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Competitive Linear Estimation Under
Model Uncertainties

Suleyman S. Kozat and Alper T. Erdogan

Abstract—We investigate a linear estimation problem under model un-
certainties using a competitive algorithm framework under mean square
error (MSE) criteria. Here, the performance of a linear estimator is defined
relative to the performance of the linear minimum MSE estimator tuned to
the underlying unknown system model. We then find the linear estimator
that minimizes this relative performance measure, i.e., the regret, for the
worst possible system model. Two definitions of regret are given: first as a
difference of MSEs and second as a ratio of MSEs. We demonstrate that
finding the linear estimators that minimize these regret definitions can be
cast as a Semidefinite Programming (SDP) problem and provide numerical
examples.

Index Terms—Competitive, convex optimization, linear estimation, re-
gret, uncertainties.

[. INTRODUCTION

In this correspondence, a basic linear estimation problem is investi-
gated from a competitive algorithm framework under mean square error
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(MSE) criteria. Here, a desired unknown data vector with a known cor-
relation matrix is observed through an unknown linear system, where
the output of the system is corrupted by additive noise with a known
correlation matrix. Although, the underlying linear system is unknown,
an estimate of it is given (or produced), which may contain possible un-
certainties (or inaccuracies). Based on the observations, an estimate of
the desired data vector is produced using a linear estimator. However,
since the underlying system is not accurately known, it may not be
possible to directly choose this linear estimator as the linear minimum
MSE (MMSE) estimator.

A common approach to solve such estimation problems under model
uncertainties is to pose the estimation problem in a worst-case perfor-
mance-optimization-based framework [1], [2]. Especially, in [2] and in
the references therein, the H ° criterion has been applied to the linear
estimation model. According to this criterion, the signals in the setup
are modeled as deterministic (unknown) disturbances and the max-
imum energy gain from the input signals to the output estimation er-
rors are minimized. However, in this correspondence, we refrain from
such a cost function and the deterministic formulation of the input se-
quences. Instead, we investigate a competitive approach inspired by
[3], where the overall performance is defined based on relative MSEs.
In this competitive framework, the performance of a linear estimator
is defined relative to the performance of the linear MMSE estimator
tuned to the underlying unknown channel. We then seek for the linear
estimator that minimizes this relative performance, i.e., the regret for
committing to a linear estimator that is not the linear MMSE estimator.

In this correspondence, we investigate two different “regret” formu-
lations. The first formulation defines the regret committing to a partic-
ular linear estimator as the difference between the MSE of this linear
estimator and the MSE of the linear MMSE estimator tuned to the un-
derlying model. In the second formulation, the regret is defined as the
“ratio” between the MSE of this linear estimator divided by the MSE
of the linear MMSE estimator tuned to the underlying model. We em-
phasize that although defining the regret as a difference between MSEs
is well studied in the literature [3]-[5], defining regret as the ratio of
MSE:s is introduced in here to our knowledge.

The linear estimation framework investigated in this correspondence
could be used to model certain digital communication scenarios, where
the underlying channel coefficients are not known accurately. In such
applications, the statistics of the desired signal, e.g., the transmitted
data, and the noise process, which can be readily estimated from the
observed data for independent noise processes, are usually assumed to
be known. The underlying unknown channel may be estimated using
either blind or supervised estimation algorithms. However, inaccura-
cies may exist due to the limited training data, the presence of noise,
and/or the time variations in the channel. The intended linear estimator
is then the linear equalizer that optimizes the MSE performance. We
note that when the underlying channel has a finite-impulse response
(FIR), then the linear system model has a convolution matrix structure
constructed using the FIR channel coefficients. However, even in this
case the algorithms introduced in here can be used directly.

