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In this paper, we investigate investment strategies that can rebalance their target
portfolio vectors at arbitrary investment periods. These strategies are called semicon-
stant rebalanced portfolios in Blum and Kalai and Helmbold et al. Unlike a constant
rebalanced portfolio, which must rebalance at every investment interval, a semicon-
stant rebalanced portfolio rebalances its portfolio only on selected instants. Hence, a
semiconstant rebalanced portfolio may avoid rebalancing if the transaction costs out-
weigh the benefits of rebalancing. In a competitive algorithm framework, we compete
against all such semiconstant portfolios with an arbitrary number of rebalancings and
corresponding rebalancing instants. We investigate this framework with and without
transaction costs and demonstrate sequential portfolios that asymptotically achieve the
wealth of the best semiconstant rebalanced portfolios whose number of rebalancings
and instants of rebalancings are tuned to the individual sequence of price relatives.
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1. INTRODUCTION

We address a sequential investment problem, by considering both how to invest as
well as the best out of a large class of possible strategies and considering the practical
issue of how and when to rebalance a given portfolio in the presence of transaction
fees. Sequential portfolio investment strategies have been investigated in the information
theory by Cover and Ordentlich (1996, 1998), Ordentlich and Cover (1998), and Cover
(2004), in computational learning theory by Helmbold et al. (1998), Stoltz and Lugosi
(2005), Vovk and Watkins (1998), Borodin, El-Yaniv, and Govan (2004), and recently in
signal processing research literature by Kozat and Singer (2007). A problem extensively
studied in this framework is to find sequential portfolios that asymptotically achieve
the wealth of the best constant rebalanced portfolio (CRP) tuned to the individual
sequence of price relative vectors. This amounts to finding a daily trading strategy that
has the ability, without cheating, to do as well as the best asset diversified, constantly
rebalanced portfolio. Note that such a portfolio could only be computed by an investor
who has access to the entire sequence of daily outcomes in advance, that is, such an
investor would need to know, before the first investment, exactly what the market was
going to do over the duration of the market, a clearly impossible feat. A CRP is an
investment strategy that keeps the same proportion of wealth among a set of stocks
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from one investment period to another. It has been shown that under mild stochastic
assumptions on the sequence of price relatives, the portfolio that achieves the maximum
wealth is a CRP (although, we make no such stochastic assumptions in this paper) in
Cover and Ordentlich (1996) and Cover and Thomas (1991). Here, the market is modeled
by a sequence of price relative vectors, xn = x[1], . . . , x[n], x[t] ∈ Rm

+, where Rm
+ is the

positive orthant. The j th entry xj[t] of a price relative vector x[t] represents the ratio
of the closing price of the j th stock for the tth trading day to that from the (t − 1)th
trading day. An investment at investment period t is represented by the portfolio vector
b[t], b[t] ∈ R m

+ and
∑m

j=1 b j [t] = 1 for all t. Each entry bj[t] corresponds to the portion
of wealth invested in the stock xj[t] at investment period t. The wealth achieved after n
investment periods is given by W(xn | b[t])

�= ∏n
t=1 bT[t]x[t]. For a CRP, b[t] is fixed, that

is, b[t] = b, for some b and all investment periods. For any n and {x[t]}t≥1, the best CRP
is given by b∗ = arg maxb W(xn | b) = ∏n

t=1 bT x[t]. Since, the best CRP, b∗, depends on
all x[t], t = 1, . . . , n, it can only be chosen in hindsight, that is, one needs to know the
future.

The market considered in Cover and Ordentlich (1996, 1998), and Vovk and Watkins
(1998) is idealized where there are no transaction costs involved. The transaction cost is
usually modeled by a fixed percent commission paid when trading (Davis and Norman
1990). Maintaining a CRP requires potentially significant trading due to rebalancing.
As an example, if one starts with one dollar and invests with the CRP b = [b1, . . . , bm]T,
then at the end of the first period, the account would have bixi dollars in each stock i =
1, . . . , m, where xi is the relative price change of the i th stock. The new portfolio vector
is given by [b1x1/

∑
i(bixi), . . . , bmxm/

∑
i(bixi)]T (which can be significantly different

from b) and must be rebalanced to b at the next investment period. To illustrate the
effect of transaction costs on the achieved wealth, we plot in Figure 1.1 the wealth
achieved by several different CRPs on a historical stock pair, Kinark–Iroquois, from the
New York Stock exchange collected over 22 years. Here, we plot the wealth of several
CRPs under several different transactions costs with an initial investment of one dollar.
Each value of c represents the portion of wealth trader spent on the transaction costs
and the x-axis corresponds to the portion of Iroquois stock in the portfolio. As seen in
Figure 1.1, the wealth achieved by the CRPs severely degrades with increasing transaction
costs.

To avoid hefty transaction costs, semiconstant rebalanced portfolios have been sug-
gested as good strategies in the presence of commissions by Helmbold et al. (1998) and
Blum and Kalai (1998). Unlike a CRP, a semiconstant rebalanced portfolio (SCRP)
rebalances only at selected instants and does not trade stock inbetween. Hence, a SCRP
may avoid rebalancing if the transaction costs outweigh the benefits of rebalancing. In this
paper, we approach this problem from a competitive algorithms perspective and compete
against all such SCRPs with arbitrary numbers of rebalancing times and corresponding
rebalancing instants.

