z= 0, the BPM method iterates this initial
value through each slice, using the output of the i th slice as the
input of the (i + 1)th slice. By letting N be large and 1z be
small, the assumptions in the derivation of Eq. (5) are justi-
fied. In this manner, the slowly varying inhomogeneous index
variation is separated from the homogeneous propagation by
virtue of Eq. (5), and after iterating through all the slices, one
can obtain the output wave field.

For the homogeneous propagation step, the method most
commonly used is the angular spectrum method (ASM) that
relies on the angular spectrum of planes waves [1,3,4,23]. If
ASM is used to implement the homogeneous propagation part,
one can write the iteration equation for one slice between zi and
zi+1 as

U(x , zi+1)=F−1

{
F
(

U(x , zi ) exp

(
j2π1z

√
n̄2

i

λ2
0

− f 2
x

))

× exp (− j (n(x , zi )− n̄i )k01z)

}
,

(6)

where zi+1 = zi +1z and n̄i is the average refractive index for
the i th slice. F stands for the Fourier transformation, and fx is
the spatial frequency associated with the variable x . Also note
that Eq. (6) assumes fx < n̄i/λ0, which means that evanescent
waves are excluded.

We can write this in operator notation for later use as

U(x , zi+1)= Ci Pn̄i U(x , zi ), (7)

where Pn̄i stands for free-space propagation in a homogeneous
region of length1z and refractive index n̄i , and where Ci is the
operator representing the multiplicative phase compensation
Ci = exp(− j (n(x , zi )− n̄i )k01z) for the i th slice.
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The advantages of BPM are that it is relatively simple,
straightforward, and fast. More advanced BPM algorithms have
been developed to work in the non-paraxial case as well. For
example, [1,4] employ the ASM to calculate the propagation
part. This allows use of the fast Fourier transform (FFT) and,
thus, has a computational advantage. The version of BPM that
we consider is that given in [3,24]. While we consider the case
where we have only transverse dimension, generalization to two
transverse dimensions is not difficult.

3. QUADRATIC-PHASE SYSTEMS

A QPS, mathematically known as a LCT, is a unitary system
with parameter matrix M, whose output fM(u) is related to its
input f (u) through a quadratic-phase integral:

fM(u)=
√
βe− jπ/4

∫
∞

−∞

exp
[

jπ(αu2
− 2βuu ′ + γ u ′2)

]
× f (u ′)du ′,

(8)

where α, β, and γ are real parameters. Systems or transforms
characterized by this type of relationship are also known under
other names including ABCD systems and, along with the FRTs
that they generalize, have received considerable attention and
found many applications [9,10,25–56].

The 2× 2 matrix M whose elements are A, B,C , D repre-
sents the same information as the three parameters α, β, and γ ,
which uniquely define the QPS:

M=
[

A B
C D

]
=

[
γ /β 1/β

−β + αγ/β α/β

]

=

[
α/β −1/β

β − αγ/β γ/β

]−1

. (9)

The unit-determinant matrix M belongs to the class of unimod-
ular matrices. More on the group-theoretical structure of QPSs
may be found in [9,25].

The result of repeated application (concatenation) of QPSs
can be handled easily with the above-defined matrix. When
two or more QPSs are cascaded, the resulting system is again a
QPS whose matrix is obtained by multiplying the matrix of each
QPS in the cascade structure. That is, if two QPSs with matrices
M1 and M2 operate in a successive manner, then the equivalent
system is a QPS with the matrix M3 =M2M1. QPSs are not
commutative. The matrix of the inverse of an QPS is simply
another QPS whose matrix is the inverse of the matrix of the
original QPS [9,25].

4. RELATIONSHIP BETWEEN THE BEAM
PROPAGATION METHOD AND
QUADRATIC-PHASE SYSTEMS

As discussed in Section 2, the BPM involves alternating appli-
cation of two basic operations. The first is a propagation
calculation, which may be based on the ASM but also corre-
sponds to a convolution. The second part is application of a
phase filter, which corresponds to a multiplication. That is, the

BPM involves a sequence of alternating convolutions and multi-
plications. Since convolution corresponds to multiplication in
the Fourier domain and vice versa, the propagation part can be
viewed as a multiplicative filter in the Fourier domain. Thus, we
can also say that BPM corresponds to the consecutive applica-
tion of a multiplicative filter (or a convolution) alternately in the
space and spatial frequency domains.