The problem studied in this correspondence within the competitive
algorithm framework is investigated in [3], where uncertainties were
present in the correlation matrices of the input and noise processes, but
the underlying system model was assumed to be known. However, in
this correspondence, we cover the complementary case where the un-
certainty is present in the underlying system model and the correlation
matrices of the input and noise process are known. Furthermore, we
solve the underlying problem under model uncertainties for two dif-
ferent regret definitions, i.e., regret as the difference of MSEs and re-
gret as the ratio of MSEs. In both cases, we demonstrate that finding
the linear estimators that minimize the worst case regrets, can be cast
as semidefinite programming (SDP) problems. We should emphasize

1053-587X/$26.00 © 2010 IEEE
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that SDP problems are convex optimization problems, where efficient
algorithms such as the interior point methods, are available for their
solutions [6]. In this sense, the desired linear estimators can be found
efficiently using the introduced methods.

We note that although the well-known H “° framework [2] also uses
similar minimax formulation as an optimization tool, there are impor-
tant differences in the competitive framework studied here. In the H*®
estimation framework, the cost function that is optimized is the max-
imum energy gain from input disturbances to the output estimation
errors. The uncertainty in H°° case is in the signals, where H " ap-
proach treats these disturbances as completely deterministic signals.
Therefore, this criterion amounts to minimizing the ratio of the error
signal energy to the energy of the disturbances for all possible signals
with nonzero energy. However, in the competitive framework, the cost
function is completely different and the signals in the estimation setup
are not taken as deterministic sequences but taken as stochastic signals.
The uncertainty is not in the signals, but in the linear mapping of the
observation setup describing the channel.

This correspondence paper is organized as follows. We first intro-
duce the basic problem setup in Section II. The regret formulations and
corresponding results of this correspondence paper as theorems follow
in Section III. We produce numerical results in Section IV. The corre-
spondence concludes with couple of remarks.

II. SYSTEM DESCRIPTION

In this correspondence, all vectors are column vectors and repre-
sented by boldface lowercase letters. Matrices are represented by bold-
face uppercase letters. Given a vector x, ||x|| = x*’x is the [>-norm,
where x'7 is the conjugate transpose and X’ is the ordinary trans-
pose. For a matrix R, Tr[R] is the trace, ||R|| is the spectral norm,
R > 0 represents a positive define matrix and R > 0 represents a
positive-semidefinite matrix.

In this problem, an unknown desired vector x € €% is observed
through an unknown linear system H, where the output of the system
is corrupted by additive noise, i.e.,

y=Hx+4+w

He Y and w € CM. Here, x is zero mean with known corre-
lation matrix R, > 0, w is the corrupting noise vector, independent
from x, with zero mean and known correlation matrix R,, > 0. Al-
though, H is unknown, an estimate of H is assumed to be available,
which is denoted as Hy. This estimate is usually imperfect and con-
tains an uncertainty

AH=H-H,

which is assumed to be bounded, i.e., || AH|| < @, a > 0. We assume

that «v or a bound on « is known.
After observing y, an estimate of the data vector x using a linear
estimator G is constructed as

¥=Gy=GHx+w),
=G[(Ho + AH)x + w|

where G € €V *M _ Given this linear model and estimator, the estima-
tion error is defined as

E[lx - %[*] =Tr [(I ~GH)R,(I— GH)H]
+ Tr[GR.,. G|
=Tr [RI(I ~GH)"(1- GH)] + Ti[GR., G
=Tr [R% [I- G(H, + AH)?

% [I = G(Ho + AH)] Rﬂ + TH{GR.G"].
)
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For any H, the optimal linear estimator in MSE sense tuned to H is
given by [7]

GMMSE (H) é arg Hgn F [HX — G(HX + W)||2]

(R—1 L HR H)*l HTR-!
with the corresponding MMSE
JMMSF) (H) é ngn E [HX bl }A{Hz] (2)

=Tt {(R;1+HHR;1H)_1]. 3)

Since we assume that only H, an erroneous estimate of the linear
system H is available, the direct use of MMSE formulation provided
above based on this estimate would not have a reliable performance.
For this purpose, we propose the use of competitive approach, where
the information about the uncertainty in the estimate enters into the es-
timation formulation. In the next section, we define two different min-
imax regret formulations, i.e., certain relative performance measures as
a part of this competitive framework. These regret formulations target
to optimize the variation in the MSE performance relative to the linear
MMSE estimator with the exact knowledge of the underlying channel.
In evaluating this relative performance, we use both the difference and
the ratio as two alternative approaches leading to the corresponding al-
ternative regret-based estimator formulations.