For an arbitrary sequence of price relative vectors xn and a given CRP, a competing
SCRP with rebalancing timesRk,n with k rebalancings, represented by (t1, . . . , tk), divides
xn into k + 1 segments such that xn is obtained by the concatenation of

{x[1], . . . , x[t1 − 1]}{x[t1], . . . , x[t2 − 1]} . . . {x[tk], . . . , x[n]}.

Given n and k, there exist (n
k) such rebalancing paths Rk,n . The SCRP for rebalancing

path Rk,n only rebalances to b on these selected times, that is, (t1, . . . , tk), and does not
rebalance otherwise. For notational simplicity we assume t0 = 1 and tk+1 = n + 1. In
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FIGURE 1.1. Wealth achieved by CRPs under several different transaction costs on
Iroquois–Kinark pair, where each c represents the percent of wealth that should be
spent as transaction costs, for example, c = 0.01 = 1%. The x-axis represents the
portion of Iroquois stock in the portfolio.

each segment, this SCRP will achieve the wealth
∑m

j=1 b j
∏ti −1

t=ti−1
xj [t]. Then, the total

wealth achieved on xn using Rk,n and b is

W(xn | b,Rk,n)
�=

k+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
t=ti−1

xj [t]

⎞
⎠ .

This wealth can also be written as W(xn | b,Rk,n) = ∏k+1
i=1 bT y[i ], where y[i ]

�=
[
∏ti −1

t=ti−1
x1[t], . . . ,

∏ti −1
t=ti−1

xm[t]]T, that is, a SCRP over n days with k rebalancings can
be viewed as a CRP over k + 1 days where price relatives of each segment are combined
to yield y[i ]. We attempt to outperform all such portfolios, including the one that has
been optimized by choosing the rebalancing path Rk,n and k based on observing the
entire sequence xn in advance. As such we try to minimize the following wealth ratio:

Rb(n)
�= sup

xn

sup
t1,...,tk∈{2,...,n}0=t0<t1 ...tk<tk+1=n+1

k+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
t=ti−1

xj [t]

⎞
⎠

n∏
t=1

b̂
T

[t]x[t]

,(1.1)

where b̂[t] is a strictly sequential portfolio assignment at time t, that is, b̂[t] may be a
function of x[1], . . . , x[t − 1] but cannot depend on the future, Rk,n is any rebalancing
path representing (t1, . . . , tk) with an arbitrary k. We will show that we can construct a
sequential portfolio for which the logarithm of this ratio is at most kln (n) + O(k + 1)
for any Rk,n , k and n, without knowledge of Rk,n , k, or n a priori.
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We next investigate this framework where we pay a fixed percentage in transaction
costs. For an arbitrary sequence of price relative vectors xn , consider a portfolio selection
algorithm with the rebalancing path Rk,n , represented by (t1, . . . , tk), rebalancing to b at
the start of each segment. This algorithm will pay a transaction cost at the start of each
segment i to rebalance to b and no transaction costs within each segment. We define the
wealth achieved by this algorithm as Wc(xn | b,Rk,n) including commission costs csell

and cbuy, where c = csell + cbuy. In determining the best algorithm in the competing class,
we attempt to outperform all such portfolios, including the one that has been optimized
by choosing the rebalancing path Rk,n and k based on observing the entire sequence xn

in advance, including the transaction costs. Here, we try to minimize the following wealth
ratio:

Rc
b (n)

�= sup
xn

sup
Rk,n

Wc(xn | b,Rk,n)

Wc(xn | b̂)
,(1.2)

where Wc(xn | b̂) is the wealth achieved by a strictly sequential portfolio b̂[t], that is,
b̂[t] may be a function of x[1], . . . , x[t − 1] but cannot depend on the future, under
transaction costs csell and cbuy, and Rk,n is any rebalancing path representing (t1, . . . , tk)
with arbitrary k. We will show that we can construct a sequential portfolio for which the
logarithm of this ratio is at most k ln (n) + O(k + 1) for any of Rk,n , k or n, without
knowledge of Rk,n , k, and n a priori.

