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Abstract—In this correspondence, we provide a transient analysis of an
affinely constrained mixture method that adaptively combines the outputs
of adaptive filters running in parallel on the same task. The affinely con-
strained mixture is adapted using a stochastic gradient update to minimize
the square of the prediction error. Although we specifically carry out the
transient analysis for a combination of two equal length adaptive filters
trying to learn a linear model working on real valued data, we also pro-
vide the final equations and the necessary extensions in order to generalize
the transient analysis to mixtures combining more than two filters; using
Newton based updates to train the mixture weights; working on complex
valued data; or unconstrained mixtures. The derivations are generic such
that the constituent filters can be trained using unbiased updates including
the least-mean squares or recursive least squares updates. This correspon-
dence concludes with numerical examples and final remarks.

Index Terms—Adaptive filtering, least-mean squares, mixture methods,
transient analysis.

1. INTRODUCTION

In this correspondence, we study the transient behavior of linear mix-
ture methods that combine outputs of adaptive filters running in parallel
on the same task. Such adaptive mixture methods may be used in order
to improve the steady-state and/or convergence performance over the
constituent algorithms in the mixture [1]-[4]. This framework has two
stages [1]-[4]. The first stage has adaptive filters that run in parallel to
model a desired signal assumed to be generated by a linear model [5].
In the second stage, the outputs of the filters are linearly combined to
yield the output of the system. Although the outputs of the first stage
filters are linearly combined in the second stage, these combination
weights can be adapted in a highly nonlinear manner [1]-[3]. One can
use unconstrained [4], affinely constrained [2] or convexly constrained
[1], [3], [6] mixture weights in the second stage to construct the final
output. Under such constraints, one can adapt the combination weights
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using a variety of means including stochastic gradient updates [1] or
Newton (or quasi-Newton) based updates [7]. We refer the reader to
[1]-[4] for a general discussion of linear mixtures, possible configura-
tions and an extended set of references.

We first concentrate on a mixture of two adaptive filters having equal
lengths working on real valued data; the second stage mixture is con-
strained to be affine; and the mixture weights are trained using a par-
ticular stochastic gradient update, i.e., the least mean squares (LMS)
algorithm. Our transient analysis is generic with respect to how the
constituent filters are trained as long as they are of the same length
and perform unbiased estimation. This transient analysis can be ex-
tended to mixtures having more than two constituent filters working
on complex valued data; using different adaptation methods for each
constituent filter; using Newton (or quasi-Newton) based updates to
train the second stage weights; or to unconstrained mixtures. We pro-
vide these extensions and show how our derivations should be mod-
ified for these cases with the corresponding results as remarks in the
correspondence. Note that although the transient analysis studied here
may be extended for these configurations, one needs to provide the
corresponding time-varying auto- and cross-correlation functions be-
tween the a priori errors [5] of the constituent filters. Such time-varying
cross-correlation functions between the same length filters using the
LMS, the least-mean fourth (LMF), or the recursive least squares (RLS)
updates, combinations of these updates, or blind methods such as the
constant modulus algorithm can be readily derived following the ap-
proaches in [1], [3], and [5] in certain scenarios.

A transient analysis of the adaptive affine combination studied here
was first carried out in [8] and [9] (and then detailed in [10]) specifi-
cally for a combination of two adaptive filters. However, our analysis
and the resulting conclusions differ from [8] and [10] in a number of
important ways. As in [8] and [10], we first observe that the affine com-
bination can be represented as an unconstrained stochastic update on a
single parameter by using particular input and desired signal character-
ization. However, in order to generalize this interpretation to mixtures
having more than two adaptive filters, unlike [8] and [10], we define
the a priori error with respect to the second stage combination, i.e., we
consider the second stage as another adaptive linear filter working on
nonstationary outputs of the first stage filters. This definition then al-
lows us to derive an energy conservation relation as in [5] to describe
the time evolution of the affine combination weight error. As shown in
Section III, such an energy conservation relation can be generalized to
mixtures using more than two filters, affine or unconstrained adaptive
methods or quasi-Newton algorithms, yielding the transient analysis
for these configurations as well. In Section III, we provide the main
differences between our analysis and that presented in [8].

