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We investigate channel equalization problem for time-varying flat fading channels under bounded
channel uncertainties. We analyze three robust methods to estimate an unknown signal transmitted
through a time-varying flat fading channel. These methods are based on minimizing certain mean-
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the channel equalization problems for each method and for both zero mean and nonzero mean signals.
We illustrate the performances of the equalization methods through simulations.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we study channel equalization problem for
time-varying flat (frequency-nonselective) fading channels under
bounded channel uncertainties [1–7]. In this widely studied frame-
work, an unknown desired signal is transmitted through a discrete-
time time-varying channel and corrupted by additive noise where
the mean and variance of the desired signal is assumed to be
known. Although the underlying channel impulse response is not
known exactly, an estimate and an uncertainty bound on it are
given [4–6]. Here, we investigate three different channel equal-
ization frameworks that are based on minimizing certain mean-
square error criteria. These channel equalization frameworks incor-
porate the channel uncertainties into their problem formulations
to provide robust solutions to the channel equalization problem
instead of directly using the inaccurate channel information that is
available to equalize the channel. Based on these frameworks, we
analyze three robust methods to equalize time-varying flat fading
channels. The first approach we investigate is the affine minimax
equalization method [5,8,9], which minimizes the estimation er-
ror for the worst case channel perturbation. The second approach
we study is the affine minimin equalization method [6,10], which
minimizes the estimation error for the most favorable perturba-
tion. The third approach is the affine minimax regret equalization
method [4,5,11,7], which minimizes a certain “regret” as defined
in Section 2 and further detailed in Section 3. We provide closed-
form solutions to the affine minimax equalization, the minimin
equalization and the minimax regret equalization problems for
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both zero mean and nonzero mean signals. Note that the nonzero
mean signals frequently appear in iterative equalization applica-
tions [11,12] and equalization with these signals under channel
uncertainties is particularly important and challenging.

When there are uncertainties in the channel coefficients, one of
the prevalent approaches to find a robust solution to the equaliza-
tion problem is the minimax equalization method [9,5,8]. In this
approach, affine equalizer coefficients are chosen to minimize the
MSE with respect to the worst possible channel in the uncertainty
bounds. We emphasize that although the minimax equalization
framework has been introduced in the context of statistical sig-
nal processing literature [9,5,8], our analysis significantly differs
since we provide a closed-form solution to the minimax equal-
ization problem for time-varying flat fading channels. In [5], the
uncertainty is in the noise covariance matrix and the channel co-
efficients are assumed to be perfectly known. Furthermore, note
that in [8], the minimax estimator is formulated as a solution to
a semidefinite programming (SDP) problem, unlike in here. In this
paper, the uncertainty is in the channel impulse response and we
provide an explicit solution to the minimax channel equalization
problem.

Although the minimax equalization method is able to minimize
the estimation error for the worst case channel perturbation, how-
ever, it usually provides unsatisfactory results on the average [6].
An alternative approach to the channel equalization problem is
the minimin equalization method [6,10]. In this approach, equal-
izer parameters are selected to minimize the MSE with respect to
the most favorable channel over the set of allowed perturbations.
Although the minimin approach has been studied in the literature
[6,10], however, we emphasize that to the best of our knowledge,
this is the first closed-form solution to the minimin channel equal-
ization problem for time-varying flat fading channels.
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The minimin approach is highly optimistic, which could yield
unsatisfactory results, when the difference between the underlying
channel impulse response and the most favorable channel impulse
response is relatively high [6]. In order to preserve robustness and
counterbalance the conservative nature of the minimax approach,
the minimax regret approaches have been introduced in the signal
processing literature [4,13,7]. In this approach, a relative perfor-
mance measure, i.e., “regret”, is defined as the difference between
the MSE of an affine equalizer and the MSE of the affine minimum
MSE (MMSE) equalizer [7]. The minimax regret channel equalizer
seeks an equalizer that minimizes this regret with respect to the
worst possible channel in the uncertainty region. Although this ap-
proach has been investigated before, the minimax regret estimator
is formulated as a solution to an SDP problem [4], unlike here. In
this paper, we explicitly provide the equalizer coefficients and the
estimate of the desired signal.

Our main contributions are as follows. We first formulate the
affine equalization problem for time-varying flat fading channels
under bounded channel uncertainties. We then investigate three
robust approaches; affine minimax equalization, affine minimin
equalization, and affine minimax regret equalization for both zero
mean and nonzero mean signals. The equalizer coefficients, and
hence, the MSE of each methods have been explicitly provided, un-
like in [4,5,8,6,7].

