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Unbiased Model Combinations for Adaptive Filtering

Suleyman S. Kozat, Andrew C. Singer, Alper Tunga Erdogan, and
Ali H. Sayed

Abstract—In this paper, we consider model combination methods for
adaptive filtering that perform unbiased estimation. In this widely studied
framework, two adaptive filters are run in parallel, each producing
unbiased estimates of an underlying linear model. The outputs of these
two filters are combined using another adaptive algorithm to yield the
final output of the system. Overall, we require that the final algorithm
produce an unbiased estimate of the underlying model. We later spe-
cialize this framework where we combine one filter using the least-mean
squares (LMS) update and the other filter using the least-mean fourth
(LMF) update to decrease cross correlation in between the outputs and
improve the overall performance. We study the steady-state performance
of previously introduced methods as well as novel combination algorithms
for stationary and nonstationary data. These algorithms use stochastic
gradient updates instead of the variable transformations used in previous
approaches. We explicitly provide steady-state analysis for both stationary
and nonstationary environments. We also demonstrate close agreement
with the introduced results and the simulations, and show for this specific
combination, more than 2 dB gains in terms of excess mean square error
with respect to the best constituent filter in the simulations.

Index Terms—Adaptive filtering, gradient projection, least-mean fourth,
least-mean square, mixture methods.

I. INTRODUCTION

We investigate unbiased mixture methods to combine outputs of two
adaptive filtering algorithms operating in stationary and nonstationary
environments. The objective is to achieve a steady-state mean-square
error (MSE) better than, or at least as good as, each individual adaptive
branch by exploiting the cross correlation structure between them
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through an adaptive combining scheme. We may achieve an unbiased
output through the use of the convex or affine combination constraints
on the combination weights. We focus on steady-state results for
stationary and certain nonstationary data models, however, the tran-
sient analysis of the algorithms can be derived using similar methods.
Furthermore, although we only use stochastic gradient updates to train
the combination weights, one can extend these algorithms to other
methods, such as those based on Newton or quasi-Newton updates.

The structure we consider consists of two stages [1], [2]. In the first
stage, we have two adaptive filters, working in parallel, to model a de-
sired signal. These adaptive filters have the same length, however, each
may use a different adaptation algorithm. We also require that these
constituent filters produce unbiased estimates of the underlying model.
The desired signal has a random walk formulation to represent both sta-
tionary and nonstationary environments [3]. A more precise problem
formulation is given in Section II. The second stage of the model is the
combination stage. Here, the outputs of the adaptive filters in the first
stage are linearly combined to yield the final output. We only consider
combination methods that produce unbiased final estimates of the un-
derlying model. A sufficient condition to satisfy this requirement is to
assume that the second stage coefficients sum up to one at all times, i.e.,
affine combinations. In addition to unbiasedness, the combination coef-
ficients can be further constrained to be nonnegative, which corresponds
to the case of convex combination. We consider both of these cases.

The framework where multiple adaptive algorithms are combined
using an unbiased linear combination with the goal of improving the
overall performance has recently attracted wide interest [1], [4], and
[5], following the result in [1] that the convex combinations can im-
prove the resulting MSE performance. The requirement on unbiased-
ness may be motivated from some problem-specific constraints as well
as implementation related issues. The combination weights are usually
trained using stochastic gradient updates, either after a sigmoid non-
linearity transformation to satisfy convex constraints [1], [4] or after
a variable transformation to satisfy affine constraints [5]. There are
also Bayesian inspired methods that have extensive roots in machine
learning literature [2]. The methods in [1], [2], [4], and [5] combine fil-
ters using least-mean squares (LMS) or recursive least squares (RLS)
updates (or unsupervised updates). As demonstrated in [1] and [4], mix-
tures of two filters using the LMS or RLS updates (or a combination
of the two) with the convex methods yield combination structures that
converge to the best algorithm among the two for stationary data. As
demonstrated in [1], the cross correlation between a priori errors of
the two LMS filters (or LMS and RLS filters in [4]) remains suffi-
ciently high that it limits the combination performance and the optimal
convex combination solution converges to only selecting one of the two
outputs.