III. REGRET FORMULATIONS

A. Regret in Additive Form

For an unknown linear system H, we define our regret for
committing to a particular linear estimator G [not to Gymsek(H)]
as the difference between the MSE of G and the scaled MMSE that
can be achievable by the linear MMSE estimator Gyvse (H) tuned
to H as

E [|Ix — G(Hx 4+ w)||’] — pJawisr (H) )

for any arbitrary p > 0. Note that p is usually selected as p = 1, such
as in [3] and [4]. Furthermore, selecting p = 0 also yields the minimax
MSE framework investigated in the first part of [3]. We then seek for
the linear estimator that minimizes the worst case regret, i.e.,

* . 2
G " =arg min m(?fAH{E [lIx — G(Hx+w)|"] - pJuse (H) }

H=H

(5)

with a norm constraint on AH such that [|[AH|| < o, « € RT.

For the regret definition, using (1) and (3) in (4) yields
E [llx — G(Hx + w)||*] — pJumsr (H)
1 1
= Tt[GR,G"] + Tt {R; (I- GH)” (I - GH)R?
-1

_ oTx {(R;l + HHR;lH) ] . 6)

The regret expression obtained above can be simplified to a more
tractable form, by replacing the Jyvse (H) term with its first-order
(linear) approximation around the estimate H, that is provided in
Lemma 1 in the Appendix. Based on this approximation, the regret
cost function can be rewritten as
E [||x—G(Hx—|—W)||2] —pJyvmse (H)
~ Tr[GR.,G"]

1 1
+Tr [Rf (I-G[Ho+AH) (I-G[Ho+AH]) R

— pa—p2Re {Tr[AHH B]} %
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= Tr[GR.,, G"]
4T {R;% (I- G[Ho+AH])" (I- G[Ho+AH]) R%}

1 g1
— pa—p2Re {Tr |:R§ AH"B. 2:| } (8)

where we omitted the o(+) term in (7) and use Tr[AH”B] =
Tr[Riv/ AH"BR; "/ 2)] in (8). Note that the first-order approxima-
tion is introduced in order to make the solution of (4) in a minimax
setting tractable. Clearly, the effect of this approximation diminishes
as || AH]|| gets smaller. For distortions with larger || AH||, one can use
the higher order approximations instead. However, we have observed
through our simulations that the solution using the first-order approx-
imation yields successful results even for fairly large [|AH|| (when
compared to ||H]||). In order to obtain the linear estimator to minimize
the worst case regret in (8), we have the following theorem, which
formulates the underlying problem as an SDP problem.

Theorem 1: Suppose a desired unknown data vector x with zero
mean and known correlation matrix R, > 0 is observed through an
unknown linear system H as

y=Hx+w
where H € €Y and the corrupting noise vector w € €", inde-

pendent of x, is zero mean with known correlation matrix R., > 0.
Given an estimate of H as Hy, then the problem

minimize maximize {||Tr[GRwG”]
G H=Ho{AH
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Proof of Theorem 1: We first observe that the problem in (9) is
equivalent to the minimization problem

1 1
min  max Tr[GR“,G”]—i—Tr{Rf (I—GH)”(I—GH)R%}
G ||AH|[<a ’

1 _1
—pa — p2Re {Tr {Rg AH"BR. 2} } = mint
t,

such that

Tr {GRwGH +RI(I- GH)"(I- GH)R:?