The paper is organized as follows. In Section 2, the basic trans-
mission system is described, along with the notation used in this
paper. We present the affine equalization approaches in Section 3.
First, we study the affine minimax equalization tuned to the worst
possible channel filter. We then investigate the minimin approach
and the minimax regret approach, and provide the explicit solu-
tions to the corresponding optimization problems. In addition, we
present and compare the MSE performances of all robust affine
equalization methods in Section 4. Finally, we conclude the paper
with certain remarks in Section 5.

2. System description

In this section, we provide the basic description of the system
studied in this paper. Here, the signal xt is transmitted through a
discrete-time time-varying channel with a channel coefficient ht ,
where xt is unknown and random with known mean xt � E[xt]
and variance σ 2

x � E[(xt − xt)
2]. The received signal yt is given by

yt = xtht + nt, (1)

where the observation noise nt is independent and identically dis-
tributed (i.i.d.) with zero mean and variance σ 2

n and independent
from xt . We consider a time-varying flat fading channel, where the
bandwidth of the transmitted signal xt is much smaller than the
channel bandwidth so that the multipath channel simply scales the
transmitted signal [14,15]. However, instead of the true channel
coefficient, an estimate of ht is provided as h̃t , where δht � h̃t − ht
is the uncertainty in the channel coefficient and is modeled by
|ht − h̃t | = |δht | � ε , ε > 0, ε < ∞, where ε or a bound on ε is
known.

We then use the received signal yt to estimate the transmitted
signal xt as shown in Fig. 1. The estimate of the desired signal is
given by
x̂t = wt yt + lt

= wt(xtht + nt) + lt, (2)

where wt is the equalizer coefficient. We note that in (2), the
equalizer is “affine” where there is a bias term lt since the trans-
mitted signal xt , and consequently the received signal yt , are not
necessarily zero mean and the mean sequence ȳt � E[yt] is not
known due to uncertainty in the channel.

Even under the channel uncertainties, the equalizer coefficient
wt and the bias term lt can be simply optimized to minimize the
MSE for the channel that is tuned to the estimate h̃t , which is also
known as the MMSE estimator [16]. The corresponding equalizer
coefficient and the bias term are given by [17,11]

{w0,t, l0,t} = arg min
w,l

E
[(

xt − w(h̃t xt + nt) − l
)2]

. (3)

However, the estimate

x̂0,t � w0,t yt + l0,t

may not perform well when the error in the estimate of the chan-
nel coefficient is relatively high [18,4,5]. One alternative approach
to find a robust solution to this problem is to minimize a worst
case MSE, which is known as the minimax criterion, as

{w1,t, l1,t}
= arg min

w,l
max

|δht |�ε
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

, (4)

where w1,t and l1,t minimize the worst case error in the un-
certainty region [8,16]. However, this approach may yield highly
conservative results, since the estimate

x̂1,t � w1,t yt + l1,t

is formed by using the equalizer coefficient w1,t and the bias term
l1,t that minimize the worst case error, i.e., the error under the
worst possible channel coefficient [6,4,5]. Instead of this conser-
vative approach, another useful method to estimate the desired
signal is the minimin approach, where the equalizer coefficient and
the bias term are given by

{w2,t, l2,t}
= arg min

w,l
min

|δht |�ε
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

, (5)

where w2,t and l2,t minimize the MSE in the most favorable case,
i.e., the MSE under the best possible channel coefficient [6]. The
estimate of the transmitted signal xt is given by

x̂2,t � w2,t yt + l2,t .

A major drawback of the minimin approach is that it is a highly
optimistic technique, which could yield unsatisfactory results,
when the difference between the actual and the best channel co-
efficients is relatively high [6].

In order to reduce the conservative characteristic of the min-
imax approach as well as to maintain robustness, the minimax
regret approach is introduced, which provides a trade-off between
Fig. 1. A basic affine equalizer framework.
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performance and robustness [4,11,7]. In this approach, the equal-
izer coefficient and the bias term are chosen in order to minimize
the worst-case “regret”, where the regret for not using the MMSE
is defined as the difference between the MSE of the estimator and
the MSE of the MMSE, i.e.,

{w3,t, lt,3} = arg min
w,l

max
|δht |�ε

{
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

− min
w,l

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]}

. (6)

The corresponding estimate of the desired signal xt is given by

x̂3,t � w3,t yt + l3,t .

In the next section, we investigate and provide closed-form so-
lutions for the three equalization formulations:

• affine minimax equalization framework,
• affine minimin equalization framework,
• affine minimax regret equalization framework.

We first solve the corresponding optimization problems and obtain
the estimates of the desired signal. We next compare their mean-
square error performances in Section 4.