After we introduce the basic system setup in Section II, we continue
with the transient analysis of the affine combination of two adaptive
filters having the same length. The affine combination parameter is
trained using the LMS update. We also provide the corresponding con-
ditions for convergence in the MSE sense. In Sections II and III, we
provide the corresponding modifications to extend the derivations to
mixtures having more than two constituent filters, using unconstrained
weights or the case where the second stage combination weights are
trained using Newton based updates. We present numerical examples
in Section IV to test the validity of the derivations. The correspondence
concludes with some remarks about the transient analysis.
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Fig. 1. An affine mixture of two adaptive filters working in parallel to model a
desired signal.

II. SYSTEM DESCRIPTION

The framework! we consider has two stages as shown in Fig. 1. The
first stage has two constituent adaptive filters working in parallel to
model a desired signal d(¢). The desired signal is assumed to be gener-
ated by a stationary discrete time linear model d(t) = w u(t) + n(t),
where u(t) € IR* is a zero mean stationary vector process with Q =
Efu(t)u” (t)], n(t) is an i.i.d. noise process independent of u(t) with
o2 £ E[n*(t)] andw, € IR" is the unknown system vector. Note that
we use a stationary linear model w,, instead of the widely used random
walk model [5] since our goal is to analyze the transient behavior of the
combination algorithms. Each constituent filter updates a weight vector
wi(t) € R™M and produces estimates, d;(t) = w! (t)u(t),i = 1,2,
respectively. For each filter we also define estimation, a priori and a
posteriori errors as

ci(t) =d(t) — di(t)
Cai(t) = [wo — wi()] u(t)

epi(t) =[wo —wi(t + 1)) u(t)

assuming w1 (¢) and wo(#) produce unbiased estimators of w,.
Hence, for each filter we have di(t) = wlu(t) — e, i(t),
and e;(t) eai(t) + n(t). We also have Ji;(t) 2 E[e3(t)],
Jex,ii(t) EleZ ;(t)] and their limiting values (if they exist)
Jii & lime — oo Jii(1), Joxii 2 1imy — oo Jow i (1), respectively.
We further have Jox 12(t) ES Eleq,1(t)eq,2(¢)] and (if it exists)
Jex 12 £ lim, — o Jex,12(t). The limiting values Jex,11, Jex,22 and
Jex,12 are derived in [1], [3] for a wide range of adaptation methods.

The second stage of the framework is the mixture stage. Here,
the outputs of the two constituent adaptive filters are com-
bined to produce the final output. Imposing an affine constraint
on the combination weights, the final output is generated as
d(t) = 0(t)dy (1) +(1—=6(t))d2(t) = d2(t)+0(t)(d1 (t)—d2(t)). The
combination weight 6(t) is updated using a stochastic gradient update
to minimize the square of the final estimation error, e(t) = d(t) —d(t),
yielding

A

Ot +1) = 0(t) + pe(t)(di(t) — d2 (1)) (1)

LAll vectors are column vectors represented by boldface lowercase letters,
(-)™ is the transpose operation, (-)*' is the conjugate transpose operation. Ma-
trices are represented with boldface capital letters. For w, ||w||g = w/Zw
is the weighted />-norm for a positive semidefinite matrix £. For a vector w,
w(?) is the ¢th entry. For a matrix R, tr(R) is the trace and R(*+7) is the (7, 7 )th
entry. The vector (or the matrix) 1 represents a vector (or a matrix) of all ones
where the size is understood from the context.
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We point out that this can be seen as a stochastic gradient
update with a single parameter 6(¢), with the desired signal
as d(t) — da(t) = eaa(t) + n(t) and the input data as
di(t) = da(t) = ea(t) — ea(t) [8]. Assuming convergence, we
have limiting value §, = lim, — - E[8(¢)] = Jox,]1e-|):723;2£ef:21(?0x,12 ,
from [8].