In Cover and Ordentlich (1996), a sequential algorithm is presented that asymptotically
achieves the wealth of the best CRP, that is, W(xn | b∗), for any sequence of price relative
vectors, which can only be chosen in hindsight, since b∗ is a function of x[1], . . . , x[n].
Several different sequential algorithms have since been introduced achieving the per-
formance of the best CRP, albeit either with different guaranteed performance bounds
or different performance results on historical data in Helmbold et al. (1998), Vovk and
Watkins (1998), Agarwal and Hazan (2006), Kalai and Vempala (2000), and Bianchi
and Lugosi (2006). The framework of this problem involving transaction costs was in-
vestigated in Blum and Kalai (1998), where the authors demonstrated that a sequential
algorithm using a similar weighting to that introduced in Cover and Ordentlich (1996)
is also competitive under transaction costs, that is, asymptotically achieving the perfor-
mance of the best CRP under transaction costs. However, as seen in Figure 1.1, even the
performance of the best CRP is severely affected by transaction costs. Hence, it may not
be enough to try to achieve the performance of the best CRP if the cost of rebalanc-
ing outweighs that which could be gained from rebalancing at every investment period.
Several different approaches here also experimentally tested under different transaction
costs in Helmbold et al. (1998) on historical data. In Singer (1998), the author introduced
a switching portfolio that achieves the wealth of the best portfolio that switches between
pure (i.e., single-stock) strategies where the switching pattern is tuned to the sequence of
price relatives. The results in Singer (1998) were then extended to portfolios that switch
between CRPs instead of a finite number of strategies, for example, pure strategies, in
Kozat and Singer (2007). Although not introduced to compete against the best rebal-
ancing times, application of the portfolio from Singer (1998) to the problem considered
here, would yield a universal portfolio with an additional regret of O(k ln(m) + 3

2 k ln(n))
in the exponent, because the algorithm could be used to hedge against the switching
among pure strategies in each segment, instead of hedging against the rebalancing in-
stants. Although several results are introduced for tracking the best predictor or actions
in Gyorgy, Linder, and Lugosi (2005, 2008), Takimoto and Warmuth (2002), and Bianchi
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and Lugosi (2006), these results cannot be generalized to here due to the unboundedness
of the loss function considered.

2. SEMICONSTANT REBALANCED PORTFOLIOS

For an arbitrary sequence of price relative vectors xn , a semiconstant portfolio algorithm
with a fixed portfolio vector b and a rebalancing path Rk,n with k rebalancing times,
represented by (t1, . . . , tk), divides xn into k + 1 segments and only rebalances at times
t1, . . . , tk. For notational simplicity we assume t0 = 1 and tk+1 = n + 1. For this setting
we have the following theorem.

THEOREM 2.1. Let {x[t]}t≥1 be an arbitrary sequence of price relative vectors such that
x[t] ∈ R m

+ for all t and where some components of x[t] can be zero. Then, for all ε > 0 and
given a portfolio vector b, b ∈ R m

+ and
∑m

j=1 b j = 1, we can construct sequential portfolios
b̃u,b[t] with complexity linear in t per investment period, such that, when applied to {x[t]}t≥1

for all k and n

Ru,b[n] =
sup

t1,...,tk∈{2,...,n}0=t0<t1 ...tk<tk+1=n+1

k+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
t=ti−1

xj [t]

⎞
⎠

n∏
t=1

b̃T
u,b[t]x[t]

(2.1)

satisfies

ln Ru,b[n]
n

≤ (k + ε)
ln(n)

n
+ 1

n

(
log(1 + ε) + k log

1
ε

)
(2.2)

and

ln Ru,b[n]
n

≤ ((k + 1)ε + k)
ln(n/k)

n
+ 1

n

(
(k + 1) log

1 + ε

ε
+ log ε

)
(2.3)

for any Rk,n representing rebalancing times (t1, . . . , tk) and any k, such that b̃u,b[t] does not
depend on Rk,n , k or n.

Theorem 2.1 states that given b, the logarithm of the wealth ratio of the universal
sequential portfolio b̃u,b[t] is within O(kln (n)) of the best batch SCRP with any k rebal-
ancing times (tuned to the underlying sequence), uniformly, for every sequence of price
relatives {x[t]}t≥1, for all n.

We next investigate this framework where we pay fixed percent transaction costs. For an
arbitrary sequence of price relative vectors xn , consider a portfolio with the rebalancing
path Rk,n , represented by (t1, . . . , tk), rebalancing the investments to b at the start of
each segment. This algorithm will pay a transaction cost at the start of each segment i
to rebalance to b and no transaction costs within each segment. We define the wealth
achieved by this algorithm as

Wc(xn | b,Rk,n)

including commission costs csell and cbuy, where c = csell + cbuy. We demonstrate that:
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THEOREM 2.2. Let {x[t]}t≥1 be an arbitrary sequence of price relative vectors such that
x[t] ∈ R m

+ for all t and where some components of x[t] can be zero. Then, for all ε > 0 and
given a portfolio vector b, b ∈ R m

+ and
∑m

j=1 b j = 1, we can construct sequential portfolios
b̃c

u,b[t] with complexity linear in t per investment period, such that when applied to {x[t]}t≥1,
for any c = csell + cbuy, and for all n, k, the wealth ratio

Rc
u,b[n] =

sup
t1,...,tk∈{2,...,n}0=t0<t1 ...tk<tk+1=n+1

Wc(xn | b,Rk,n)

Wc(xn | b̃c
u,b)

,

where Wc(xn | b̃c
u,b) is the wealth achieved by the universal algorithm with commissions,

satisfies

ln Rc
u,b[n]

n
≤ (k + ε)

ln(n)
n

+ 1
n

(
log(1 + ε) + k log

1
ε

)

and

ln Rc
u,b[n]

n
≤ ((k + 1)ε + k)

ln(n/k)
n

+ 1
n

(
(k + 1) log

1 + ε

ε
+ log ε

)

for any Rk,n representing rebalancing times (t1, . . . , tk) and any k, such that b̃c
u,b[t] does not

depend on Rk,n , k, or n.

