
IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 4, APRIL 2010 335

Competitive Randomized Nonlinear
Prediction Under Additive Noise

Yasin Yilmaz and Suleyman S. Kozat

Abstract—We consider sequential nonlinear prediction of a
bounded, real-valued and deterministic signal from its noise-cor-
rupted past samples in a competitive algorithm framework. We
introduce a randomized algorithm based on context-trees [1]. The
introduced algorithm asymptotically achieves the performance
of the best piecewise affine model that can both select the best
partition of the past observations space (from a doubly exponential
number of possible partitions) and the affine model parameters
based on the desired clean signal in hindsight. Although the
performance measure including the loss function is defined with
respect to the noise-free clean signal, the clean signal, its past
samples or prediction errors are not available for training or
constructing predictions. We demonstrate the performance of the
introduced algorithm when applied to certain chaotic signals.

Index Terms—Nonlinear prediction, context-tree, competitive
prediction, additive noise, sequential decisions.

I. INTRODUCTION

I N this letter, we consider sequential (online) nonlinear pre-
diction of an arbitrary, deterministic and bounded signal

from its noise-corrupted past samples under square error loss. In
this fundamental signal processing problem [2], a bounded de-
terministic signal
is observed through an additive noise channel,

, where is an i.i.d., bounded noise process with
variance such that

with probability 11. Hence, with
probability 1. Then, the underlying signal is predicted using
the noise-corrupted past samples at each
time . We emphasize that although we desire to predict the
underlying signal and the performance measure in-
cluding the loss function is defined with respect to ,
the desired clean signal is not available for prediction
or training. In this sense, this framework differs from common
classical adaptive signal processing approaches [3], where the
desired clean signal, certain statistics or past samples are usually
available for training or constructing predictions. In this letter,
we refrain from making stochastic assumptions on the desired
signal and require uniformly good performance for
any deterministic signal .

Since we make no such stochastic assumptions on the desired
signal, we introduce a competitive framework in order to define

Manuscript received August 01, 2009; revised December 13, 2009. First pub-
lished January 08, 2010; current version published February 10, 2010. This work
is supported by TUBITAK Career Award, Contract 108E195. The associate ed-
itor coordinating the review of this manuscript and approving it for publication
was Dr. Ricardo Merched.

The authors are with the EEE Department, Koc University, Istanbul, Turkey
(e-mail: skozat,yayilmaz@ku.edu.tr).

Digital Object Identifier 10.1109/LSP.2009.2039950

1We reserve capital letters to random variables and bold letters to column
vectors.

a meaningful performance measure. In this competitive frame-
work, we have, say sequential (online) prediction algorithms
as the competition class producing outputs

, that “hypothetically” work in parallel to predict the un-
derlying signal . At each time , each sequential algo-
rithm suffers the loss (which is not available to us
since is not observable). Our goal is then to find a se-
quential predictor that asymptotically achieves the performance
of even the best algorithm in this class uniformly for any de-
terministic, bounded and arbitrary signal. Specifically, we seek
a sequential predictor, say , that has access to only noisy
past samples , predictions of the constituent
algorithms , never observes

and satisfies

(1)

for all and when it is used to predict any . Here,
the expectation is with respect to the noise process and the ran-
domization of the introduced algorithm.

In this letter, we consider the framework where the under-
lying competition class is the class of certain nonlinear models,
i.e., piecewise affine models represented on a context-tree. As
an example, suppose as shown in Fig. 1(a), we divide the space
of the most recent observation space (which

belongs to) into four disjoint regions such that
and assign each region an affine model

say . These assign-
ments define a piecewise affine predictor where the prediction
at each time is given by if . For
all , one can define similar piecewise affine predic-
tors yielding a competition class that has a continuum of predic-
tors. Although one can approximate smoothly varying nonlinear
functions by increasing the number of regions and the number of
past samples used in prediction in this piecewise affine model,
the boundaries of the piecewise regions are fixed. To make the
boundaries of the piecewise regions also a design parameter, we
will use the notion of context-trees to represent a doubly ex-
ponential number different partitions of the past observations
space in the next section.