Remark 1: To extend the affinely constrained algorithm to com-
bine outputs of m constituent adaptive filters, one can define the
input regressor as y(t) 2 [di(t),....dm(t)]", the final output
as d(t) = 8" (t)y(t), with the constraint 8 ()1 = 1. Note that
by taking 4™ (t) = 1 — Yt 8 (¢), this is an unconstrained
combination with the weight vector A(#) 2 [#(¢),..., 80"~V (1)],
the input regressor £(t) = [d1(t) — du (), ... dpm—1(t) — dp(D)]"
and the desired signal d(t) — d.(t). Then, the stochastic gra-
dient update is given by: B(¢t + 1) = B(t) + pe(t)k(t) where
e(t) = d(t) — B"(t)k(t) [4]. The corresponding limiting values
lim; — o E[B(t)] and lim; — - E[e?(¢)] for certain scenarios are
given in [4] assuming convergence.

Remark 2: With the same notation as in Remark 1, one can define an
unconstrained update directly on #(#), without the constraint 8" ()1 =
1,as (¢t + 1) = 8(t) + pe(t)y(t), where e(t) = d(t) — 8" (t)y(t), to
combine m constituent filters [4]. The corresponding limiting values
lim; — o E[@(¢)] and lim; — o, E[¢*(t)], and their relation to affine
or convex combinations are given in [4] assuming convergence under
different scenarios.

We next provide a transient analysis under this system description.

III. TRANSIENT ANALYSIS

We next analyze the transient behavior of the stochastic gradient up-
date on the affine combination parameter given in (1) with the input re-
gressor [eq,2(t) — €q,1(t)] and the desired signal n(¢) + eq,2(t). Note
that the time-varying optimal combination weight that minimizes the
estimation MSE at each time instant can be written

%U)5QyE<%mﬂ+cmﬁﬂ—ﬂ%uﬂ—cmﬁﬂ})

B{ln0) + eanleas(t) - ean (]}
 B{leas(t) = can ()}

— Jex,??(t) - Jexﬂ?(t) (2)
Jox,ll(t) + ch,Q‘Z(t) - 2ch,12(t) '

Subtracting the time-varying optimal combination weight from both
sides of (1) yields

[00(1) = 6(t + 1)] = [0o(t) = 6(1)] = pe(t)[ea2(t) = €an(t)].

After defining a priori and a posteriori errors for the second stage as

ea(t) =[0:(t) — 0(t)][ea,2(t) — ea1(t)] 3)

ep(t) =[0o(t) =0t + D]feaa(t) — ea 1 (1)]. ©)
we get the energy conservation relation
llea (D1
lllea 2(f) — ea (]I

= [16.(t) = 611" +

18a() = 8t + DI” +

lex®I®
[ea,2(t) = ean (D]

5
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after some algebra. We point out that in [8], the a priori error is de-
fined with respect to w, and u(¢) which yields e, (t) = 6(t)eq,1(¢) +
(1 — 6(t))eq,2(t) in [8]. Note that this a priori error definition is dif-
ferent than our definition of a priori error in (3). By defining a priori
and a posteriori errors with respect to the time-varying optimal com-
bination parameter 6, (¢) and nonstationary input regressor, [eq 2 (t) —
€aq,1(t)], we are able to derive and use the energy conservation relation
to perform transient analysis which can be readily extended to mix-
tures having more than two constituent filters or using Newton based
updates. Defining

eo(t) 2 n(t) 4 eaa(t) — o(D)]eas(t) — ean (t)], (6)

ie., d(t) — da(t) = O,(t)[ea2(t) — ear ()] + €o(t), and after some
algebra, (5) yields

16(1) = 6(t+ 1)|I>=[16,(£) — 6(2)|”
+ 1 [eaz () —ea,n (O)]*]18(1) -
+ i [eaz(t) = ean (D)) en(t)
—2p[|8o(t) =8 (D)]|*[ea 2 (1) —car (1))
a(t)eo(t)

ol

+ 2% [ean(t) — can ()]e

— 2ueq(t)eq(t) )

and

160(t+1) = 6t + 1)||?
+ 2[00 (t) — 0o (t + D][fo(t + 1) — 6(t + 1)]
+ [16(t) = fa(t + D|*
=16o() = 6()I* + 11" [ea 2(t) —ea, (D] 160 () =6 (1)
+ 1[eaa(t) = ean (D] ea(t)
—2u165(1) = 01 [ea2(t) = €ann (D))
+ 21 [ea2(t) — ean ()] ealt)eo(t)

— 2peq(t)eq(t). (®)