3. Equalization frameworks

3.1. Affine MMSE equalization

In this section, we present the affine MMSE equalization frame-
work for completeness [11,16]. Since the channel coefficient ht is
not accurately known but estimated by h̃t , a linear equalizer that
is matched to the estimate h̃t and minimizes the MSE can be used
to estimate the transmitted signal xt . The corresponding equalizer
coefficient w0,t and the bias term l0,t are given by (3).

We define H(w, l) = E[(xt − w(h̃t xt + nt) − l)2]. Note that
H(w, l) is a quadratic function of the variables w and l where the
coefficients of the terms w2 and l2 are positive. Hence, H(w, l) is
a convex function of w and l. It follows that it has a global mini-
mizer (w∗, l∗), where w∗ and l∗ satisfy

∂ H

∂ w

∣∣∣∣
w=w∗

= 0,
∂ H

∂l

∣∣∣∣
l=l∗

= 0. (7)

Solving (7), we get

w0,t = h̃tσ
2
x

h̃2
t σ

2
x + σ 2

n

, l0,t = xtσ
2
n

h̃2
t σ

2
x + σ 2

n

.

3.2. Affine equalization using a minimax framework

In this section, we investigate a robust estimation framework
based on a minimax criteria [16,19,10]. We find the equalizer co-
efficient w1,t and the bias term l1,t that solve the optimization
problem (4).

In (4), we seek to find an equalizer coefficient w1,t and a bias
term l1,t that perform best in the worst possible scenario. This
framework can be perceived as a two-player game problem, where
one player tries to pick w1,t and l1,t pair that minimize the MSE
for a given channel uncertainty while the opponent pick δht to
maximize MSE for this pair. In this sense, this problem is con-
strained since there is a limit on how large the channel uncertainty
δht can be, i.e., |δht | � ε where ε or a bound on ε is known.

In the following theorem we present a closed-form solution to
the optimization problem (4).
Theorem 1. Let xt , yt and nt represent the transmitted, received and
noise signals such that yt = ht xt + nt , where ht is the unknown channel
coefficient and nt is i.i.d. zero mean with variance σ 2

n . At each time t,

given an estimate h̃t of ht satisfying |ht − h̃t | � ε , the solution to the
optimization problem (4) is given by

w1,t =

⎧⎪⎨
⎪⎩

(h̃t−ε)σ 2
x

(h̃t−ε)2σ 2
x +σ 2

n
: h̃tεσ

2
x < ε2σ 2

x + σ 2
n ,

σ 2
x

x2
t h̃t

: h̃tεσ
2
x � ε2σ 2

x + σ 2
n

and

l1,t =
⎧⎨
⎩

xtσ
2
n

(h̃t−ε)2σ 2
x +σ 2

n
: h̃tεσ

2
x < ε2σ 2

x + σ 2
n ,

xt : h̃tεσ
2
x � ε2σ 2

x + σ 2
n ,

where xt � E[xt] and σ 2
x � E[(xt − xt)

2] are the mean and variance of
the transmitted signal xt , respectively.

Proof. Here, we find the equalizer coefficient w1,t and the bias
term l1,t that solve the optimization problem in (4). To accomplish
this, we first solve the inner maximization problem and find the
maximizer channel uncertainty δh∗

t . We then substitute δh∗
t in (4)

and solve the outer minimization problem to find w1,t and l1,t .
We solve the inner maximization problem as follows. We ob-

serve that the cost function in (4) can be written as

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

= w2�h2
t x2

t + 2w�ht
(
lxt − x2

t

) + C1, (8)

where x2
t � E[x2

t ], �ht � h̃t + δht and C1 = x2
t + w2σ 2

n + l2 − 2lxt

does not depend on δht . If we define a = x2
t > 0, b = lxt − x2

t , u =
w�ht and C2 = C1 − b2

a , then (8) can be written as

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2] = a

(
u + b

a

)2

+ C2,

where C2 is independent of δht . Hence the inner maximization
problem in (4) can be written as

δh∗
t = arg max

|δht |�ε
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

= arg max
|δht |�ε

a

(
u + b

a

)2

= arg max
|δht |�ε

∣∣∣∣u + b

a

∣∣∣∣ = arg max
|δht |�ε

∣∣∣∣wδht + lxt − x2
t

x2
t

∣∣∣∣

= arg max
|δht |�ε

|w|
∣∣∣∣δht + lxt − x2

t

wx2
t

∣∣∣∣. (9)

If we apply the triangular inequality to the second term in (9),
then we get the following upper bound:

|w|
∣∣∣∣�ht + lxt − x2

t

wx2
t

∣∣∣∣ � |w|
[
|δht | +

∣∣∣∣h̃t + lxt − x2
t

wx2
t

∣∣∣∣
]

� |w|
[
ε +

∣∣∣∣h̃t + lxt − x2
t

wx2
t

∣∣∣∣
]
,

where the upper bound is achieved at δh∗
t = ε sgn

(
h̃t + lxt−x2

t

wx2
t

)
,

where sgn(z) = 1 if z � 0 and sgn(z) = −1 if z < 0. Hence it fol-
lows that
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δh∗
t = arg max

|δht |�ε
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

=

⎧⎪⎪⎨
⎪⎪⎩

ε: h̃t + lxt−x2
t

wx2
t

� 0,

−ε: h̃t + lxt−x2
t

wx2
t

� 0.