To this end, we introduce a novel randomized prediction
algorithm based on context-trees that uses only the past noisy
samples of a desired signal and has computational complexity
only linear in the depth of the context-tree per prediction.
Without ever observing the desired clean signal, this algorithm
will achieve the performance of the best piecewise affine pre-
dictor that can both choose its partition of the past observations
space (from a class of a doubly exponential number of possible
partitions) and tune the parameters of the affine models for
these piecewise regions using the clean desired signal. The
functional forms of the randomization weights of the introduced

1070-9908/$26.00 © 2009 IEEE

336 IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 4, APRIL 2010

Fig. 1. (a) Binary context tree that partitions ��� � � �. This tree has depth
� � � with four leaves and seven nodes. Each node is assigned a region as the
union of the regions assigned to its children. (b) The complete subtrees along
with the partitions they define. A depth-� context-tree defines � � ���
such subtrees or partitions.

algorithm are similar to the weights used in [1] to construct
weighted predictions. However, note that the algorithm of [1]
trains on and uses the past observations of the clean desired
signal , which is unavailable here. Furthermore, we
use these weights to define a randomized algorithm instead of
using convex combination ideas as in [1]. Although we discuss
only affine models in the introduction, as shown in the next
section, one can assign arbitrary predictors (or regressors) to
each region. The affine models are specifically used to yield
smoothly varying arbitrary nonlinear models.

In the next section, we first summarize the notion of context
trees. We then introduce a randomized predictor constructed
using context-trees that competes against all piecewise affine
models defined on the context-tree and that requires a compu-
tational complexity only linear in the depth of the context-tree
per prediction. We conclude the paper with simulations to illus-
trate the performance of the introduced algorithm using chaotic
signals and provide some remarks.

II. ALGORITHM DESCRIPTION AND RESULTS

In this section, as an illustrative example, we present a bi-
nary context-tree to partition the space of only the most recent
past observation, i.e., where belongs to. As
shown in Fig. 1(a), a depth- binary context-tree (in
this figure) has leaves and nodes. Each node on
the context-tree, if it is not a leaf node, has two children: the left
hand side child and the right hand side child. We use this con-
text-tree to define different partitions of as follows.
We first assign each leaf of the context-tree a different region of

as seen in Fig. 1(a). Each node on the context-tree is
then assigned the region which is constructed as the union of the
regions assigned to its children. On this context-tree, one can de-
fine a doubly exponential number, [1], of different
prunings or “complete” subtrees. As an example, for a depth-2
context-tree, we provide five different subtrees in Fig. 1(b). We
call these subtrees “complete” since the union of the regions as-
signed to the leaves of a subtree (which are the nodes or the
leaves of the original context-tree) yields . Hence, a
subtree along with the regions assigned to its leaves defines a
partition of . Given a depth- binary context-tree, we
get a doubly exponential number of such parti-
tions, say . For each partition , we rep-

resent the constituent regions as such
that is the number of the leaves in the

Fig. 2. Randomized sequential prediction algorithm using context-trees.
Finding the nodes that � ��� �� belongs to require �����	 operations since
one only needs to find the leaf node that � �� � �� belongs and proceeds to the
top. At each time �, the algorithm combines and updates the parameters of only
� � � node predictors with computational complexity ��� � �	.

partition and are the regions assigned to the leaves of the
partition, e.g., for , we have
and . Suppose, given this context-tree, we assign each
node , a sequential predictor
and define sequential predictors , corre-
sponding to each partition as: if

(for some) and . We initially define these
sequential predictors as our competition class. Later, by se-

lecting ’s as certain sequential affine predictors, we will
demonstrate that our algorithm asymptotically achieves the per-
formance of the best piecewise affine model which can tune both
its partitioning of the real line as well as the affine models in each
region to . To this end, we introduce the randomized
algorithm in Fig. 2, i.e., , that is constructed using context
tree weighting method [4]. This randomized algorithm hypo-
thetically constructs all , and run these in
parallel. At each time , the final estimation selects one of
the outputs to repeat it as its prediction, where the selec-
tion weights are calculated proportional to the performance of
each on the past data. However, note that, although there
are different piecewise competing algorithms, at each time ,
each is equal to one of the node predictions that

belongs to. Hence, as shown in [1], at each time , for the
nodes that belongs to (these nodes are stored in vector
in Fig. 2), all the weights assigned to can
be merged using certain functions of node performance. These
functions are represented as and in Fig. 2, and up-
dated recursively in (line C), (line D) and (line E) in Fig. 2 with
computational complexity only linear in depth of the context
tree. At each time , these functions that reflect the combined
prediction performance of that node on the past data are used
to construct the probabilities that are used for randomization.
The randomized algorithm introduced in Fig. 2 satisfies:

Theorem 1: Let represents the ob-
servation sequence such that is the desired de-
terministic signal with and is i.i.d. with
variance , i.e., with
probability 1. The sequential randomized prediction algo-
rithm presented in Fig. 2, which uses only the past noisy
observations

YILMAZ AND KOZAT: COMPETITIVE RANDOMIZED NONLINEAR PREDICTION 337

and never observes or prediction
errors , achieves

(2)

for all and any partition , when it is applied to predict
any . Here, the expectation is with respect to the noise
process and randomization.