Theorem 2.2 states that given b, the logarithm of the wealth ratio of the universal
sequential portfolio b̃c

u,b[t] is within O(k ln (n)) for all n of the best batch SCRP with k
rebalancings (tuned to the underlying sequence), uniformly, for every sequence of price
relatives {x[t]}t≥1 and c.

3. PROOF AND CONSTRUCTION OF THE PORTFOLIOS

Proof of Theorem 2.1. While proving Theorem 2.1, we use ideas from the proof of
Theorem 1 in Kozat and Singer (2008). Hence, we study mainly the differences in here.
We observe that given b and a possible rebalancing path Rk,n , representing (t1, . . . , tk)
with k rebalancings and data length n, a competing SCRP with k + 1 segments can be
constructed. For each such b and Rk,n , this hypothetical sequential investment strategy
achieves a wealth of

W(xn | b,Rk,n) =
k+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
t=ti−1

xj [t]

⎞
⎠ .(3.1)

There exists 2n−1 such possible rebalancing paths Rk,n for all k = 1, . . . , n − 1. Given any
k and n, the algorithm with the best rebalancing times, that is, R∗

k,n , achieves the largest
wealth on xn , that is,

W
(
xn | b,R∗

k,n

) �= sup
Rk,n

W(x | b,Rk,n)

= sup
t1,...,tk∈{2,...,n}0=t0<t1 ...tk<tk+1=n+1

k+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
t=ti−1

xj [t]

⎞
⎠ .
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Our goal is to demonstrate a strongly sequential portfolio that has no prior knowledge
of k, n, or the best rebalancing times, however, that achieves W(xn | b,R∗

k,n). We will
accomplish this result using a mixture approach as in Willems (1996) and Kozat and
Singer (2008). First, we will show that a proper weighted combination of all sequential
portfolios corresponding to each Rq,n , q = 0, . . . , n − 1, a total of 2n−1 portfolios,
achieves a wealth asymptotically as large as W(xn | b,R∗

k,n) for any k. Next, we will show
that the wealth of this weighted combination can be achieved by a universal sequential
portfolio, hence the result.

For each Rk,n and given b, we construct a hypothetical sequential portfolio as in (3.1).
We next invest a fraction of our wealth, F(Rk,n), in each such algorithm and then collect
the total wealth at the end of n investment periods. This final combined total wealth
achieved by all 2n−1 sequential portfolios (over all possible Rk,n and k) is given by

W̃u(xn)
�=

n−1∑
k=0

∑
Rk,n

F(Rk,n)W(xn | b,Rk,n).(3.2)

We next demonstrate a proper selection of F(Rk,n) will yield a total wealth W̃u(xn) that
is asymptotically as large as W(xn | b,R∗

k,n).
For any rebalancing path Rk,n , the fraction of the initial invested wealth, or weight-

ing by Willems (1996), F(Rk,n) should be nonnegative and should naturally satisfy∑n−1
k=0

∑
Rk,n

F(Rk,n) = 1. Since W̃u(xn) is the total weighted wealth achieved by the
class of all possible SCRP corresponding to all Rk,n , this total wealth satisfies

ln W̃u(xn) ≥ ln F(Rk,n) + ln W(xn | b,Rk,n),(3.3)

for any rebalancing path Rk,n including R∗
k,n , since W̃u(xn) ≥ F(Rk,n)W(xn | b,Rk,n).

The fraction of the wealth invested on Rk,n , F(Rk,n), directly contributes to the log
wealth ratio as ln(F(Rk,n)) over the best algorithm given any rebalancing path. Hence, it
is desirable that the fraction of wealth invested on the “best rebalancing path” (i.e., the
path with the largest wealth gain) be as large as possible and this fraction should also be
sequentially constructable so that the overall weighting and the resulting portfolio can be
sequentially computable. In here, we study three such initial wealth investments that were
introduced as weight assignments in Willems (1996) and Shamir and Merhav (1999) for
universal lossless source coding to assign probabilities to binary sequences (and then later
used in a prediction context in Kozat and Singer 2008 to construct universal switching
linear predictors under the square error loss). To use these weight assignments, for a
given path Rk,n , we construct a binary sequence such that each rebalancing instant is
represented as a one and each instant without rebalancing as a zero, forming a sequence
of length n − 1. For any Rk,n , there exist k ones and total n − k − 1 zeros. Then, F(Rk,n)
is given as the weight assigned to this binary sequence generated from Rk,n using a
sequential weight assignment (Willems 1996). For each such different weight assignments,
where F(Rk,n) = Fi (Rk,n), i = 1, 2, 3, it can be shown that

∑n−1
k=0

∑
Rk,n

Fi (Rk,n) = 1 and
these weight assignments yield the following bounds on F(Rk,n)