Thus, we can state our first main result. The BPM method
can be viewed as the alternate application of:

1. Multiplications and LCTs/QPSs.
2. Multiplications and FRTs.
3. Multiplications and FTs.
4. Multiplications and convolutions.
5. Multiplications and homogeneous propagation.

The last three follow from our discussion at the beginning of
this section. The first two follow from the equivalences discussed
in Section 1, which are based on [16,21].

The above result is also consistent with the modeling of an
inhomogeneous medium as a large number of spatial filters
alternating with narrow sections of propagation. The latter
can be represented as QPSs/LCTs or FRTs, in addition to the
conventional choice of Fresnel transforms. In the limit that these
sections become narrower and narrower, this model becomes a
mathematically exact one.

FRTs and LCTs have been extensively studied and have a large
number of properties that are generalizations of the properties of
ordinary Fourier transforms [9]. Interpreting the BPM method
in terms of FRTs and LCTs opens up the possibility of exploiting
these properties in the study of BPM.

An important observation is that such a chain of operations
is in general irreducible. Two (or any number of ) multiplica-
tion operations can be combined into a single multiplication
operation, and two (or any number of ) convolution opera-
tions can be combined into a single convolution operation. In
other words, multiplication or convolution operations, sepa-
rately, can be collapsed down to a single equivalent operation.
Had it been possible to exchange the order of a multiplication
and a convolution operation, possibly by using new multi-
plying and convolving functions, an alternating cascade of
convolution-multiplication-convolution-multiplication could
be rearranged, merged, and collapsed, simplifying the whole
system down to a single multiplication-convolution pair. This
would be achieved by switching the order of multiplication and
convolution operations such that several multiplications are
made adjacent to each other and several convolutions are made
adjacent to each other, after which these could be collapsed to a
single multiplication and convolution, respectively. That this is
not in general possible can be stated as a mathematical result [9]:

Let g (x )= h2(x ) ∗ [h1(x ) f (x )], where f (x ) is the input,
g (x ) is the output, and h1(x ), h2(x ) are given functions.
Then it is not in general possible to find h ′1(x ), h ′2(x ) such that
g (x )= h ′2(x )[h

′
1(x ) ∗ f (x )] defines the same input–output

relation between f (x ) and g (x ) as before.
This result means that alternating multiplication-

convolution chains, or equivalently alternating space-frequency
filtering chains, cannot be reduced to a smaller number of
operations.
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Typically, BPM is implemented with a large number of
slices to better satisfy the assumptions made in its derivation.
Although faster than many other computational approaches, it
still carries a significant computational burden due to repetitive
calculations on the usually large number of data points of the
wave function, which is a consequence of the above-discussed
irreducibility. The large number of multiplications, convolu-
tions, or Fourier transforms cannot be combined and collapsed;
they must be repeated alternately.

We now show that there is an approximation, if applicable,
that allows the whole computation over all the slices to be col-
lapsed down to a single fast calculation. More specifically, when
a quadratic-phase approximation is possible, each step of the
BPM can be written as a QPS. In this case, by representing each
Pn̄i and Ci as a QPS and then combining them by using the
concatenation rule for QPSs given in Section 3, we can obtain
a single overall QPS representing the whole system. This sin-
gle overall QPS corresponds to the full BPM procedure and is
defined by a single ABCD matrix corresponding to a single LCT,
as defined by Eq. (8). This is possible because the combination
of any number of QPSs is a single QPS, with its parameters
determined by combining the parameters of the constituent
QPSs. On the other hand, when the quadratic approximation is
not possible, such a reduction does not exist.

There exist fast algorithms to digitally calculate QPSs
(LCTs) in ∼M log M time (where M is the number of sam-
ples) [36,43,57–61], which are in turn based on fast algorithms
for the FRT [62]. Thus, once the system has been modeled,
the whole procedure of calculating the output field from the
input field can be completed in about the same time it takes to
calculate a single Fourier transform. Thus, the iterative nature of
the BPM can be bypassed, and computational savings by a large
factor can be achieved.