(10)

Note that if h̃t + lxt−x2
t

wx2
t

= 0, then δh∗
t = ε and δh∗

t = −ε yields the

same result.
We next solve the outer minimization problem as follows. We

first note that the minimum in (4) is taken over all w ∈ R and
l ∈ R. If we write u = [w, l]T ∈ R

2 in a vector form, define U =
{u = [w, l]T ∈ R

2 | h̃t + lxt−x2
t

wx2
t

� 0} and V � {u = [w, l]T ∈ R
2 |

h̃t + lxt−x2
t

wx2
t

� 0}, then it follows that U ∪ V = R
2. Hence, the cost

function in the outer minimization problem in (4) is given by

max
|δht |�ε

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

=
{

E[(xt − w((h̃t + ε)xt + nt) − l)2]: [w, l]T ∈ U,

E[(xt − w((h̃t − ε)xt + nt) − l)2]: [w, l]T ∈ V.

We first substitute δht = ε and find the corresponding {w, l} pair
that minimizes the objective function in (4) to check whether
[w, l] ∈ U . We next substitute δht = −ε and find the corresponding
{w, l} to check whether [w, l] ∈ V . Based on these criteria, we ob-
tain the corresponding equalizer coefficient and the bias term pair
{w1,t, l1,t}.

We first substitute δht = ε in the objective function of (4) to
get the following minimization problem:

{
w∗, l∗

} = arg min
w,l

{
x2

t + w2((h̃t + ε)2x2
t + σ 2

n

) + l2

− 2lxt + 2wl(h̃t + ε)xt − 2w(h̃t + ε)x2
t

}
. (11)

We observe that the cost function in (11) is a convex function of
w and l yielding

w∗ = (h̃t + ε)σ 2
x

(h̃t + ε)2σ 2
x + σ 2

n

, l∗ = xtσ
2
n

(h̃t + ε)2σ 2
x + σ 2

n

.

However we have

x2
t − l∗xt

w∗x2
t

= h̃t + ε + σ 2
n

(h̃t + ε)σ 2
x

> h̃t (12)

so that [w∗, l∗]T /∈ U .
We next substitute δht = −ε in the cost function of (4) to get

{
w∗, l∗

} = arg min
w,l

{
x2

t + w2((h̃t − ε)2x2
t + σ 2

n

) + l2 − 2lxt

+ 2wl(h̃t − ε)xt − 2w(h̃t − ε)x2
t

}
. (13)

The cost function in (13) is also a convex function of w and l so
that we get

w∗ = (h̃t − ε)σ 2
x

(h̃t − ε)2σ 2
x + σ 2

n

, l∗ = xtσ
2
n

(h̃t − ε)2σ 2
x + σ 2

n

.

If the condition h̃tεσ
2
x < ε2σ 2

x + σ 2
n holds, then we have

h̃t < h̃t − ε + σ 2
n

˜ 2
<

x2
t − lxt

2
(ht − ε)xt wxt
so that [w∗, l∗]T ∈ V . Thus, the corresponding equalizer coeffi-

cient and the bias term are given by w1,t = (h̃t−ε)σ 2
x

(h̃t−ε)2σ 2
x +σ 2

n
and

l1,t = xtσ
2
n

(h̃t−ε)2σ 2
x +σ 2

n
, respectively. However, if the condition h̃tεσ

2
x <

ε2σ 2
x +σ 2

n does not hold, then it follows that h̃t + lxt−x2
t

wx2
t

= 0, which

implies that

h̃t = − lxt − x2
t

wx2
t

. (14)

From (8), we observe that

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

= w2�h2
t x2

t + 2w�ht
(
lxt − x2

t

) + C1

= w2x2
t

[
�h2

t + 2�ht

(
lxt − x2

t

wx2
t

)]
+ C1

= w2x2
t

[
�h2

t − 2�hth̃t
] + C1 (15)

where (15) follows from (14). If we add and subtract w2x2
t h̃2

t
to (15), then we get

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

= w2x2
t

[
�h2

t − 2�hth̃t + h̃2
t

] − w2x2
t h̃2

t + C1

= w2x2
t δh2

t − w2x2
t h̃2

t + C1. (16)

Here, if we maximize (16) with respect to δht , then it yields that
the maximizer δh∗

t is equal to ε or −ε so that

arg max
|δht |�ε

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

= w2x2
t ε

2 − w2x2
t h̃2

t + C1

= w2x2
t

(
ε2 − h̃2

t

) + x2
t + w2σ 2

n + l2 − 2lxt . (17)

If we take the derivative of (17) with respect to l and equate it to
zero, then it yields

l1,t = xt .