− ln F1(Rk,n) ≤ 3k + 1
2

ln(n/k) + O(k)(3.4)

and − ln F2(Rk,n) ≤ (k + ε) ln(n) +
(

log(1 + ε) + k log
1
ε

)
(3.5)
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FIGURE 3.1. The rebalancing diagram for n = 4. Each box represents a state, where
each number in the box is the time of the last rebalancing instant. In each box, we have
accumulated wealth for each stock, j = 1, . . . , m.

and − ln F3(Rk,n) ≤ (k + (k + 1)ε) ln(n/k) +
(

(k + 1) log
1 + ε

ε
+ log ε

)
(3.6)

for all ε > 0 and any Rk,n , in Willems (1996) and Shamir and Merhav (1999). Hence, any
such assignment Fi (Rk,n), i = 1, 2, 3, can be used in place of F(Rk,n). In the pseudo-code
given in Figure 3.1 after the derivations, we implement our algorithms in a generic
manner such that any of the weighting i = 1, 2, 3 can be used.

By using any of the bounds on F(Rk,n), for example, such as the one from (3.5),
that is, F(Rk,n) = F2(Rk,n), we can provide a lower bound on ln(W̃u(xn)) in (3.3)
as

ln(W̃u(xn)) ≥ ln W(x | b,Rk,n) − (k + ε) ln(n) −
(

log(1 + ε) + k log
1
ε

)
.(3.7)

Hence, we now have a sequential strategy which invests F(Rk,n) portion of wealth on
each Rk,n and has a combined wealth asymptotically achieving, to the first order in the
exponent, the same wealth as that achieved by any rebalancing path Rk,n as shown in
(3.7). It still remains to find a sequential portfolio whose achieved wealth is as large as
W̃u(xn).



UNIVERSAL SEMICONSTANT REBALANCED PORTFOLIOS 301

We are now ready to find the actual universal sequential portfolio. By definition, we
have

W̃u(xn) =
n∏

t=1

W̃u(xt)

W̃u(xt−1)
.

If we look at each term in the product closely,

W̃u(xt)

W̃u(xt−1)
=

t−1∑
k=0

∑
Rk,t

F(Rk,t)W(xt | b,Rk,t)

t−2∑
l=0

∑
Rl,t−1

F(Rl,t−1)W(xt−1 | b,Rl,t−1)

we observe that this product can be written as

W̃u(xt)

W̃u(xt−1)
=

t−1∑
k=0

∑
Rk,t

F(Rk,t)
k+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
r=ti−1

xj [r ]

⎞
⎠

t−2∑
l=0

∑
Rl,t−1

F(Rl,t−1)
l+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
r=ti−1

xj [r ]

⎞
⎠

=

t−1∑
k=0

∑
Rk,t

F(Rk,t)

⎛
⎝ k∏

i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
r=ti−1

xj [r ]

⎞
⎠

⎞
⎠

⎛
⎝ m∑

j=1

b j

t∏
o=tk

xj [o]

⎞
⎠

t−2∑
l=0

∑
Rl,t−1

F(Rl,t−1)
l+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
r=ti−1

xj [r ]

⎞
⎠

=

t−1∑
k=0

∑
Rk,t

F(Rk,t)

⎡
⎣ k∏

i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
r=ti−1

xj [r ]

⎞
⎠

⎤
⎦

[
b1

t−1∏
o=tk

x1[o], . . . , bm

t−1∏
o=tk

xm[o]

]T

x[t]

t−2∑
l=0

∑
Rl,t−1

F(Rl,t−1)
l+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
r=ti−1

xj [r ]

⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

t−1∑
k=0

∑
Rk,t

F(Rk,t)

⎛
⎝ k∏

i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
r=ti−1

xj [r ]

⎞
⎠

⎞
⎠

[
b1

t−1∏
o=tk

x1[o], . . . , bm

t−1∏
o=tk

xm[o]

]

t−2∑
l=0

∑
Rl,t−1

F(Rl,t−1)
l+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
r=ti−1

xj [r ]

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

T

x[t],

where in the third line, we used that (
∑m

j=1 b j
∏t

o=tk xj [o]) = [b1
∏t−1

o=tk x1[o], . . . ,
bm

∏t−1
o=tk xm[o]]T x[t]. Hence the desired sequential universal portfolio is given by
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b̃u,b[t]
�=

t−1∑
k=0

∑
Rk,t

F(Rk,t)

⎡
⎣ k∏

i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
r=ti−1

xj [r ]

⎞
⎠

⎤
⎦

[
b1

t−1∏
o=tk

x1[o], . . . , bm

t−1∏
o=tk

xm[o]

]T

t−2∑
l=0

∑
Rl,t−1

F(Rl,t−1)
l+1∏
i=1

⎛
⎝ m∑

j=1

b j

ti −1∏
r=ti−1

xj [r ]

⎞
⎠

.

In this form, the sequential algorithm requires 2n−1 different sequential algorithms to be
explicitly run in parallel on the sequence of price relatives. We now demonstrate that this
sequential portfolio can be calculated efficiently by using a linear rebalancing diagram
after assigning appropriate weights to each branch, similar to that used in Willems (1996)
as in Figure 3.1.