To get the upper bound in (2), we need to set
in Fig. 2. Note that although is opti-

mized over , this need for a priori knowledge of can be
readily surpassed by applying the algorithm over exponentially
increasing segments of . To achieve the performance
of the best affine model with the best partition, we assign each
node a special affine predictor studied in [2], which uses only
the past samples that belong to that node

as , where

(3)

and , where
is the indicator variable for node , i.e.,

if otherwise , and is the
transpose. The affine predictor in (3) is a least squares predictor
that trains only on the observed data that belongs to
that node, i.e., that falls into the region . Note that the update
in (3) can be implemented with computations using the
matrix inversion lemma [3]. For the randomized predictor in
Fig. 2 using these least squares predictors in each node, we
have the following result:

Corollary 1: The sequential randomized prediction al-
gorithm of Fig. 2, with the affine predictors (3) at each
node that only depends on the past noisy observations

and never observes , achieves

(4)

for all , for all partitions
, when it is applied to predict any . Here, is

the selection variable for partition such that if
.

Note that one can use the binary context tree to partition the
space of for some or use th
order affine predictors in each node that use

as input regressor for some . To use th order regressors
for affine prediction, one need to only update (3). To partition

, one needs to change the line in Fig. 2 that explains
how to find the leaf node that belongs
to. As explained in the caption of Fig. 2, the randomized algo-
rithm has computational complexity at each time

since finding the nodes used for prediction as well as updating
the node predictors require only additions and multi-
plications. The algorithm also has storage complexity
to store weights and predictors corresponding to all nodes.

Remark 1: Note that the corollary holds for any
, even with the ones that are tuned by

observing the whole and , in hindsight, for
all , before we even start predicting . Hence, the al-
gorithm of corollary 1 asymptotically achieves the performance
of the best piecewise affine predictor that can choose both its
partitions as well as the prediction coefficients for that partition
based on and in hindsight.

Remark 2: We emphasize that the best piecewise model with
the optimal weights tuned using all corresponds to the
finest partition, i.e., the fifth partition shown in Fig. 1(b). Hence,
at first sight, one is tempted to use the sequential predictor corre-
sponding to the finest partition, i.e., in Fig. 1(b), with the
sequential algorithms from (3). However, note that this sequen-
tial predictor needs to learn the corresponding optimal weights
in each region sequentially, hence, it may not be the best sequen-
tial algorithm as shown in the simulations section. Furthermore
the bound in (4) holds for all partitions and the regret of our
algorithm with respect to the best piecewise affine model corre-
sponding to the finest partition is the largest, however, still .

Outline of the Proofs of the Theorem 1 and the Corollary
1: For each sequential predictor corresponding to a parti-
tion, we define a function of its prediction loss on

as ,
at each time , that only depends on noisy observations.
We further define a weighted sum of these functions

, where are certain
weights introduced in [4] satisfying and

. The weights are intro-
duced for proof purposes and are not explicitly used in the final
algorithm. Clearly, is as large as any . Our
initial goal is to show that for some randomized predictor, say

is as large as , i.e., the performance of
for predicting is as good as any . We will then
use this predictor for prediction of . To accomplish
the first step, we observe that by
telescoping. However for each term in this product, we have

(5)

where the expectation in the last inequality is with respect to
the probabilities and the in-
equality follows from Hoeffding’s inequality [5]. Hence, if we
construct a randomized predictor, say , that outputs
as its prediction with probability
at each time , then by (5), the accumulated loss of this algo-
rithm will satisfy

for all . Since , setting
, yields an upper bound

on the accumulated loss of . This upper bound yields the
upper bound in the theorem after normalization with . Hence
the randomized predictor is the desired predictor if the
goal was to predict . However, even in this case, this

338 IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 4, APRIL 2010

randomized predictor , at each time , needs to calculate
and update a doubly exponential number, i.e., , of predic-
tions, which is clearly an impossible feat even for modest .
However, note that, in , at each time , only node
predictions that belongs to are used such that
all the weights with same node predictions can be merged. It
can be shown as in [1] that if one defines certain functions of
performance for each node as which are initialized
in (line A) and updated in (line C), (line D) and (line E) of
Fig. 2, then the corresponding can be written as

, where
is the vector of nodes that belongs to, the recursion

for is given in (line B) of Fig. 2 and is the th entry of
the vector . Hence is defined as the randomized predictor

using probabilities
. Note that all these performance

bounds are with respect to the prediction of not with
respect to the prediction of the desired signal . How-
ever, we observe that

and
, since

is i.i.d. and independent from both and . Note
that and are sequential and do not use . Hence,
using these equations yields the result in (2). This concludes the
proof of the Theorem 1.