In this paper, we first quantify the achievable gains using convex or
affine constrained combination weights in steady-state for stationary
and nonstationary data. We also provide the optimal combination
weights to yield these gains. We next demonstrate that the update
given in [5, Eq. (45)] (which tries to simulate the unrealizable optimal
affine combiner) is a stochastic gradient update with a single tap input
regressor and derive its steady-state MSE for both stationary and
nonstationary environments. Here, we refrain from making variable
transformations and directly adapt the combination weights using
stochastic gradient updates. However, to preserve convexity or affinity,
after each update, we project each updated mixture weight vector
back to the convex or affine space. These methods update the weights
directly instead of using variable transformations [1], [4]. As a by
product of our analysis, we demonstrate that the update in [5, Eq. (45)]
is also a stochastic gradient projection update. As a specific example,
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Fig. 1. A mixture of two adaptive filters working in parallel to model a desired
signal.

we consider the case of a combination of two adaptive branches using
the LMS and the least-mean fourth (LMF) algorithms respectively
and derive the steady-state MSE. By this specific combination, we
achieve sufficient decorrelation of the outputs so that in both stationary
and nonstationary environments the final steady-state MSE of the
combination is better than the MSE of the best constituent filter. In [1]
and [4], it was shown that for combination of two LMS filters (or LMS
and RLS filters) such a performance improvement over the constituent
filters is not possible in stationary environments but only achievable in
certain nonstationary environments.

We first introduce the basic problem and derive the optimal affine
and convex combinations along with their corresponding MSE
performance in Section II. We then continue to introduce several
different methods to train the combination weights and provide the
corresponding steady-state MSEs in Section III. In Section IV, we
specialize our results to the case where we combine an LMS and
an LMF adaptive filters. We also derive the corresponding cross
correlation between the a priori errors of the LMS and LMF filters.
We conclude the correspondence with simulations and some remarks.

II. PROBLEM DESCRIPTION

The system we consider has two parts as shown in Fig. 1. The first
part contains two constituent adaptive filters, running in parallel to
model the desired signal ����. The desired signal is given by ���� �
����
� ��������������, where ������ � ��� is a zero mean stationary vector

process with ���
�
� ������������ ����, ���� is an i.i.d. noise process inde-

pendent of ������ with ���
�
� �������� and ������� � ��� is an unknown

system vector.1 We assume a widely used [3] random walk model on
������� such that�������	�������
� � 	��������������
���


���, where



��� � ��� is an i.i.d. zero mean vector process with covariance ma-
trix ��


���


� ���� � ���,�����
� is the initial weight vector as well as the
mean of this process. We observe that ��� � � and 	 � 	 corresponds
to the stationary case. Usually, 
 � �	� � 	. Each filter updates a
weight vector������� � ��� and ������� � ��� and produces estimates,
������ � ����

� ���������, � � 	, 2, respectively. For each filter we also de-
fine estimation, a priori and a posteriori errors as

����� � ����� ������

������� � �����������������
� ������

������� � ���������������� 	��� ������


1All vectors are column vectors, represented by boldface lowercase letters,
��� is the transpose operation and � � � is the � -norm. For a vector ���, � is
the �th entry. Matrices are represented with boldface capital letters. For a matrix
���, ������� is the trace. Also, the vector or matrix � (or �) represents a vector or
a matrix of all ones (or zeros) where the size is understood from the context.

Hence, for each filter we have

������ � ����
� ���������� ������� (1)

and ����� � ������������. We also have �����
�
� ����� ����, ��������

�
�

����������� and their limiting values (if they exist) ��
�
� 
��	�� �����,

�����
�
� 
��	�� ��������, respectively. We further have ��������

�
�

����������������� and (if it exists) �����
�
� 
��	�� ��������.