The recursion in (8) is different from (16) of [8] since we have defined
the recursion with respect to 8, (¢ + 1) — (¢ + 1) unlike in (16) where
n(t+1) =60,(t) —6(t+1). Assuming E[8(t 4+ 1)] = 6,(¢t + 1),
we have E[||6,(t) — 8(t + 1)||?] = E[||6.(t + 1)=6(t + D)||*] +
E[||60(t+1)=84(t)||*]. To take the expectation of both sides of (8), we

6229

make separation assumptions for the terms related to [eq,1(t) — €q,2(t)]
and #(t) in (8) similar to the separation assumption discussed in [1],
[5]. We point out that e, (#) is uncorrelated with [eq 2(t) — eq,1(t)]
from (2) and (6). However, we also assume independence of e, (¢) from
[ea,2(t) — €q,1(t)] and A(t) yielding

B¢t + DI = {1 = 20B[(ca1(t) = ea2(t))’]
2 El(ean (1) = ea a(6)'1} ENIOH]]
+ 12 El(enn () = ean())]E[2(H)] - at)

)
where we define 6(t) £ 6,(t) —6(t) anda(f S 16, (t+1)—6,(1)]°.
Note that since lim; — - 8,(t) = Jex.22 ~ Jex,12 , we have

Jex 11+ ex 22— 2 Jex, 12
limy —s oo a(t) = 0 assuming convergence. We also have E[(eq,1(¢)—

ea2(1)?] = Jox 11 () + Jex, )2( ) — 2Jex 12(t) in (9). In order to cal-
culate F[(eq,1(t) — ea,z(z‘)) ], we assume that e ;(t) are Gaussian
distributed. With this assumption, (9) yields (10), shown at the bottom
of the page. This recursion will converge if

‘{1 - 2N[ch,11(t) + JCX,ZZ(t) - 2ch,12(t)]

+ 310 e 11 (1) + Jox22(t) — 2Jex 12()]° } <1

which yields

2

0<pn< .
3[ ex,11(t) + Jex, )z()—2]e~<1z(f]

1)

Based on the recursion in (10), the norm of the weight error vector can
be written as [5], [11]

E[||6(t)]]] = ®(t — 1,0)E[|6(0)]]*]

t—1

+Y Bt Lk)p(k—1)+ ¢t —1)
k=1

where ®(t1,12) 2 A(t)A(ty — 1)... A(ts + 1) A(f2). Note that the
time-varying formulations for Jex ;;(¢) are given in [5, Ch. 9] for a
wide range of adaptation methods under the studied model, including
the LMS and RLS updates. The time varying cross correlation function
between the constituent filters Jex,12(¢) can be derived for two LMS
filters (or for an LMS filter and an RLS filter) following similar lines
to [5, Ch. 9].

E[”é(f + 1)”‘2] = {1 - 2N[ch,ll(t) + JCX,QZ(t) - 2*70)(,12 (t)] + 3,“‘2[']cx,11(t) + ch,ZZ(t) - 2ch,12(t)]2} E[”é(f)'lz]

~

+ Ilz[v]cx,ll(f)']cx,ZZ(t) — Jex, 1'7(f)] + H O',L[]ox 11(t) + ](‘X 22 (t) -2 ]Cw( 12(f)] — (M(t)

éZ(t)

(10)

(1)
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Given this recursion for the affine combination weight error, one can
derive the corresponding expression for the excess MSE of the affine
combination. Using the separation assumption, we have

Bl (0] = E {[8.(6) = 8O [ear (1) — eaa(D]?}

=E{[8.(t) = 0(t)]°} E{[ea,1(t) — ean(®]’}  (12)

where the second line follows from the separation assumption. With p
satisfying (11), we have
. 2
t 13}100 E[Ea (t)]
:timmE{[Go(f) - 9(f)]2}t@1mE{[ca,l(t) - cayz(f)]z} (13)
Jox, 11 Jex,22— Jex 12
(U + Jex 11+ ex, 222 ex, 12)

- 2 - 3/1’(']6‘}(,11 + Jex,ZZ - ZJeX,IZ)
X ('Jex,11 + Je.\"22 - 2Je‘<,12)~

(14)

To compare (7) with the excess MSE of a converged affine combina-
tion filter trained using the LMS update with input regressor [eq,2 () —
eq,1(t)] and desired signal [eq 2 () +n(#)] given in [4], under different
assumptions, we obtain