To get the corollary 1, it has been shown in [2] that the affine
predictor in (3) achieves

for
all and , where is the number of times node
is used in prediction, i.e., . Applying this re-
sult to any that uses these affine predictors in each node
yields, after maximization over ’s,

. Combining this
bound with (2) and selecting an appropriate value for yields
the result in the corollary 1. This completes the outline of the
proof of the corollary 1.

III. SIMULATIONS AND CONCLUSION

In this section, we illustrate the performance of the introduced
algorithm when it is used to predict noise-corrupted chaotic
signals generated using the Duffing map described by

. The Duffing map demon-
strates chaotic behavior when and . For
these values of and , we plot in Fig. 3(b), a sample function
generated using the Duffing map. Note that although the sample
function is completely predictable from the governing dynam-
ical equations using only the last two samples, it exhibits rather
erratic behavior, and is in fact known to exhibit chaotic behavior
for this set of coefficients. We also plot the corresponding at-
tractor for the Duffing map in Fig. 3(a) showing its highly non-
linear nature. The desired signal is then corrupted by an
additive noise with standard deviation 0.05. In Fig. 3(c),
we plot the accumulated and normalized MSE of different al-
gorithms averaged over 100 random iterations of and

. In this figure, the context-tree based algorithms use
a context-tree of depth-6, and first order sequential linear
predictors in each node. In Fig. 3(c), we have the context-tree
algorithm from Fig. 2 “alg”; the sequential algorithm corre-
sponding to the finest partition (discussed in Remark 2) on this

Fig. 3. Duffing map. (a) Attractor of the Duffing map. (b) Sample function. (c)
Normalized MSE for the algorithms described in the text.

tree “finest”; the context tree algorithm that trains on the clean
signal , however, still uses as the regressor
“clean alg”. Since at each time the introduced algorithm re-
quires computations, we also simulate a 7th order linear
least squares algorithm using as its
input regressor [3] “RLS”. Note that this RLS algorithm pro-
vides significantly worse performance since it tries to approxi-
mate the nonlinear terms in the Duffing map by linear combina-
tions. In order to model the nonlinear terms in the Duffing Map,
we also implement a 4th order linear least squares algorithm
using as the input re-
gressor “NRLS.” We observe in these simulations that the “alg”
algorithm is able to outperform the “finest” algorithm in the ini-
tial samples since the finest partition needs to learn all the affine
models used in the leaves. The context-tree algorithm is able
to exploit the smaller subtrees (or coarser models) which have
less parameters to train, hence it provides better performance in
the start of the simulations against all algorithms. As the data
length grows, when the “finest” algorithm has enough data to
train on, both algorithms provide similar performance. The per-
formance of the context-tree algorithm trained on noisy samples
is nearly the same as the performance of the “clean alg” algo-
rithm, i.e., the curves are nearly the same. This result was ex-
pected as shown in the proof of the introduced algorithm. For
these chaotic signals, the introduced algorithm outperforms all
other algorithms that also use only the noise-corrupted samples.

In this letter, we introduced a novel randomized sequential
prediction algorithm that only uses noise-corrupted past sam-
ples of a deterministic desired signal to predict the clean desired
signal. This algorithm is shown to achieve asymptotically the
performance of the best piecewise affine model that can both
select the best partition of the space of past regressor (from a
doubly exponential number of possible partitions) and the affine
model parameters based on the clean desired signal. We demon-
strated the performance of the introduced algorithm when it is
used to predict chaotic signals generated using the Duffing map.

REFERENCES

[1] S. S. Kozat, A. C. Singer, and G. Zeitler, “Universal piecewise linear
prediction via context trees,” IEEE Trans. Signal Process., vol. 55, pp.
3730–3745, 2007.

[2] S. S. Kozat and A. C. Singer, “Competitive prediction under additive
noise,” IEEE Trans. Signal Process., vol. 57, Sept. 2009.

[3] S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-
Hall, 1996.

[4] F. Willems, Y. Shtarkov, and T. Tjalkens, “The context-tree weighting
method: Basic properties,” IEEE Trans. Inform. Theory, vol. IT-41, pp.
653–664, May 1995.

[5] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Statist. Assoc, vol. 58, pp. 13–30, 1963.