The second part of the system is the mixture stage. Here, the out-
puts of the two constituent filters are combined to produce the final
output as ����� � ���� ���������, where ������

�
� � ������ �������

� . We also
update ������ with an adaptive algorithm, where possible candidates are
given in Section III. We note that for the mixture stage, the correla-
tion matrix ����

�
� ������������ ���� and the cross correlation vector

������
�
� ������������� are time varying. To obtain the limiting values,

we observe that

������ �
������
������

�
����
� ���������� �������

����
� ���������� �������


 (2)

We further have


��
	��

� ������ ������

� 
��
	��

� ����
� ������������

�
� ��������������

� ����������������

�����
� ����������������� ��������������

� ��
 ��� � ������ (3)

where ��
 ���
�
� ��������������������

�
� ������ and we use a separation

assumption such that ���������������� � ������������������� similar to
[3] to cancel the cross terms in (3). We note that 
��	�� ��
 ��� �
���������� � �	 � 	�������
����

�
� �
�������	 � 	��� when �	� � 	, and

diverges when �	� � 	. With an abuse of notation, we preserve the
time index as �	� in ��
 ��� to study both cases together. Hence, by
this derivation we obtain


��
	��

������ � 
��
	��

� ���������� ���

�
����� � ��
 ��� ������ � ��
 ���

������ � ��
 ��� ����� � ��
 ���
(4)

and 
��	�� ������ � ���
 �����
 ����
�

. We next present the corre-
sponding optimal affine and convex mixture weights to minimize the
steady-state MSE. These optimal convex and affine weights are tar-
geted by the adaptive algorithms applied on ������ in Section III.

A. Affine and Convex Combinations

Under the aforementioned analysis of ������ and ������, for given ��� �
���, the steady-state MSE (if the limit exists) in the limit is given by


��
	��

� ���������������
�

� 
��
	��

����������
� �����������������

��������������
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where �������
�
� �������������� and ������

�
� �������� � ��
 ��� � ���. If

the combination weights are constrained to be affine, then the optimal
affine weights that minimize the final MSE are given as the solution to
the following convex quadratic minimization problem:

�����
�
� 
��

	��
������

���
������� ���� �����������������

� ����� � ��������
�
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such that �������� � �, ���� � ���. The optimal affine weights can be
shown to be

����� � ��	
���

������� 
 �� ����� ����
���������

�����������

�
�

����� 
 ����� � �������

����� � ������
����� � ������

(5)

using (4) and ��� � ���� ��� �
�
� ���


�
. We also define ���

�
�

��	��� �������� �������
�			����

�

 � ���
������������

�����
�����

���� � �������, i.e., the MMSE of the affine combination.

For the convexity constraint on the combining weights, we have a
convex quadratic minimization problem with linear constraints,

�����
�
� ��	

���
���	��

���
��������

�
� ��	���� ���� �����������������


 ����� � �������

� ������ ����� � �������
 (6)

such that ���� � �, where � � ���� � ����� � �� ���� � �� ���� � ��
is the unit simplex. Since � is included inside the set corresponding to
the affine combination weights, we have ��� � ��� .

After some algebra as in [6], we can rewrite the cost function in (6)
as

�������� � ��� 
 ����� � ������
� ������ ����� � ������ (7)

� � � for any ���� in the unit simplex, i.e., ���� � �. Therefore, by
ignoring the constant term in (7), we can view the problem of finding
����� as that of projecting ����� onto the unit simplex � with respect to the
������-weighted 2-norm. In other words, the problem of finding the best
����� can be posed as ����� � ���	����� 	����� � ����	�




��� s.t. ���� � �. For
the solution, we observe that the unit simplex � is the line segment
between �� �
� and �� �
� , yielding two cases to consider

• Case ����� � �: In this case, we simply have ����� � ����� and ��� � ��� .
• Case����� 
� �: This case occurs when one of the components of����� is

strictly negativeand the other is positive. Without loss of generality,
we let the first component be negative. Then, for any vector���� in the
unit simplex, due to the constraint that������� � �

����� � �, we can
write ���� � ����� 
 
�� � �
� . Thus, the cost function in (7) would
be equivalent to 	
��� �
� 	

�




��� � 
���� �
��������� �
� , which
implies that the cost increases when the magnitude of 
 increases.
Therefore, the smallest value which makes ���� � ����� 
 
�� � �
�

feasible (i.e., in �) would be the optimal choice for 
 , which is
equivalent to 
 � ��

����
� . This would be equivalent to the choice

����� � �� �
, i.e., a corner point of�. As a result,��� � 	������ ���
and the cost increase for the convex combination relative to the
affine combination case can be written as

��� � ��� �

����
����
�

�

� �������� � �

����
����
�

�

� �������� � �

� otherwise

where �
�
� ��� �
������

��

�
������
�������������� (8)

We observe that when the combinations are constrained to be unbi-
ased, i.e., affine or convex, the optimal weights depend on the relative
value of the cross correlation between a priori errors relative to a priori
error variances of each constituent filter. We point out that for a combi-
nation of two filters each using the LMS update with a different learning
rate, it was illustrated in [1] that ����� is out of reach of the convex com-
bination and ����� 
� ����� (except on the simplex boundary) in stationary
context, i.e., ��� � � and � � �. In the next section, we investigate
different methods for training the combination weights that preserve
either the convex or affine constraints.

III. METHODS TO UPDATE THE COMBINATION WEIGHTS

In this section, we study four different adaptive methods to train the
combination weights and their respective steady-state MSEs. These in-
clude previously introduced (Section III-A) [5], previously investigated
(Section III-D) [1] as well as new combination methods. We present
them all for completeness.

A. Stochastic Gradient Update on Affine Weights

To constrain the combination weights to be affine, we can use a vari-
able transformation such that we do not constrain ������� and define
������� � �� �������. We next use a gradient update on ������� as

���� � �������������������� ���������� ������ (9)

�������
 �� � ���������
�

�
��� �����

� �������� 
 ����� ������� ������ � (10)

This update requires���� computational complexity. We note that this
update corresponds to the affine update given in (45) of [5]. We observe
from (9) and (10) that this update corresponds to the ordinary LMS up-
date on ������� with the desired signal as ����� � ������
 and one-tap
input regressor � ������� ������
 [7]. However, using (1) and the defini-
tion of ����, we get ����� ������ � ����
������� and ������� ������ �
���������������. A simple derivation invoking the separation assump-
tions (or independence assumptions) [3] yields that this LMS update
converges to a stationary point such that ��	��� ��������
 � ����� when
� � �
��������� 
 �������� � ����������� and the steady-state MSE
of this combination is given by

��	
���

� ����� � ��� 

���

� ������ 
 ����� � ��������

�� ������� 
 ����� � ��������
(11)

since ����� 
 ����� � ������� � ��	��� ���������� � �������

��

is the power of the one tap input regressor and ��� is the MMSE of
this one tap filter. We note that the effect of ����

� ��������� cancels out,
hence for any value of �, even if ��� � � such that ��� ��� diverges for
nonzero���, (11) holds due to the affine constraint. One can also perform
transient analysis of this update through analogous means, since this
is an ordinary LMS update with time varying correlation matrix and
cross correlation vector. It can be shown that the particular algorithm
converges in MSE sense for

� � � � �
 ��������� 
 ��������� ����������� (12)

for small enough �.

B. Stochastic Gradient Projection Update on Affine Weights

In stochastic gradient projection update, at each iteration, the com-
bination weights are updated using the ordinary stochastic gradient up-
date (which is the LMS update). However, at each iteration, since after
the gradient update, the updated weight vector can end up outside the
affine space, we project this vector back to the affine surface. The up-
date is given by

�����
 �� �
� �������
�

�
�����

���� � 
� ������� 
 �����			���


������� 

�

�
����

�������� �������

� ��������� ��������
(13)

where ���� � ���� � ���� ���			���, 
���
 is the projection operator to
the affine space and � � � is the learning rate. The last equality
in (13) is derived using the definition of the projection operation to
the affine space as: ���� � ���
�����


�
� ���	������� 	��� � ���	 �
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������� � �
�����������, where � is the affine space, i.e., �

�
� ���� �

��� � ����� � ��. However, if we focus on each constituent coefficient,
e.g., the first coefficient, then we observe from (13) that ������� �� �
�����������	�����
����������������, which is equivalent to (10) (ex-
cept 1/2 scaling in front of �). Hence, owing to the affine constraint,
this demonstrates that the gradient projected update is equivalent to the
stochastic gradient update with affine constraints such that