1 _1 _1 1
—(pa/N)I - pRZAH"BR. ? — yR, 2B""AHR? } <t

AH|[ <a (12)

and H = Hy + AH. Defining an intermediate matrix M = M*“ ¢
CY*N | the inequality in (12) can be written as

Tr[M] < t 13)
{GRu,GH +RII- GH)Y(I- GHR? — (pa/N)I

1 H 1 1 H 1
-pRZAH”BR, > - )R, ’B AHRg} <M (14)

where ||AH|| < «. Applying Lemma 2 from the Appendix for
GR., G in (14) yields (15), shown at the bottom of page. Applying
Lemma 2 the second time to (15) yields (16), shown at the bottom of
page. After straightforward algebra, (16) can be written as

1 "
M+ (pa/N)I G {(I—GHO)RE]

1 1 H —1
4T {R% (I—GH)H(I—GH)RI?} G" | R 0
(I-GHo)RZ © I
1 _1 _1
—pa—p2Re <Tr {Rf AH"BR, QD} —pR, 2B" .
> 0 AH {Rg 0 0}
IAH[| <a (9 G
1
is equivalent to the SDP problem (see (10) and (11), shown at the R:? 1
bottom of page) where ., p > 0, M = M 4 and B are given in +1| o | aH" {—pBRx 20 GH] , AH| < a. (17)
(28) and (29), respectively. 0
min ¢
t,G .\, M
subject to
Tr{M} < t (10)
14 _1
M+ (pa/N)I- AR, G {(I - GHO)R;’} apR; 2B
G ) R,' 0 0 >0 an
(I- GH,)R:Z 0 I —aG
1
apBR; 2 0 —aGH A
- 1 1 1 1 1 1 .
M -R:Z(I-GH)"(I- GH)RZ + (pa/N)I+ pR:AH"BR. * + R, B"AHR? G | 0 15
GH R~ (1)
r 1 1 1 1 1
M + (pa/N)I+ pRZAH"BR, 2 + pR, 2B"AHR? G {(I— G[H, +AH])R3}
1
L (I — G[H, + AH])R? 0 I J
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Applying Lemma 3 from the Appendix to (17) yields the corre-
sponding constraint (11) of Theorem 1. Combining constraints (17)
and (13) yields the result in Theorem 1. This completes the proof of
Theorem 1. O

B. Regret in Ratio Form

In this section, we introduce a regret formulation using ratios of
MSEs. For an unknown linear model H, we define our regret for com-
mitting to a particular linear estimate G as the ratio between the MSE
of G and the scaled MMSE of the linear MMSE estimator G mmsi: (H)
tuned to H as

F [||x — G(Hx + w)||2]
pIvivse (H)
We then seek for the linear estimator that minimizes the worst case

regret, i.e.,
Eflx - GH 2
max { [||x (Hx + w)| ] } (19)

(18)

G* = argmin
ENG" nWTan phmvse (H)
given the system estimate Ho, where H = Hy + AH, with a norm
constraint on AH such that ||AH|| < «a, a € IR*. The parameter
p > 0 is arbitrary. We point out that, since p is a positive constant,
it has no affect in the minimax formulation given in (19). However,
p is included for notational consistency. Using the first-order linear
approximation given in Lemma 1 for Juwmse (H) without o(+) term
and (1) for E[||x — %]||?] in (18) yield the regret formulation as
E [||x — G(Hx+ w)||z]
phivise (H)

1 1
Tr[GR,GH] + Tr {RE(I - GH)(1 - GH)RE]

pa + 2pRe {Tr[AH"B]}
Tr[GR., G| + Tr {R;% (I- GH)*(I—- GH)R?]

L 1
pa + 2pRe {Tr {RE AHYBR, 2} }

The following theorem poses obtaining the linear estimator corre-
sponding to this regret formulation as another SDP problem.

Theorem 2: Suppose an unknown desired data vector x with zero
mean and known correlation matrix R, > 0 is observed through an
unknown linear system H as

y=Hx+w

where H € C*" and the corrupting noise vector w € €, inde-
pendent of x, is zero mean with known correlation matrix R, > 0.
Given an estimate of H as Hy, then the we have the problem (see (20),
shown at the bottom of page) where H = Hy + AH and || AH|| < «,
«, p > 0, is equivalent to the SDP problem

min ¢
£,G,\,M

2391

subject to
Tr{M} < tpa 21
1 H _1
M - )R, G {(I - GHO)Rg] atpR; ZBY
G*H R’ 0 0
1
(I-GH,)RZ © I —aG
_1
atpBR. 2 0 —aG" Al
>0 (22)

where M = M*, ¢ and B are given in (28) and (29), respectively.