We next substitute l1,t into (14) to get

w1,t = σ 2
x

x2
t h̃t

.

Hence, we have

w1,t =

⎧⎪⎨
⎪⎩

(h̃t−ε)σ 2
x

(h̃t−ε)2σ 2
x +σ 2

n
: h̃tεσ

2
x < ε2σ 2

x + σ 2
n ,

σ 2
x

x2
t h̃t

: h̃tεσ
2
x � ε2σ 2

x + σ 2
n ,

l1,t =
⎧⎨
⎩

xtσ
2
n

(h̃t−ε)2σ 2
x +σ 2

n
: h̃tεσ

2
x < ε2σ 2

x + σ 2
n ,

xt : h̃tεσ
2
x � ε2σ 2

x + σ 2
n .

The proof follows. �
In the following corollary, we provide a special case of Theo-

rem 1, where the desired signal xt is zero mean.

Corollary 1. When the transmitted signal xt is zero mean, the solution
to the optimization problem (4) is given by



1596 M.A. Donmez et al. / Digital Signal Processing 23 (2013) 1592–1601
w1,t =

⎧⎪⎨
⎪⎩

(h̃t−ε)

(h̃t−ε)2+ 1
S

: ε(h̃t − ε) < 1
S ,

1
h̃t

: ε(h̃t − ε)� 1
S ,

l1,t = 0,

where S � σ 2
x /σ 2

n is the signal-to-noise ratio (SNR).

Proof. The proof directly follows from Theorem 1, therefore, is
omitted. �
3.3. Affine equalization using a minimin framework

In this section, we study the minimin equalization framework,
where the inner maximization of the minimax framework is re-
placed with a minimization over the uncertainty set [6,20,10]. We
seek to solve the optimization problem (5).

The following lemma is introduced to demonstrate that min
operators in (5) can be interchanged, which will be used in Theo-
rem 2.

Lemma 1. For an arbitrary function f (x, y, z) and nonempty sets X , Y
and Z , we have

min
x∈X ,y∈Y min

z∈Z f (x, y, z) = min
z∈Z min

x∈X ,y∈X f (x, y, z),

assuming that all minimums are achieved on the corresponding sets.

Proof. The proof is given in the footnote.1

In the following theorem we present a closed-form solution to
the optimization problem (5).

Theorem 2. Let xt , yt and nt represent the transmitted, received and
noise signals such that yt = ht xt + nt , where ht is the unknown channel
coefficient and nt is i.i.d. zero mean with variance σ 2

n . At each time t,

given an estimate h̃t of ht satisfying |ht − h̃t | � ε , the solution to the
optimization problem (5) is given by

w2,t = (h̃t + εsign(h̃t))σ
2
x

(h̃t + εsign(h̃t))2σ 2
x + σ 2

n

and

l2,t = xtσ
2
n

(h̃t + εsign(h̃t))σ
2
x + σ 2

n

,

where xt � E[xt] and σ 2
x � E[(xt − xt)

2] are the mean and variance of
the transmitted signal xt , respectively.

Proof. Here, we find the equalizer coefficient w2,t and the bias
term l2,t that solve the optimization problem in (5). We first note
that, by Lemma 1, we can interchange min operators in (5) so that
the optimization problem in (5) is equivalent to

min
w,l

min
|δht |�ε

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

= min
|δht |�ε

min
w,l

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

. (18)

1 To prove that minx∈X ,y∈Y minz∈Z f (x, y, z) = minz∈Z minx∈X ,y∈X f (x, y, z),
we first show that minx∈X ,y∈Y minz∈Z f (x, y, z) � minz∈Z minx∈X ,y∈X f (x, y, z).
We next show that minx∈X ,y∈Y minz∈Z f (x, y, z) � minz∈Z minx∈X ,y∈X f (x, y, z).
First, we observe that minz∈Z f (x, y, z) � f (x, y, z). Since this is true ∀x ∈ X ,
∀y ∈ Y and ∀z ∈ X , it follows that minz∈Z f (x, y, z) � minx∈X ,y∈Y f (x, y, z)
∀x ∈ X , ∀y ∈ Y and ∀z ∈ X . Therefore, we get that minx∈X ,y∈Y minz∈Z f (x, y, z) �
minx∈X ,y∈Y f (x, y, z) ∀z ∈ Z . Then, it follows that minx∈X ,y∈Y minz∈Z f (x, y, z) �
minz∈Z minx∈X ,y∈X f (x, y, z). Using similar steps, it easily follows that the con-
verse is also true. Hence, the proof follows.
Hence, we first solve the inner minimization problem in (18) and
find the minimizers w∗ and l∗ . We then substitute w∗ and l∗ in
(18) and solve the outer minimization problem to find the min-
imizer δh∗