�
�
���

� ����� � 	�
� �

�	�
� �	���� � 	���� � 		������

�� ��	���� � 	���� � 		������

 (14)

C. Stochastic Gradient Projection Update on Convex Weights

In this section, we again use a gradient update on the combination
weights ������. However, to preserve convexity, we use a projection onto
the constraint set � following the gradient update. Therefore, the re-
sulting update equation can be written

������ �� � �� �������
�

	
�����

���� � �� 
������ � ������������ (15)

where ���� � ����� ���� ���


���,��
	� is the projection operator to the
unit simplex. The projection operator to the unit simplex is defined as:

��� � ���, ��
����

�
� ����
������ ���� � ����, where � � ���� � ��� �

����� � �� ���� � �� ���� � ��. For the combination of two branches,
this projection operator can be written more explicitly as

��
���� ���
���� 
� ��
���� � ��

��
���� ����� 
� ����� ��
���� � ��

��
���� ����� 
� ����� ��
���� � � (16)

where ���� is the unit vector for �th coordinate. We can show by using
independence or separation assumptions [3] and using the nonexpan-
sive property of the projection [8] (Prop.2.1.3(c)), this projected update
algorithm converges in the mean to ���	� for sufficiently small � when ���	�
is in the relative interior of the simplex. We observe that unlike (13),
(16) cannot be written in a simple closed form. However, if we follow
along the lines that yielded (14) and approximate the progress of the
convex weights with the progress of the affine weights (which is true
in the interior region of the simplex), then we can give the steady-state
MSE as

�
�
���

� ����� � 		
� �

�		
��	���� � 	���� � 		������

�� ��	���� � 	���� � 		������

 (17)

Note that (17) corresponds to the final MSE of a stochastic gradient up-
date algorithm converging to ���	� with MMSE 		

� and updating a weight
vector with a single tap. The computational complexity of this combi-
nation algorithm is only ���� per output sample.

D. Stochastic Gradient Update with Convex Weights

Here, the combination weights are trained using a gradient update
after a variable transformation using a sigmoid nonlinearity [1]. The
update for the combination weights to minimize the final estimation
error is given as

�������� �
�

� � ������
(18)

������� � � � �������, where ���� is trained using the stochastic gra-
dient update

���� �� � �����
�

	
���

����

� ���� � ����� �� ��������


 �������� ������� ������ 
 (19)

In [1], it has been shown under several assumptions that (18) converges
to the optimal convex combination weights ���	� and �
���� �
������ �
		
� . This argument assumed that the stochastic gradient noise does not

propagate to the final MSE due to the sigmoid nonlinearity. Hence,
the final MSE of (18) is the MMSE 		

� , without any additional terms
coming from the stochastic gradient noise. As also emphasized in [1],
this MSE equality is accurate when the convex combination converges
to one of the constituent filters, i.e., when ���	� � 
� ��� or ���	� � 
� ��� ,
so that ������� (or �������) becomes small enough to attenuate the prop-
agation of the stochastic gradient noise through the sigmoid in (19). As
shown in the simulations, the stochastic gradient noise may not be com-
pletely eliminated through the sigmoid nonlinearity in certain cases,
such as ���	� � 
��	 ��	�� , such that the final MSE of (18) is not equal
to 		

� .

IV. COMBINATIONS OF TWO SPECIFIC ADAPTIVE FILTERS

In this section, we study the case where we have specific adaptive
algorithms to update each of the constituent filter weights. To simplify
the notation, only for this section, we assume that � � �, i.e., �������
�� � ��������������. Suppose the first constituent filter updates its weight
vector ������� using the LMS update as

����� � ���������
� ���


��� (20)

������� �� �������� � �������


��� (21)

where �� � �. We then have

������� � 
����������������
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��� (22)

���
��� � 
��������������� ���� 


���

� �������� �� �


����
� ����� (23)

where ������ � ����
� ���


��� and ����� � ������� � ����. With

these definitions and using the separation assumption such that
�
�


������������� � �
�


�������
��������, the converged
mean-square a priori error of this filter using the LMS update is
given by ([3, ch. 6])