The homogeneous propagation part of the BPM, Pn̄i , can
often be implemented by using the Fresnel approximation [23].
The Fresnel transform gives the output field E (x , z) in terms of
the input field E (x , 0), after propagation over a distance z in a
homogeneous medium of refractive index n:

E (x , z)=
e j n 2π

λ0
z

√
jλz

∫
E (x ′, 0)e j nπλ0z(x−x ′)2dx ′. (10)

This operation is a CC. It is a special case of QPSs, and the corre-
sponding ABCD parameter matrix, denoted by MF , is given by

MF =

[
1 λ0z

n
0 1

]
, (11)

whereα = β = γ = n
λ0z .

Now we turn our attention to the multiplicative phase fil-
ter Ci . If we can approximate this filter by a quadratic-phase
filter, then this operation becomes a CM, which is also a
special case of QPSs. This operation can be expressed as
E ′(x , z)= e−iπq x2

E (x , z), and the corresponding ABCD
parameter matrix is

MC =

[
1 0
−q 1

]
. (12)

We will consider a minimum mean square error (MSE)
approach to find the best quadratic-phase fit of the form
exp(− j (a x 2

+ b)k01z) to the actual phase filter Ci =

exp(− j (n(x , zi )− n̄i )k01z)= exp(− j1n(x , zi )k01z) in
Eq. (6). To find the best fit, we must solve the optimization
problem

minai ,bi (ai x 2
+ bi −1n(x , zi ))

2 (13)

to obtain the ai and bi parameters appearing in the quad-
ratic approximation for each layer, where (i = 1, 2, . . . , N)
represents the BPM slices along z. Numerical solution of the
above optimization problem can be carried out by discretizing
Eq. (13):

minai ,bi

Nx∑
k=1

(ai x 2
+ bi −1n(x , zi ))

2, (14)

where (k = 1, 2, . . . , Nx ) represents the samples taken along
the transverse direction. Solving this optimization problem
yields the following 2D system for each i :[

ai

bi

]
=

[∑Nx
k=1 x 4

k

∑Nx
k=1 x 2

k∑Nx
k=1 x 2

k Nx

]−1 [∑Nx
k=1 x 2

k1n(xk, zi )∑Nx
k=1 1n(xk, zi )

]
.

(15)
Once the optimization is completed, we can write the ABCD
matrix representation Si of a single BPM iteration step as follows
by multiplying the matrices corresponding to the propagation
and multiplicative filter parts:

Si =

[
1 0

−2ai1z/λ0 1

] [
1 λ01z/n̄i

0 1

]
, (16)

with the constant phase residue exp( j 2π
λ0
1z(n̄i − bi )). Note

that the bi term in this constant phase residue is due to the part
of the quadratic approximation and the n̄i term is due to the
constant phase compensation of the Fresnel transform. The
above represents once slice of the system. Then, the overall
ABCD matrix that approximates the inhomogeneous media
with a QPS can be obtained by simple matrix multiplica-
tion, requiring manipulation of only 2× 2 matrices. The
overall matrix Moverall is given by multiplying the matrices
corresponding the many slices:

Moverall = SNSN−1 · · · S2S1, (17)

and the constant phase residues can be combined at the very
end altogether as exp( j 2π

λ0
1z

∑
i (n̄i − bi )). Once Moverall is

calculated, we have obtained the ABCD parameters of the single
overall quadratic-phase transform and, hence, obtained a direct
relationship between the input and output. The output can now
be computed in terms of the input by fast∼M log M algorithms
[57,58,61]. Moreover, the cost of optimization, which only
includes a matrix multiplication and summations, and the
cost of calculating the 2× 2 matrix Moverall do not constitute a
significant overhead.

A satisfactory quadratic-phase approximation to the multipli-
cative phase filters will not always be possible, but when it is, very
significant computational gains are achieved.
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5. NUMERICAL TESTS

Here we consider some example systems and simulate them
using both the BPM and direct fast computation following
QPS approximation. This not only serves as a verification of the
equivalences presented in Section 4 but also illustrates the speed
improvement possible when the quadratic approximation is
possible.