t , which yields the desired equalizer coefficient w2,t

and l2,t .
We observe that the objective function in (18) can be written

as

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

= x2
t + w2(�h2

t x2
t + σ 2

n

) + l2 − 2lxt + 2wl�ht xt − 2w�ht x2
t ,

where x2
t � E[x2

t ] and �ht � h̃t + δht .
We first solve the inner minimization problem in the right-hand

side of (18) with respect to w and l as follows. We define F (w, l) =
E[(xt − w(�ht xt + nt) − l)2]. Note that F (w, l) is a quadratic func-
tion of the variables w and l with positive leading term coeffi-
cients, i.e., the coefficients of w2 and l2 are positive. Hence, it is
a convex function of the variables w and l, which implies that it
has a global minimum point (w∗, l∗). If we set the first derivatives
of F (w, l) with respect to w and l, then it yields the minimizers
w∗ and l∗ , respectively, i.e., w∗ and l∗ satisfy ∂ F

∂ w |w=w∗ = 0 and
∂ F
∂l |l=l∗ = 0. The corresponding partial derivative of the cost func-

tion F (w, l) with respect to l is given by

∂ F

∂l

∣∣∣∣
l=l∗

= 2l∗ − 2xt + 2w∗�ht xt = 0

so that l∗ = xt − w∗�ht xt . The corresponding partial derivative of
F (w, l) with respect to w is given by

∂ F

∂ w

∣∣∣∣
w=w∗

= 2w∗(�h2
t x2

t + σ 2
n

) + 2l∗�ht xt − 2�ht x2
t = 0,

which implies that w∗ = �ht x2
t −l∗�ht xt

�h2
t x2

t +σ 2
n

. Thus, we get that

w∗ = �htσ
2
x

�h2
t σ

2
x + σ 2

n
,

l∗ = xtσ
2
n

�h2
t σ

2
x + σ 2

n

for a given δht .
We next solve the outer minimization problem. If we substitute

w∗ and l∗ in F (w, l), then we obtain

δh∗
t = arg min

|δht |�ε
min
w,l

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

= arg min
|δht |�ε

F
(

w∗, l∗
)

= arg min
|δht |�ε

σ 2
n σ 2

x

(h̃t + δht)2σ 2
x + σ 2

n

= arg max
|δht |�ε

|h̃t + δht | (19)

so that δh∗
t = εsign(h̃t). Hence, the equalizer coefficient w2,t and

the bias term l2,t are given by

w2,t = (h̃t + εsign(h̃t))σ
2
x

(h̃t + εsign(h̃t))2σ 2
x + σ 2

n

,

l2,t = xtσ
2
n

(h̃t + εsign(h̃t))σ
2
x + σ 2

n

.

Hence, the proof follows. �
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In the following corollary, we provide a special case of Theo-
rem 1, where the desired signal xt is zero mean.

Corollary 2. When the transmitted signal xt is zero mean, the solution
to the optimization problem (5) is given by

w2,t = (h̃t + εsign(h̃t))

(h̃t + εsign(h̃t))2 + 1
S

and

l2,t = 0,

where S � σ 2
x /σ 2

n is the SNR.

Proof. The proof follows from Theorem 2 when xt = 0. �
3.4. Affine equalization using a minimax regret framework

In this section, we investigate the minimax regret equalization
framework, where the performance of an affine equalizer is de-
fined with respect to the MMSE affine equalizer that is tuned to
the unknown channel [4,7,11,16]. We emphasize that the minimax
equalization framework investigated in Section 3.2 may produce
highly conservative results since the equalizer coefficient w and
the bias term l are optimized to minimize the worst case MSE [16].
Moreover, the minimin equalization framework introduced in Sec-
tion 3.3 is a highly optimistic method where the equalizer param-
eters are optimized to minimize the MSE that corresponds to the
most favorable channel [6]. Thus, the minimin approach may also
yield unsatisfactory results in certain applications, where the chan-
nel estimate is highly erroneous [6]. In this context, the minimax
regret equalization framework can be used to improve the equal-
ization performance while preserving the robustness [4,7]. In this
approach, we find the equalizer coefficient w3,t and the bias term
l3,t that solve the optimization problem (6).