	���� � �
�
���

� �������� �
���

�
�������� � ���� ���

	� ���������

�
���

�
�������� � ���� ���

	
(24)

where the approximation is accurate for small ��.
If the second constituent filter also updates its weight vector

������� with the same LMS update as in (20), (21), but with
�� � �, then the converged mean square a priori error is given
by 	���� � ����

�
�������� � ���� ������	� ����������. For the combina-

tion of these two filters each running the LMS update with learning
rates �� and ��, the converged cross correlation between a priori errors
is given by 	����� � ��	�

�
�������� � 	������� � ������	� �	��������,

where �	
�
� �	�������� � ���� as given in [1]. Without loss of

generality if we assume that �� � ��, then �� � �	 � ��, i.e.,
the “learning rate” of the excess error is always between the learning
rates of the constituent filters. For stationary environments such that
��� � �, since �� � �	 � ��, we have 	���� � 	����� � 	����.
Because of this strict ordering, when used in (5), one element of �����
will be negative, yielding ����� �� ���	�. For this case ���	� � 
� ��� from
Section II-A, i.e., the convex combination is unable to use all the
cross-correlation information between constituent filter outputs to
reduce the final estimation error and only converges to the one best in
stationary environments.
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Fig. 2. System identification with seventh-order filter. (a) Here, � � �, � � ���, ������� � � and ���			� � �. For the algorithm: of Section III-B � � ���

“proj-aff”, of Section III-C � � ���
 “proj-cvx”, of Section III-D � � �� “grad-cvx”. (b) The x axis is the learning rate for the second stage for all algorithms,
� � �� � � � � � �� , ���			� � �� , ������� � �, � � �����, � � �� , � � ���
, 700 hundred iterations, �� �� samples, � � �.

To be able to find a combination structure where we have better con-
trol over ������ both in stationary and nonstationary environments, we
now introduce a combination of two filters; the first running the LMS
update and the second using the least mean-fourth (LMF) update [3]. In
this case, the second constituent filter updates its weight vector �������
using the LMF update as

����� � ���������
� ���������

������� �� �������� � ���
�

���������� (25)

where �� � �. We then have

������� � ����� ���������
� ������ (26)

������� � ����� �������� ���� ������

� �������� �� ��������
� ������ (27)

where 	����� � ����
� ��������� and ����� � ������� � 	���. With these

definitions and using the separation assumption, the converged mean-
square a priori error of this filter using the LMF update is given by ([3,
ch. 6])

����� � 
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(28)

where the approximation is accurate for small ��.
As shown in the Appendix, for this combination, the converged cross

correlation is given by
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�� � ������ � �����
���������



(29)
Hence, even in the stationary case such that ��� � �, by arranging ��,
��, we can obtain a cross correlation ������ either between the �����’s
or less than both of �����’s and simulate both of the cases where ���	� �
����� and ���	� �� ����� . As an example, suppose 	��� is Gaussian and we

choose 
������ � �. Further, for ��, �� � � and �� � � �� (for
some scaling � � �), we can simplify ������ such that the condition
������ � ����� and ���
�� � ����� is satisfied when ��������� �
� � ��������. Hence, the combination of the LMS and LMF filters
can provide, even in the stationary case, a wide range of ������ to fully
exploit the diversity among constituent branches.

V. SIMULATIONS AND CONCLUSION

The first set of experiments involve modeling the sev-
enth-order filter introduced in [1], where ������� �
��
�����
�����
��� �
������
��� �
��� �
����� , ��� � �
� and
������ are zero mean i.i.d. vectors distributed uniformly with 
������ �
� and 
������ � �, i.e., a stationary environment. In Fig. 2(a), we
plot the excess MSE for all the methods introduced in this paper
as well as ��

� � �	
� with respect to ��, over 150 iterations and

��� samples. The learning rates of the combination algorithms
are given in the caption of Fig. 2. For this case, � � � such that
��������� � � � � � �������� such that ������ is less than both of
the �����’s and ���	� � ����� due to (5) and Section II-A. We note that for
such a combination where ����� is in the interior of the unit simplex,
i.e., ����� � ���	� � ���� ����� , and according to (19), the gradient noise
actually propagates through the sigmoid nonlinearity. Therefore the
MSE of the sigmoid based algorithm, as well as MSEs of the other
studied algorithms, are larger than �	

� � ��
� . To test the validity of

(11), (14) and (17), we next simulate all the algorithms with different
� and � values under nonstationary scenarios. We plot in Fig. 2(b),
the excess MSE corresponding to all algorithms, the theoretical
curves, i.e., “-theo”, and the minimum excess MSE of the constituent
algorithms when 
������ � ����, � � � and 
������ � �. The x
axis corresponds to different learning rates for all the algorithms.
We observe close agreement with the theory and simulations. We
note that the affine constrained algorithms provide more than 2 dB
gains for � � �. In the final set of experiments, we simulate the
corresponding algorithms for varying 
������. For this figure, we use
a relative figure of merit studied in [1], i.e., for any algorithm �,
����

	
� ������ ������� ��� � �������� � ������, where

����� and ����� are from (24) and (28), respectively, which is a relative
performance with respect to the excess MSE of the best constituent
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Fig. 3. System identification with seventh-order filter. (a) � � �����, � � �, for the algorithm of Section III-B � � ���� “proj-aff”, of Section III-C � � ����

“proj-cvx”, of Section III-D � � ���� “grad-cvx”, over 200 iterations, �� �� samples, � � �, � � ����. (b) Here, � � �� �� .

filter with the optimal learning parameter. We plot NSD values for
all the algorithms as well as the theoretical curves in Fig. 3(a), when
� � � and in Fig. 3(b) when � � �� ����. We again observe a close
agreement under different values of ������� between the simulations
and the theoretical results. For relatively larger values of �������, the
performance of the affine mixture is significantly better than the other
methods since in that region ������ is between ����� and �����. Hence,
while the convex mixtures only converge to the performance of the
best filter, the affine methods can exploit the full cross correlation
inbetween the a priori errors. The performance of the convex mixtures
are better than the best constituent filter for relatively smaller values
of ������� where ������ is less than both ����� and ����� for the specific
combination of the LMF and LMS filters.

In this paper, we investigated unbiased combination methods where
we introduce methods to directly train, i.e., without any variable trans-
formations, the constrained combination weights. We first quantified
the achievable diversity gains and then provided the corresponding
steady-state MSEs for all studied algorithms. We next specialized the
combinations to a mixture of an LMS filter and an LMF filter, where
we also derived the corresponding excess cross correlation between
the two. The LMF filter and the LMS filter combination is special
since we can adjust the excess correlation to yield the optimal affine
combination to be the same as the optimal convex combination in
stationary environments, which is not possible for any combination of
LMS or RLS filters (with the same order) under the studied data model
in [1], [4]. We observed more than 2 dB gain in terms of excess MSE
with respect to the constituent filters under different nonstationary
environments. We show a close agreement between the simulations
and the theoretical results.

APPENDIX

For the first filter using (21), (22), (23) and for the second filter using
(25), (26), (27), and following the lines of [1], we have

	���������������
 � �������
������

���������

� 	��������������� ��
 � �������
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���������
(30)

� � �, 2, respectively. Multiplying the left-hand side (LHS) of (30) for
� � � with � � � yields
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after canceling the cross terms. Assuming convergence yields
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Using (23) and (27) to replace ������� and ������� terms in (31) results
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For the LHS of (32) using ����� � ������� � ����, � � �, 2, we have
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where we omitted third– and higher-order terms for ������� (or third–
and higher-order cross terms) as in ([3, ch. 6]), used that ���� is i.i.d.
and independent of ������� and assume that �������	�������
 � �.
For the right-hand side (RHS) of (32), we have
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where we again omit third– and higher-orde terms and use the i.i.d.
property of ����. Using (33) and (34) in (32), we get (29).
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A Quaternion Widely Linear Adaptive Filter

Clive Cheong Took and Danilo P. Mandic

Abstract—A quaternion widely linear (QWL) model for quaternion
valued mean-square-error (MSE) estimation is proposed. The augmented
statistics are first introduced into the field of quaternions, and it is demon-
strated that this allows for capturing the complete second order statistics
available. The QWL model is next incorporated into the quaternion
least mean-square (QLMS) algorithm to yield the widely linear QLMS
(WL-QLMS). This allows for a unified approach to adaptive filtering of
both -proper and -improper signals, leading to improved accuracies
compared to the QLMS class of algorithms. Simulations on both bench-
mark and real world data support the analysis.