At each time t, we divide the set of all possible rebalancing paths Rk,t, k = 0, . . . ,
t − 1 into t disjoint sets. We label each set by a state variable st representing the most
recent rebalancing instant of a corresponding path within the period 1 ≤ l ≤ t, as an
example, for a Rk,t, st = tk. Given t, there can be at most t states st = 1, . . . , t. As an
example, at time t, all rebalancing paths with the same last rebalancing instant, tk = s, are
represented by the state st = s. We then define Wt(xt, st, j ) as the total wealth achieved
on stock j by all sequential algorithms at state st at time t, where j = 1, . . . , m. For
example, Wt(xt, s, j ) is the weighted sum of all the wealth on stock j achieved by the
sequential portfolios whose rebalancing paths ended up at state st = s. Since the states
partition the set of paths Rk,t,

W̃u(xt) =
∑
R

F(R)W(xt | b,R) =
t∑

s=1

m∑
j=1

Wt(xt, s, j ).

To obtain a closed form expression for W̃u (xt)
W̃u (xt−1)

, we will show that Wt(xt, st, j ) can be
calculated recursively by using the linear rebalancing diagram as in Figure 3.1. Each box
in Figure 3.1 represents a state variable st with the corresponding wealth Wt(xt, st, j ),
j = 1, . . . , m. In this figure, any directed path represents a rebalancing path where a
horizontal move denotes no rebalancing, while an upward move represents a rebalancing.
As such, state st represents the most recent rebalancing instant within the period 1 ≤
l ≤ t.

We now derive a recursive update for each Wt(xt, st, j ), st = 1, . . . , t, j = 1, . . . , m.
From Figure 3.1, we see that there exist only two transitions from each state to form a new
rebalancing path. At time t − 1, all the paths that ended at state st−1 = s, R(.,t−1):st−1=s ,
will end up in state st = s if no rebalancing happens at time t, that is, a horizontal
move in Figure 3.1. For any state st−1 = s, s = 1, . . . , t − 1, j = 1, . . . , m, to get
Wt(xt, s, j ) when there is no rebalancing, we only need to adjust wealth for each stock
Wt−1(xt−1, s, j ): first by multiplying each with the relative gain for each stock xj[t] (since
there is no rebalancing) and second adjusting the path weights F(R(.,t−1):st−1=s) using the
weight assignment algorithm, since the data length is increased by one. This yields,
Wt(xt, s, j ) = Ftr(st = s | st−1 = s)Wt−1(xt−1, s, j )xj [t], where we define F tr(st = s |
st−1 = s) as the adjustment required to scale the path weights when there is no re-
balancing. To get different weight assignments of (3.4), (3.5), or (3.6), F tr(. | .) should be
selected accordingly as in Kozat and Singer (2008).

When there is a rebalancing at time t, that is, st = t, the corresponding wealth from
each st−1, Wt−1(xt−1, st−1, j ) should be adjusted to yield Wt(xt, t, j ). When st = t, there
exist t − 1 possible rebalancings (to generate this new state) from each state st−1,
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st−1 = 1, . . . , t − 1, at time t − 1 to form the state st = t at time t. Since we create
a new state, we need to rebalance to b at every state s = 1, . . . , t − 1. Hence, each
Wt−1(xt−1, s, r ), s = 1, . . . , t − 1, r = 1, . . . , m, will contribute to each Wt(xt, t, j ), j =
1, . . . , m, proportional to bjxj[t] scaled by F tr(st = t | st−1 = s), where F tr(st = t | st−1 = s)
is the corresponding adjustment to path weights (when there is a rebalancing), yielding

Wt(xt, t, j ) =
t−1∑
s=1

(
m∑

r=1

Wt−1(xt−1, s, r )

)
Ftr(st = t | st−1 = s)b j xj [t].(3.8)

We observe that each Wt(xt, t, j ) has a contribution from all Wt−1(xt−1, s, r ), s = 1, . . . ,
t − 1, r = 1, . . . , m since there is a rebalancing. Hence, the sequential update for
Wt(xt, st, j ) when st = t.

A closer look at Figure 3.1 reveals that W̃u(xt) = ∑t
s=1

∑m
j=1 Wt(xt, s, j ) can be written

as wealths coming from each Wt−1(xt−1, st−1, j ) as

W̃u(xt) =
t−1∑
s=1

m∑
j=1

Wt−1(xt−1, s, j )
{
Ftr(st = s | st−1 = s)xj [t] + Ftr(st = t | st−1 = s)bT x[t]

}

since each Wt−1(xt−1, s, j ) contributes with two terms in the braces (i.e., two arrows on
Figure 3.1). W̃u(xt) can also be written as,

W̃u(xt) =
t−1∑
s=1

m∑
j=1

Wt−1(xt−1, s, j )
{

Ftr(st = s | st−1 = s)e j + Ftr(st = t | st−1 = s)b
}T x[t],

(3.9)

where e j
�= [0, . . . , 0, 1, 0, . . . , 0]T, that is, a vector of all zeros except a single one at

location j . Hence,

W̃u(xt)

W̃u(xt−1)
=

t∑
s=1

m∑
j=1

Wt(xt, s, j )

t−1∑
s=1

m∑
r=1

Wt−1(xt−1, s, r )

=

n−1∑
s=1

m∑
j=1

Wt−1(xt−1, s, j )
{

Ftr(st = s | st−1 = s)eT
j x[t] + Ftr(st = t | st−1 = s)bT x[t]

}
n−1∑
s=1

m∑
r=1

Wt−1(xt−1, st−1, r )

.