We note that from Section 3.3, the solution to the minimization
problem in the objective function is given by

min
w,l

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2] = σ 2

n σ 2
x

(h̃t + δht)2σ 2
x + σ 2

n

,

where σ 2
x � E[(xt − xt)

2] is the variance of the transmitted sig-
nal xt . Hence the optimization problem in (6) is equivalent to

arg min
w,l

max
|δht |�ε

{
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

− min
w,l

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]}

= arg min
w,l

max
|δht |�ε

{
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

− σ 2
n σ 2

x

(h̃t + δht)2 + σ 2
n

}
. (20)

We first expand the term

σ 2
n σ 2

x

(h̃t + δht)2σ 2
x + σ 2

n

in (20) around δht = 0 yielding

σ 2
n σ 2

x

(h̃t + δht)2 + σ 2
n

≈ σ 2
n σ 2

x

h̃2
t + σ 2

n

− δht
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2
.

Hence, instead of (6), we solve the following optimization problem:
{w3,t, l3,t} = arg min
w,l

max
|δht |�ε

{
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

− σ 2
n σ 2

x

h̃2
t + σ 2

n

+ δht
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2

}
, (21)

which provides satisfactory results even under large derivations δht
as shown in the Simulations section.

In the following theorem we present a closed-form solution to
the optimization problem (21).

Theorem 3. Let xt , yt and nt represent the transmitted, received and
noise signals such that yt = ht xt + nt , where ht is the unknown channel
coefficient and nt is i.i.d. zero mean with variance σ 2

n . At each time t,

given an estimate h̃t of ht satisfying |ht − h̃t | � ε , the solution to the
optimization problem (21) is given by

[w3,t, l3,t] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[w∗
1, l∗1]: f � 0, g � 0,

[w∗
2, l∗2]: f � 0, g � 0,

[w∗
3, l∗3]: f � 0, g � 0,

[w∗
4, l∗4]: f < 0, g > 0,

where

[
w∗

1, l∗1
] =

[
(h̃t + ε)σ 2

x

(h̃t + ε)2σ 2
x + σ 2

n

,
xtσ

2
n

(h̃t + ε)2σ 2
x + σ 2

n

]
,

[
w∗

2, l∗2
] =

[
(h̃t − ε)σ 2

x

(h̃t − ε)2σ 2
x + σ 2

n

,
xtσ

2
n

(h̃t − ε)2σ 2
x + σ 2

n

]
,

[
w∗

3, l∗3
] = arg min

[w,l]∈{[w∗
1,l∗1],[w∗

2,l∗2]}

×
{

max
|δht |�ε

{
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

− σ 2
n σ 2

x

h̃2
t + σ 2

n

+ δht
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2

}}
,

[
w∗

4, l∗4
] = arg min

[w,l]

{
E
[(

xt − w(h̃t xt + nt) − l
)2] − σ 2

n σ 2
x

h̃2
t + σ 2

n

}
,

f �−ε − xt
2σ 2

n

(h̃t + ε)2σ 2
x + σ 2

n

− σ 2
n

(h̃t + ε)σ 2
x

+ h̃tσ
2
n

(h̃t + ε)2

(
(h̃t + ε)2σ 2

x + σ 2
n

h̃2
t σ

2
x + σ 2

n

)2

,

g � ε − xt
2σ 2

n

(h̃t − ε)2σ 2
x + σ 2

n

− σ 2
n

(h̃t − ε)σ 2
x

+ h̃tσ
2
n

(h̃t − ε)2

(
(h̃t − ε)2σ 2

x + σ 2
n

h̃2
t σ

2
x + σ 2

n

)2

.

Here, xt � E[xt] and σ 2
x � E[(xt − xt)

2] are the mean and variance of
the transmitted signal xt , respectively.

Proof. We first observe that the objective function in (20) can be
written as

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2] − σ 2

n σ 2
x

h̃2
t + σ 2

n

+ δht
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2

= w2�h2
t x2

t + �ht

(
2wlxt − 2wx2

t + 2h̃tσ
2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2

)

+ D1, (22)
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where x2
t � E[x2

t ], �ht � h̃t + δht , D1 � x2
t + w2σ 2

n + l2 − 2lxt −
σ 2

n σ 2
x

h̃2
t +σ 2

n
− h̃t

2h̃tσ
2
n σ 4

x

(h̃2
t σ 2

x +σ 2
n )2

is independent of δht . If we define a =
w2x2

t � 0, b � 2wlxt − 2wx2
t + 2h̃tσ

2
n σ 4

x

(h̃2
t σ 2

x +σ 2
n )2

and D2 = D1 − b2

4a , then

(22) can be written as

E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2] − σ 2

n σ 2
x

h̃2
t + σ 2

n

+ δht
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2
= a

(
u + b

2a

)2

+ D2,

where D2 is independent of δht . Hence, the inner maximization
problem in (21) is given by