Index Terms— -properness, quadrivariate processes, quaternion adap-
tive filtering, quaternion LMS (QLMS), quaternion second-order noncir-
cularity, widely linear model, widely linear QLMS, Wiener model.

I. INTRODUCTION

Standard techniques employed in multichannel statistical signal pro-
cessing typically do not fully cater for the “coupled” nature of the avail-
able information within the channels. Thus, most practical approaches
operate based on channelwise processing, which is not optimal for gen-
eral multivariate signals (where data channels are typically correlated).
On the other hand, the quaternion domain allows for the direct mod-
eling of three- and four-dimensional signals, and its algebra naturally
accounts for the coupling between the signal components.
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The use of quaternions is rapidly gaining in popularity, as for in-
stance, many multivariate problems based on vector sensors (motion
body sensors, seismics, wind modeling) can be cast into the quaternion
domain. The recent resurgence of quaternion valued signal processing
stems from the potential advantages that special properties of quater-
nion algebra offer over real valued vector algebra in multivariate mod-
eling. Applications of quaternions include those in vector sensing [1],
machine learning [2], and adaptive filters [3].

Recent advances in complex valued signal processing have been
based on the widely linear model proposed by Picinbono [4]. This
model, together with the corresponding augmented complex statistics,
has been successfully used to design enhanced algorithms in communi-
cations [5], [6] and adaptive filters [7]. These studies have shown that
widely linear modeling and the associated augmented statistics offer
theoretical and practical advantages over the standard complex models,
and are applicable to the generality of complex signals, both circular
and noncircular.

Models suitable for the processing of signals with rotation dependent
distribution (noncircular) are lacking in the quaternion domain, and
their development has recently attracted significant research effort [3].
Current second order algorithms operate based on only the quaternion
valued covariance [1]–[3] and thus do not fully exploit the available
statistical information. Advances in this direction include the work by
Vakhania, who defined the concept of -properness as the invariance
of the distribution of a quaternion valued variable under some specific
rotations around the angle of ��� [8]. Amblard and Le Bihan relaxed
the conditions of -properness to an arbitrary axis and angle of rotation
�, that is, �

�
� ���� [9] for any pure unit quaternion � (whose real part

vanishes); where symbol
�
� denotes equality in terms of probability

density function (pdf).
Although these results provide an initial insight into the processing

of general quaternionic signals, they are not straightforward to apply in
the context of adaptive filtering applications. To this end, we first pro-
pose the quaternion widely linear model, specifically designed for the
unified modeling of the generality of quaternion signals, both -proper
and -improper. The benefits of such an approach are shown to be anal-
ogous to the benefits that the augmented statistics provides for complex
valued data [7]. Next, the QWL model is incorporated into the quater-
nion LMS [3] to yield the widely linear QLMS (WL-QLMS), and its
theoretical and practical advantages are demonstrated through analysis
and simulations.

II. PROPERTIES OF QUATERNION RANDOM VECTORS

A. Quaternion Algebra

The quaternion domain, a non-commutative extension of the com-
plex domain, provides a natural framework for the processing of three-
and four-dimensional signals. A quaternion variable � � comprises a
real part���� and a vector-part, also known as a pure quaternion����,
consisting of three imaginary components, and can be expressed as

� ������ ����

������ ������� ������� 	�����

� �� � ��� � ��� � 	�	 � 
 (1)

The relationship between the orthogonal unit vectors, �� �� 	 are given
by

�� �	 �	 � � 	� � �

��	 � �� � �� � 	� � ��
 (2)
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