In our first example, we consider a medium with an irregular
refractive index distribution (Fig. 1). The medium is divided
into N = 25 layers of width 1z along the propagation direc-
tion. Each layer has a different baseline refractive index n̄i

(where i = 1, 2, . . . , N) chosen randomly between 2.5 and 3.5.
Each layer is further divided into four subregions with arbitrarily
chosen boundary positions and transverse widths as shown in
Fig. 1. The refractive index in each subregion is determined by
adding to the baseline index, a uniform random deviation with
peak value of ±2.5× 10−3. These deviations also vary from
layer to layer. As 1n� n̄, we are ensured of the validity of the
SVEA. A centered rectangular field with unit amplitude and
base width of 2 mm is input to the system and propagates along
the z axis for 0.1 mm. The wavelength is 650 nm. The input
field is sampled with 256 samples, and 10,000 BPMs are used
in the BPM computation. We also approximate this irregularly
shaped index distribution with a QPS and directly compute
the output with a single quadratic-phase integral. The error
between the output fields obtained with conventional BPM and
our QPS-based method is only 0.9%. The error is defined as the

Fig. 1. Test System 1. The direction of propagation is z.
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Fig. 4. Index distribution for Test System 2.

energy of the difference normalized by the energy of the refer-
ence (conventional BPM), expressed as a percentage. In addition
to this quite high accuracy, our QPS-based method is 72 times
faster than the conventional BPM. The computational times
have been measured using MATLAB’s tic and toc methods. The
fields at the output of the system are plotted in Figs. 2 and 3.

As a second example, we consider a generalized GRIN sys-
tem. We assume a standard quadratic GRIN distribution along
the transverse direction, but we allow the parameters of the
distribution to be different in each slice, which we assume are of
10 nm thickness. The index distribution of this medium is given
in Fig. 4, and the average index distribution of this profile along
the z direction is plotted in Fig. 5. The parameters in each slice
were chosen randomly to generate this example distribution.
The wavelength of the light, the sampling parameters, and the
input function are the same as in our previous example.

The error between the two methods for this example is
1.64%, and the speed improvement is a factor of 74. The results
are plotted in Figs. 6 and 7. This second example shows that the
QPS method can be applied to generalized quadratic GRIN
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media whose parameters vary along z. Note that, in both exam-
ples, the main contribution to the error comes from the edges,
with much better accuracy in the central regions. It should also
be noted that whether a given accuracy is considered acceptable
or not depends on the application and the demands of the situa-
tion. However, given the large speed-ups possible, there could be
many situations where the quadratic approximation represents a
justified trade-off in terms of speed versus accuracy.

6. CONCLUSION

The BPM can be viewed as a method of numerical analysis.
We have seen that the BPM can also be viewed from a signal
processing perspective. It can be interpreted as a chain of alter-
nating convolutions and multiplications, as multi-stage filtering
alternately in the space and frequency domains, or as multi-
plication operations sandwiched between QPS/LCT or FRT
stages. These mathematical structures can also be viewed as
alternative models of inhomogeneous media. The alternative
perspectives may allow the application of tools, techniques, and
fast algorithms from signal processing to enhance the BPM.

We gave one such example, corresponding to the case
where the multiplicative spatial filters can be approximated
by quadratic-phase functions. In this case, direct and highly
accurate fast computation of the output field from the input
field in ∼M log M time becomes possible—in other words,
about the same time it takes to compute a single Fourier trans-
form. In our examples, the speed-up was nearly 2 orders of
magnitude. The larger the number of slices that must be used
in the BPM, the larger the speed-up obtained by using our
direct method is. While we cannot expect the quadratic-phase
approximation we employ to be always satisfactory, practical
cases where it is sufficient do occur, allowing significant speed
improvements.

Further study may lead to a better characterization of the class
of systems, which can be sufficiently approximated in this man-
ner. In those cases where the quadratic-phase approximation
is not sufficient throughout the system, it may still be possible
to identify certain regions where it exhibits sufficient accuracy.
Then our direct fast computation method may be used for these
regions, and the conventional BPM can be used for the remain-
ing regions. Using this hybrid method instead of using the pure
BPM for the entire medium, considerable speed-up may still be
possible.
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