Proof of Theorem 2: We first observe that the problem in (18) is
equivalent to the minimization problem shown at the bottom of page
such that

1 1
Tr[GR.GH] + Tr {R% (I-GH)7(I- GH)R_?}

<t,
1 _1 =
pa + 2pRe {Tr {R;’ AHEZBR., 2} }

IAH| <o (23)
and H = Hy + AH. However, the constraint in (23) is equivalent to

1 1
Tr[GR., G| + Tr {R; (I- GH)"(I- GH)R%} -

1 1
2tpRe {Tr [Rf AH"BR, 2” <tpa, ||AH| <a. (24)

Defining an intermediate matrix M, (24) can be equivalently written as
Tr{M} < tpa (25)
1 1
{GRU,GH +R2(I-GH)?(I- GH)R? -

L " -1 -1 L
tpRZAH " BR. ? —tpR, 2B"AHR? ; <M,
JAH| < 26)

We point out that (26) is in the same form as (14), hence we proceed
following the same lines. We first apply Lemma 2, two times and then
use the decomposition in (16) following Lemma 3 yielding

1M _1
M-)\R., G {(I—GHO)RJ?] atpR, 2B

G R,' 0 0 >0
N z
(I-GHg)R? O I —aG
1
atpBR.2 0 —aGT A

27
which is the constraint (21). Combining (27) and (25) yields the con-
straints in Theorem 2. This completes the proof of Theorem 2. O

IV. SIMULATIONS

In this section, we demonstrate the performance of the introduced al-
gorithms through numerical examples. In the first set of examples, linear

1 1
Tr[GR.,G"] + Tr {R% (I-GH)#(I- GH)R;]

(20)

minimize maximize
G H=—H,+AH

1 _1
pa + 2pRe {Tr |:Rf AHHZBR, 2] }

min max

1 1
Tr[GR.,G] + Tr {Rf (I-GH)"(I1—- GH)R\?}

= mint

G [|aH|S«

1 _1
pa + 2pRe {Tr {RE AHYBR, 2} }

.G



2392

SNR=45 0=0.3 p=1
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Fig. 1. Sorted MSEs for different H, where N = 4, M = 4, SNR =
45 (dB), p = 1, @ = 0.3. The algorithms are explained in the text along
with the definitions of R, and R.,,.

models H with N = 4 and M = 4 are randomly generated, where
for each such linear model, a random distortion with spectral norm less
than o = 0.3 isintroduced to get Ho = H — AH, i.e, ||[AH| < 0.3.
For the transmitted data and noise processes, the correlation matrices
are selected as R, = I and R,, = cI, where c is chosen to yield
SNR = 45 dB. In Fig. 1, we present results for the algorithm in The-
orem 1 with p = 1 as “diff”; for the algorithm in Theorem 2 withp = 1
as “ratio”; for the linear MMSE estimator that is tuned to Hy as “est”;
and finally for the minimax algorithm tuned to the worst possible model
H in terms of MSE without the relative regret term that is introduced
in the first part of [3] (which is equivalent to the algorithm introduced
in Theorem 1 with p = 0) as “worst.” Here, we randomly generated
10000 linear system models H and plot the corresponding MSEs sorted
in ascended order in Fig. 1. The worst or the largest MSEs for o = 0.3
and given the random H are: —1.2287 (dB) for the “worst” algorithm,
10.1999 (dB) for the “ratio” algorithm, 1.1661 (dB) for the “diff” algo-
rithm and 7.7859 (dB) for the “est” algorithm. We observe that since the
“worst” algorithm optimizes the MSE performance with respect to the
worst possible model, it yields the smallest worst case MSE among all
algorithms for these simulations. Nevertheless, due to this highly con-
servative design, the overall performance of the “worst” algorithm is
significantly inferior to “est” and “diff”” algorithms. We observe that al-
though the “est” algorithm yields smaller average MSE, i.e., the area
under the blue curve normalized with the number of trials. However, it
also produces significantly larger worst case MSE than the “worst” al-
gorithm. From Fig. 1, we observe that the “diff” algorithm provides
superior average performance compared to the “worst” and “est” algo-
rithms, and significantly superior worst case performance compared to
the “est” algorithm for these simulations.