Then,

W̃u(xt)

W̃u(xt−1)
=

t−1∑
s=1

m∑
j=1

σt−1(s, j )
{

Ftr(st = s | st−1 = s)eT
j x[t] + Ftr(st = t | st−1 = s)bT x[t]

}
,

(3.10)
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where the weights σ t−1(s, j ) are defined as

σt−1(s, j )
�= Wt−1(xt−1, s, j )

t−1∑
s=1

m∑
r=1

Wt−1(xt−1, s, r )

(3.11)

and are a form of performance-weighting for the states st−1 and stocks j = 1, . . . , m.
From (3.10) we conclude that,

b̃u,b[t] =
t−1∑
s=1

m∑
j=1

σt−1(s, j )
{

Ftr(st = s | st−1 = s)e j + Ftr(st = t | st−1 = s)b
}

(3.12)

which gives the final portfolio at each time t with complexity O(tm). Hence, combining
2t−1 sequential algorithms to obtain the portfolio in (3.12) only requires O(tm) compu-
tations per investment period. This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. Proof of Theorem 2.2 follows from the proof of Theorem 2.1.
Given the achieved wealth Wc(xt | b,Rk,t), we then define a weighted mixture of wealth
from all paths

W̃c
u (xt)

�=
t−1∑
k=0

∑
Rk,t

F(Rk,t)Wc(xt | b,Rk,t).(3.13)

Wealth W̃c
u (xt) corresponds to investing in each Rk,t, a portion F(Rk,t) of the initial

investment and then collecting the final wealth at time n. We note that each such sequential
algorithm would pay the transaction costs separately. Since W̃c

u (xt) arises from a sum of
terms,

W̃c
u (xt) ≥ F(Rk,t)Wc(xt | b,Rk,t)

for each Rk,t. However, instead of explicitly running 2t−1 algorithms in parallel and
paying transaction costs for each of them separately, one can even avoid many of the
transaction costs by occasionally exchanging stocks among the sequential portfolios. As
an example, since we have access to the portfolio from each path, if a sequential portfolio
corresponding to a rebalancing path requires selling a particular stock and another
sequential portfolio corresponding to some other rebalancing path requires buying the
same stock, we can exchange that stock instead of going to the market and avoid the
transaction costs. Hence, since in Figure 3.1 each state corresponds to a combination
of sequential portfolios with rebalancing paths that end up in that state, the wealth
achieved by that state will not be worse than the combined weighted wealth of all such
portfolios due to such possible occasional savings. Finally, since the universal algorithm is
a weighted combination of all such states, the wealth achieved by the universal algorithm
will not be smaller than W̃c

u (xt). We next explain an efficient implementation of W̃c
u (xt),

as in Theorem 2.1.
Instead of dividing the initial investment among all Rk,t and collecting the final wealth

at the end, we can implement this investment strategy using the transition diagram in
Figure 3.1, as in Theorem 2.1. We next define Wc

t (st, xt, j ) as the weighted sum of all the
wealth in stock j from the sequential algorithms whose rebalancing paths ended up at
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FIGURE 3.2. A pseudo-code for the universal algorithm, where σ t(s, j ) is defined in
(3.14).

sn; that is, for all paths R′ such that the last rebalancing instant was at st = s. Since the
states partition the set of paths Rk,t,

W̃c
u (xt) =

∑
R

F(R)Wc(xt | b,R) =
t∑

s=1

m∑
j=1

Wc
t (xt, s, j ).

We next calculate the following ratio

W̃c
u (xt)

W̃c
u (xt−1)

=
t−1∑
s=1

m∑
j=1

σ c
t−1(s, j )

{
Ftr(st = s | st−1 = s)eT

j x[t] + Ftr(st = t | st−1 = s)bT x[t]
}
,

where the weights σ t−1(s, j ) are defined as
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σ c
t−1(s, j )

�= Wc
t−1(xt−1, s, j )

t−1∑
z=1

m∑
r=1

Wc
t−1(xt−1, z, r )

(3.14)

and are a form of performance-weighting for the states st−1 and stocks j = 1, . . . , m.
Hence, the universal sequential portfolio for Theorem 2.2 is given as

b̃c
u [t] =

t−1∑
s=1

m∑
j=1

σ c
t−1(s, j )

{
Ftr(st = s | st−1 = s)e j + Ftr(st = t | st−1 = s)b

}
,

which completes the proof of Theorem 2.2. �
In Figure 3.2, we present the pseudo-code of the introduced algorithms. We note that

to get different weightings given in (3.4), (3.5), and (3.6), F tr(·) terms should be set
accordingly as given in Kozat and Singer (2008).