2
Jex,11Jex,22—J25 12

1 <Jn + J(‘x 11+Jnx.’)’)_ojc-x 12) (Jex,ll + Jex,Z:Z - 2Jex,12)
2Jex‘12)

1
2 — p(Jex,11 + Jex 22 — ()

since (Jex,11 + Jex,22 — 2Jex,12) is the power of the input regressor,
i.e., [€a,2(t) — €q,1(%)], in the limit, and

02 4 Jox 11Jexs 22
lim Elej(t)] = [ S
im [e5(1)] ( Jex, 11+ Jex 22 —

g2
ex,12

t— oo 2Jex 12 >
from [5] and [8]. We emphasize that the transient analysis resulting in
(7) is slightly different from (8) since the transient analysis carried out
in this correspondence is more involved and requires stronger assump-
tions.

Remark 3: When Newton (or quasi-Newton) based methods are
used instead of the LMS update to train the combination weights, the
norms in (5) should be changed to weighted norms in terms of

A L
) TS A eas () = e (O

Here, 0 < A < 1 is the forgetting factor and ' is the initial value
for p(t). If we use assume that p(#) is uncorrelated with the mixture
weights and regressor vectors [5], then (9) yields

E[6(t+ D" 1={1 = 2uE[p()]El(car (1) — ca2(t))’]
+u Elp* (D]E[(can (t) = ea2()']} ElO()]I°]

+1E[p* (D]E[(ea.1 (t) —ea2(t))*]Eleg ()] —a(t).

(16)
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To calculate E[p(t)] and E[p*(t)], we use approximations similar to
ones used in [5] as

1

Elp(t)] = N eas(i) — ear (O}

Mo+ E{Y,

and E[p*(t)] = E[p(t)]*.

Remark 4: When we use an affine combination of m con-
stituent filters of the same length performing unbiased esti-
mation, the norm of the input regressor, [eq2(t) — eq1(t)]),
in the energy conservation relation (8) should be replaced by
||lr.:(t)||2 The time-varying optimal affine combination, i.e.,

B,(t) = argmingFE {[n(t) + ea,m(t) — f)’Tn(t)]Q} = R™'(t)p(t),
where R(t) £ E[R(KT(D)], p(t) £ E{[n(t) + eam(t)](t)},
can be derived as in [4] including E[e2(t)] = 02 + Jex.mm(t) —
pr ()R (t)p(t) and lim; — o, E[e2(¢)]. For equal length fil-
ters performing unbiased estimation, we have R(i’j)(f) =

Jex 770‘) 9\ im (t) Jex ,jm (t) + Jex"mm (t) and p(7) (f) =
Jox,im (£) = Jox,mm (t). For this configuration, the variance relation
yields

E[|Bt+DIE] = EIBOs]+1 B[SO EllR()E]-v() (A7)
where & 2 8 — uSE[R(OK"(O)]-pERORT (S +
I E[||n(f 1366 ()], £ is a posmve definite weighting matrix,
B(t) £ B,(t) — B(t) and v(t) £ ||B,(t + 1) — B, (1)||%. We point
out that although £(#) can be assumed to be Gaussian, E[x(t)s ()]
is time varying such that (10) cannot be readily diagonalized while
preserving time evaluation. Hence the state space representation
for(10) should be derived similar to the non-Gaussian regressor
case as in [5]. Furthermore, while constructing the corresponding
state space representation, the left hand side of (10) should be
weighted using R(t 4+ 1) and the right hand side with R(t). We
observe that since ||3(# + 1)|| can be assumed to be bounded and
[|[R(t + 1) — R(t)|| is relatively small, using R(¢¥) on both sides
of (10) yields the time evaluation of the corresponding state space
representation (which yields E[||8(#)||*]) and provides satisfactory
results in our simulations.

Moreover, instead of using the full state space representation, we
observe that using tr(AB) = tr(A)tr(B) for affine combination of m

filters (9) yields?