In the next set of experiments, we generate 100 random Hy’s with
M =7, N =T, where ¢ is selected to yield SNR = 30 (dB). For each
linear model Ho, we first calculate the corresponding worst case MSEs
over the ball ||AH|| < 0.1 for each algorithm and plot the results in
Fig. 2, as the contiguous lines. For each linear model, we also calculate
the average MSEs over the ball [|[AH|| < 0.1 and plot the results in
Fig. 2, as the dashed lines. We observe that the “est” algorithm yields
the largest worst case MSEs. For the “worst” algorithm, we have the
largest average MSEs, however, the smallest worst case MSEs as ex-
pected. We observe from Fig. 2 that the regret formulations provide a
fair trade off such that they provide good average MSEs with reduced
worst case MSEs compared to “est” algorithm.
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SNR=30 0=0.1 p=1

— diff-ave

— ratio—ave
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) SO — S -

_50 10 20 30 40 50 60 70 80 90 100

Random channels
Fig. 2. Sorted average MSEs and worst case MSEs for different H,, where
N =7,M = 7,SNR = 30 (dB), p = 1, @ = 0.1. The algorithms are
explained in the text along with the definitions of R, and R., .

V. CONCLUSION

In this correspondence, a basic linear estimation problem is inves-
tigated in a competitive algorithm framework under MSE criteria. For
this framework, two different regret formulations are studied that target
to optimize the variation in the MSE performance relative to the linear
MMSE estimator with the exact knowledge of the underlying linear
system model. We investigated both the difference and the ratio as
two alternative approaches leading to the corresponding alternative re-
gret-based estimator formulations. We demonstrated that finding the
linear estimators that minimize the worst case regret formulations can
be cast as SDP problems, which can be efficiently solved using interior
point methods. Numerical examples illustrate the potential merit for the
proposed approaches, especially for the difference regret algorithm.

APPENDIX

Lemma I: The first-order Taylor expansion of Jymse (H) around
Hj is given by
Jvmse (H) = Jvvise (Ho)

+ 2Re {TI‘ [VH JMMSE (Ho)HAH]} + o0 (
=a+ Ti[B" AH+ AH"B] + o (|AH|]?)

AH|?)

where
a 2 Jumse (Ho) (28)
B 2 Vi Jumse (Ho)
- _RI'H, (Rj n Hé’R;‘HO)ﬁ (29)

Proof of Lemma 1: To get the first-order Taylor series expansion,
we just need to derive the gradient of Jyvse (H) with respect to H

—1
VaJumse(H) = VaTr |:(R_:1 + HHRJIH) }
M

Sl (R;‘ +H'R]' H)ﬂ e] (30)

=1

where e; is the unit vector in the ¢th direction, i.e., all entries
of e; is zero, except the ith entry, which is equal to 1. Note
that, the length of e; is understood from the context. To get
Vae (R + HHR,le)_lei, we use that

(R;l + HHR;IH)_l (R;1 + HHR;IH) -L @3l
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Taking the derivative of (31) with respect to Hy, ;, where Hy. ; is the

entry of H located at row % and column /, based on the Wirtinger cal-

culus [8], yields

o(R;' +H'R;'H)™
OH

(R +H"R,'H) +
—1
(R.'+HR,'H) H'R,'erel =0. (32)
Hence, after straightforward algebra, we have
oR,;'+H"R,'H)"
OHy

1

o H”REH)%

x H'R 'epe! (R;l 4 HHR;H)_1 (33)
yielding
vel (R;'+H'R,'H) e
OHp

o —1 0
—e! (R;l +H“R;1H) HYR'ere!

-1
x (Rj +H”R;‘H) .