4. SIMULATIONS

In this section, we demonstrate the performance of the introduced algorithms with several
different examples. The set of simulations includes application of different portfolio
selection strategies to the historical data collected from the New York Stock Exchange
over a 22-year period (Cover 1991). The total set includes 35 different stocks. Here, the
investment period is every 5 days. We first randomly select pairs of stocks and invest using:
universal algorithm introduced in Section 3 “Uni,” Cover’s universal portfolio (Cover
and Ordentlich 1996) “Cover’s,” buy-and-hold portfolio “Buy&Hold,” a portfolio that
continuously rebalances to the target portfolio, that is, the CRP b, “CRP,” and portfolios
that rebalance to the target portfolio in predefined intervals such as every 10, 20, and 30
investment periods “Swt-10,” “Swt-20,” “Swt-30,” respectively. We have also included
results for rebalancing strategies that employ no-trade zones around the target portfolio,
that is, b, including an investment strategy that rebalances to the target portfolio only
when the absolute difference between the present portfolio and the target portfolio
exceeds a predefined interval (Mulvey and Simsek 2002) “no-trade-1,” an investment
strategy that rebalances to the target portfolio only when the Euclidean distance between
the present portfolio and the target portfolio exceeds a predefined value (Brandt, Santa-
Clara, and Valkanov 2005) “no-trade-2,” and an investment strategy that rebalances to
the portfolio on the boundary of the no-trade-zone only when the Euclidean distance
between the present portfolio and the target portfolio exceeds a predefine value (Brandt,
Santa-Clara, and Valkanov 2005) “no-trade-3.” In Table 4.1, we present the wealth
achieved by these algorithms for an initial investment of 1 dollar, where the results are
averaged over 50 independent trials, that is, over 50 independent stock pairs. In Table 4.1a,
b is selected uniform, that is, b = [1/2 1/2]T, and in Table 4.1b, b is selected randomly
for each trial, where b is the target portfolio for all algorithms. The transaction costs
are selected as c = 0, 0.001, 0.01, 0.02 (i.e., 0%, 0.1%, 1%, 2%) and applied on only for
buying stocks in accordance with Blum and Kalai (1998). For the universal algorithm, the
transition weights are chosen to give the weighting introduced in Willems (1996) to yield
(3.4). However, to avoid excessive rebalancing, we reverse the probability of rebalancing
and no-rebalancings such that the algorithm favors the paths with less rebalancings and
reverse path weightings. For “no-trade-1” algorithm, the algorithm rebalances when the
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difference between any entry of the current portfolio, say b[t], and the target portfolio
b exceeds a predefined threshold l ∈ R +, that is, rebalance if any |bj − bj[t]| > l, j =
1, . . . , m. For l, 50 uniform values are chosen in the range [0.01, 0.5] and the average
wealth achieved by these 50 different algorithms for each l is presented. For “no-trade-2”
and “no-trade-3,” the algorithms rebalance if

∑
j(bj − bj[t])2 > τ 2, τ ∈ R+. For τ , 50

uniform values in the range [0.1, 0.5] are chosen and the average wealth achieved by
these 50 different algorithms for each k is presented. For all algorithms, we have used the
rebalancing strategy under transaction costs introduced in Blum and Kalai (1998).

We next continue to simulate the performance of these algorithms applied to combi-
nation of three stocks. In Table 4.2, we present the achieved wealth of several algorithms
with an initial wealth of 1 dollar over random sets of three stocks, where the results are
averaged over 50 trials. In Table 4.2a, b is uniform, that is, b = [1/3 1/3 1/3]T and in
Table 4.2b, b is selected randomly for each trial.

As the final set of experiments, to demonstrate the progress of wealth gain, we have
randomly selected a set of three stocks, for example, Iroquois–Ford–Schlum, and applied
several different algorithms. In Figure 4.1, we demonstrate the wealth gain during a 22-
year period for Cover’s portfolio, Universal portfolio, buy-and-hold, and “Swt-10.” For
Figure 4.1a, c = 0 and for Figure 4.1b, c = 0.01.

5. CONCLUSION

In this paper, we investigated SCRPs under a competitive framework. We first provided
a sequential universal portfolio whose achieved wealth is asymptotically as large as
the wealth achieved by the best SCRP that is tuned to the individual sequence of the
price relatives, which could only have been chosen in hindsight. We then extended this
framework to the case when there are fixed transaction costs involved and presented a
universal sequential portfolio achieving the wealth of the best SCRP with transaction
costs. For both cases, the logarithm of the wealth ratio of these algorithms over the
performance of the best SCRPs is at most O(ln (n)). The universal portfolios are strongly
sequential such that they do not require the knowledge of k or n a priori. We also provided
explicit implementations of these algorithms with complexity linear in the data length n
and compared the performance of the introduced algorithms with the performance of
several well-known investment strategies.
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