E{IA(t+ 1)||*]
{1 2ute[R()]+p {ex[R(1)]* + 2[R (¢ )]}}E[IIB( )I°]

+utr[R(D)][02 + Jex.mm (1) —p” ()R (t)p(H)]—v'(t) (18)
assuming e, ;(t) are Gaussian distributed and v(t) 2 |8, (t +
1) — B,(1)]|*. In our experiments, we observe a close agreement
between (11) and simulations. For unconstrained combination,
[ea2(t) — eq1(t)]? in (18) should be replaced by ||y(¢)||*> and
0.(t) = argming E {[d(t) - GT'y(t)]z},
[4], including E[e2(t)] and lim; — o, E[e2(t)]. After these replace-
ments the derivations follows similar lines as the affine combination

of m filters to yield recursion as in (10), where 3(t) is replaced by
0(t) = 6,(t) — 6(t), R(t) is replaced by E[y(t)y” (t)] and v(t)

which can be derived as in

2For a Gaussian distributed vector & with zero mean, E[k"k&" k] =
tr{ E[k&T]} + 2tr{ E[k&T]?} [5].
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Two LMS filters, LMS and RLS mixtures, SNR = 20dB
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Fig.2. System identification. The learning rate for the first LMS filter, i.e., “Ims
17,is p11 = 0.1, for the second LMS filter, i.e., “Ims 27, is pto = 0.002, for the
adaptive combination using the LMS update “a-Ims”, is ¢# = 0.012 and using
the RLS update “a-rls”,is 1 — A = 0.12. The theoretical curves are also plotted,
i.e., “a-lms-theo” and “a-rls-theo”.

is replaced by ||6,(t + 1) — 8,(¢)||%. Note that if the constituent
filters are not of the equal length, then the terms E[||#(¢)||?] and
E[||#(t)||"] should be evaluated accordingly. However, the derivations
still hold after these replacements. When RLS based updates are used
to train a mixture of m constituent filters, we also need to include
®'(t) £ (NI + 31, (M k(i)k" (i)} in the state space evalu-
ation. Again, one can use ®(¢ 4+ 1) = ®(¢) approximation to derive
the corresponding transient analysis.

Remark 5: For complex-valued data, where d(t) £ n(t)+u' (t)w,
and w(t+1) = w(t) 4 pu(t)[d(t) —u' (t)w(t)], defining for a vector
v, |lv|)? = v, 9) yields

E[6t+DI") = {1 = 2uE[llear(t) = ea2(t)’]
+1* Elllean (t) = caa (D'} ENIH)])]
+ 07 Elllear(t) = ea2 (O] Elleo()[|*] = a(t).

The derivations follow the case with the real valued data after this re-
placement.
We next provide numerical examples.

IV. NUMERICAL EXAMPLES

The first set of experiments involve estimating a linear model of 7th
order with w, = [0.25, —0.47, —0.37,0.045, —0.18,0.78,0.147]"
as in Fig. 1 [1]. Here, o2 = 0.3, the input regressor wu(t) is i.i.d.
with variance equal to 1 for each entry and the norm of w, is
scaled to yield SNR = 20dB. As the constituent filters, we use
two 7th order linear filters with the LMS update to train w:(¢) and
wa(t), ie., wi(t+1) = w;(t)+ pie; (H)u(t), i = 1,2. For the first
LMS filter, labeled “Ims 1” in Fig. 2, the learning rate is selected
as i1 = 0.2, for the second filter, labeled “Ims 27, as 2 = 0.004,
for the adaptive affine combination using the LMS update, labeled
“a-lms”, as ;¢ = 0.012 and for the adaptive affine combination using
the RLS update, labeled “a-rls”, as 1 — A = 0.12. In Fig. 2, we plot
the corresponding MSEs for all algorithms. The learning rates of
the adaptive affine combinations are selected such that the mixtures
initially follow the rapidly converging filter and then follow the
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Fig. 3. System identification. The learning rate for the first LMF filter,
ie., “Imf 17, is @y = 0.03, for the second LMF filter, i.e., “lmf 27,
is po = 0.0015, for the adaptive combination using the LMS update
“a-lms”, is ¢ = 0.1 and using the RLS update “a-rls”, is 1 — A =0.1.
The theoretical curves are also plotted, i.e., “a-lms-theo” and “a-rls-theo”.