0 —1 s
—ef (R;'+HR,'H)  eve!
-1
x (Rj +H”R;‘H) H'R er. (34)
Since by definition, (9! (R7' + H"R'H) 'e,)/dHy, is the kth
row and /th column entry of the matrix
—1 . —1
- (Rj + H"R;‘H) eiel (R;‘ + H”R;H) H'R]'
then
Vuel/R;'+H'"R,;'H) e, = —-R,'H
x (R, +H'R,'H) ecel (R, + H'R,'H) ™.
Using this in (30) yields

1

VaJuwvse (H) = — %R;IH (R;l + HHRJIH)_l
i=1
x e;el (R;1 + HHR;H)_1
- —R,'H (R;l 4 HHRQIH)A I
x (R;1 + HHR;lH)_1

- _RJ'H (R;l 4 HHRQIH)Q

This completes the proof of Lemma 1. O
Lemma 2 [6, Ch. 2]: The inequality
Q S
>
{ s ml|Z2 0 (35)

where Q = Q7. R=R"”,and R > 0 is equivalent to

R>0, Q-SR's” >0 (36)

i.e., the set of nonlinear inequalities in (35) can be represented as (36).
Lemma 3 [3, Prop. 2]: Given matrices P, Q, and A with A = A”

A>P"2Q+Q"Z"P. V|Z| <a
if and only if there exists a A > 0 such that

QQ ob > 0.
—aP AL -

A proof of Lemma 3 is given in [3].

2393

REFERENCES

[1] S. A. Kassam and H. V. Poor, “Robust signal processing for communi-
cation systems,” IEEE Commun. Mag., vol. 21, no. 1, pp. 20-28, Jan.
1983.

[2] A.T. Erdogan, B. Hassibi, and T. Kailath, “MIMO decision feedback
equalization from an H > perspective,” IEEE Trans. Signal Process.,
vol. 52, no. 3, pp. 734-745, Mar. 2004.

[3] Y.C.Eldar and N. Merhav, “A competitive minimax approach to robust

estimation and random parameters,” IEEE Trans. Signal Process., vol.

52, no. 7, pp. 1931-1946, Jul. 2004.

S. S. Kozat and A. C. Singer, “Universal switching linear least squares

prediction,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 189-204,

Jan. 2008.

[5]1 Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Robust mean-squared

error estimation in the presence of model uncertainties,” IEEE Trans.

Signal Process., vol. 53, no. 1, pp. 168-181, Jan. 2005.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Ma-

trix Inequalities in System and Control Theory, ser. Studies in Applied

Mathematics. Philadelphia, PA: SIAM, 1994.

T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation.

Saddle River, NJ: Prentice-Hall, 2000.

A. van den Bos, “Complex gradient and hessian,” Proc. IEE Vision

Image Signal Process, vol. 141, no. 6, pp. 380-383, Dec. 1994.

[4

=

[6

=

[7

—

Upper
[8

[t

Least-Squares Design of DFT Filter-Banks Based on
Allpass Transformation of Higher Order

Heinrich W. Lollmann and Peter Vary, Fellow, IEEE

Abstract—The allpass transformation of higher order is a very gen-
eral concept to construct a frequency warped analysis—synthesis filter
bank (AS FB) with nonuniform time-frequency resolution. In contrast to
the more common allpass transformation of first order, the delay elements
of the analysis filter bank are substituted by allpass filters of higher order
to achieve a more flexible control over its frequency selectivity. Known
analytical closed-form designs for the synthesis filter bank can ensure
perfect reconstruction (PR), but the synthesis subband filters are not
necessarily stable and exhibit no distinctive bandpass characteristic. These
problems are addressed by a new least-squares error (LSE) filter bank
design. The coefficients of the finite-impulse-response (FIR) synthesis
filters are determined simply by a linear set of equations where the signal
delay is an adjustable design parameter. This approach can achieve a
perfect signal reconstruction with synthesis filters which are inherently
stable and feature a bandpass characteristic. The proposed filter bank is
of interest for various subband processing systems requiring nonuniform
frequency bands.

Index Terms—Allpass transformation, frequency warping, least squares,
nonuniform filter banks, perfect reconstruction.

I. INTRODUCTION

The allpass transformation is a common approach to design a
filter bank with a nonuniform time-frequency resolution [1]-[3].
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