slowly converging filter with the lower steady-state MSE [2]. The
results are averaged over 2 x 10° independent trials and smoothed
using 10 consecutive samples. We also plot the theoretically derived
MSE curves for the adaptive affine combination using the LMS
update, labeled “a-lms-theo”, using (10) and (12), and the RLS
update labeled “a-rls-theo”, using (16). For all simulations, as the
initial condition, we set E[||(0)]|*] = 1. The theoretical curves in
Fig. 2 are produced using Jox,ii(¢), Jex,i;(¢) and 6,(¢) that are
calculated from the simulations, since our goal is to illustrate the
validity of derived equations. We observe a close agreement between
the derivations and simulations for these trials. We observe that our
transient analysis gets more accurate as the sample size increases. As
highlighted in the correspondence, our derivations are generic with
respect to how the constituent filters are trained provided that they
produce unbiased estimates. To demonstrate this, in the next set of
experiments, we try to learn the same linear model using the least-mean
fourth (LMF) [12] algorithm, i.e., w;(t+1) = w;(t) + psel (H)u(t),
i = 1,2. The learning rates are selected as y1 = 0.03, p2 = 0.0015
for the LMF filters, ¢ = 0.1 for the LMS mixture, 1 — XA = 0.1 for
the RLS mixture and SNR = 10 dB. We plot in Fig. 3 MSE curves
for the constituent filters, labeled “Imf 17 and “Ilmf 27, for the
adaptive affine filter using the LMS update, labeled “a-lms”, using
the RLS update “a-rls” and theoretically derived curves, labeled
“a-lms-theo” and “‘a-rls-theo”, respectively. We also note that the
performance of the combination typically lies close to the best
performing filter. However, due to the “diversity combining” [4]
property the performance of the combination can be better than
the individual branches, especially for the regions where branches
have comparable performance. To test the validity of the assumption
E[A(t)] = 0.(t), heavily used in the derivations, we plot in Fig. 4
the curves for E[#(t)] and 6,(t) for the mixtures using the LMS
and RLS updates under the setup of Fig. 2. We observe that the
assumption is rather accurate in the initial phase of the transient
and gets better as the data length increases.

As the last set of experiments, we apply the affinely constrained mix-
ture to combine outputs of three constituent filters. Here, J,2L =1, the
input regressor u(t) is i.i.d. with variance equal to 1 for each entry and
the norm of w, is scaled to yield SNR = 0dB. In Fig. 5, we plot
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Fig. 4. E[6(t)] and 6,(t). The curves for E[6(t)] (and 1 — E[8(t)])
are plotted for mixtures using the LMS and RLS updates.
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Fig. 5. System identification. Learning rate for the first LMS filter, i.e.,
“Ims 17, is gy = 0.04, for the second LMF filter, i.e., “Imf 27, is
p2 = 0.002, for the third LMS filter, i.e., “Ims 37, is pz = 0.0025,
and for the adaptive combination using the LMS update, i.e., “a-lms”, is
1+ = 0.06. The theoretically derived MSE of the mixtures are also plotted.

the MSE curves corresponding to a linear filter using the LMS update
with p1; = 0.04, labeled “Ims 17, a linear filter using the LMF update
with py = 0.002, labeled “Imf 2”, a linear filter using the LMS update
with 3 = 0.0025, labeled “Ims 3”, affine mixture using the LMS up-
date 1+ = 0.06, labeled “a-lms’, theoretically derived curve based on
the state space representation from (10), labeled “a-lms-theo-1" and
theoretically derived curve based on(11) “a-lms-theo-2”. Note that the
learning rates of the constituent filters are selected such that the first
filter converges quickly with a relatively high final MSE, the third filter
converges slowly with the lowest final MSE and the second filter yields
a MSE curve in between. As in the previous examples, we observe that
the agreement between the simulations and theory gets better as the
data length grows for these trials.

V. CONCLUSION

In this correspondence, we perform a transient analysis of an affinely
constrained mixture method that adaptively combines the outputs of
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two adaptive linear filters of the same length running in parallel to
model a linear system. The analysis is generic with respect to how the
constituent filters are trained as long as they perform unbiased estima-
tion of the underlying linear model. We also demonstrate how this anal-
ysis can be generalized to mixtures having more than two constituent
filters under affine constraints or unconstrained configurations, using
Newton based updates to train the mixture weights or working on com-
plex valued data. We observe a close agreement with the theory and our
simulations.
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