δh∗
t = arg max

|δht |�ε

{
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

− σ 2
n σ 2

x

h̃2
t + σ 2

n

+ δht
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2

}

= arg max
|δht |�ε

∣∣∣∣δht + h̃t + lxt

wx2
t

− 1

w
+ h̃tσ

2
n σ 4

x

w2x2
t (h̃2

t σ
2
x + σ 2

n )2

∣∣∣∣.
(23)

By applying the triangular inequality to the cost function in (23),
we get the following upper bound:

∣∣∣∣δht + h̃t + lxt

wx2
t

− 1

w
+ h̃tσ

2
n σ 4

x

w2x2
t (h̃2

t σ
2
x + σ 2

n )2

∣∣∣∣

� |δht | +
∣∣∣∣h̃t + lxt

wx2
t

− 1

w
+ h̃tσ

2
n σ 4

x

w2x2
t (h̃2

t σ
2
x + σ 2

n )2

∣∣∣∣

� ε +
∣∣∣∣h̃t + lxt

wx2
t

− 1

w
+ h̃tσ

2
n σ 4

x

w2x2
t (h̃2

t σ
2
x + σ 2

n )2

∣∣∣∣,

where the upper bound is achieved at δh∗
t = εsgn(h̃t + lxt

wx2
t

− 1
w +

h̃tσ
2
n σ 4

x

w2x2
t (h̃2

t σ 2
x +σ 2

n )2
). Hence it follows that

δh∗
t = arg max

|δht |�ε

{
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

− σ 2
n σ 2

x

h̃2
t + σ 2

n

+ δht
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2

}

=

⎧⎪⎪⎨
⎪⎪⎩

ε: h̃t + lxt

wx2
t

− 1
w + h̃tσ

2
n σ 4

x

w2x2
t (h̃2

t σ
2
x +σ 2

n )2
� 0,

−ε: h̃t + lxt

wx2
t

− 1
w + h̃tσ

2
n σ 4

x

w2x2
t (h̃2

t σ
2
x +σ 2

n )2
< 0.

(24)

We next solve the outer minimization problem as follows. If
we write u = [w, l]T ∈ R

2 and define M = {u = [w, l]T ∈ R
2 |

h̃t + lxt

wx2
t

− 1
w + h̃tσ

2
n σ 4

x

w2x2
t (h̃2

t σ 2
x +σ 2

n )2
� 0}, then it follows that N � {u =

[w, l]T ∈ R
2 | h̃t + lxt

wx2
t

− 1
w + h̃tσ

2
n σ 4

x

w2x2
t (h̃2

t σ 2
x +σ 2

n )2
< 0} = R

2 \ M, i.e.,

M ∪ N = R
2 and M ∩ N = ∅. Hence, the cost function in the

outer minimization problem in (21) is given by

max
|δht |�ε

{
E
[(

xt − w
(
(h̃t + δht)xt + nt

) − l
)2]

− σ 2
n σ 2

x

˜2 2
+ δht

2h̃tσ
2
n σ 4

x

˜2 2 2 2

}

ht + σn (ht σx + σn )
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
E[(xt − w((h̃t + ε)xt + nt) − l)2] − σ 2

n σ 2
x

h̃2
t +σ 2

n

+ ε
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x +σ 2

n )2

}: [w, l]T ∈ M,

{
E[(xt − w((h̃t − ε)xt + nt) − l)2] − σ 2

n σ 2
x

h̃2
t +σ 2

n
,

− ε
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x +σ 2

n )2

}: [w, l]T ∈ N .

We first substitute δht = ε and find the corresponding {w, l} pair
that minimizes the objective function in (21) to check whether
[w, l] ∈ M. We next substitute δht = −ε and find the correspond-
ing {w, l} to check whether [w, l] ∈N . Based on these criteria, we
obtain the corresponding equalizer coefficient and the bias term
pair {w3,t, l3,t}.

We first substitute δht = ε in the cost function in (21) to get
the following minimization problem:

{
w∗

1, l∗1
} = arg min

w,l

{
x2

t + w2(h̃t + ε)2x2
t + w2σ 2

n + l2

− 2w(h̃t + ε)x2
t − 2xtl − 2xt w(h̃t + ε)l

− σ 2
n σ 2

x

h̃2
t + σ 2

n

+ ε
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2

}
. (25)

Since the cost function in (25) is a convex function of w and l, we
get that

w∗
1 = (h̃t + ε)σ 2

x

(h̃t + ε)2σ 2
x + σ 2

n

, l∗1 = xtσ
2
n

(h̃t + ε)2σ 2
x + σ 2

n

.

We observe that [w∗
1, l∗1] ∈M if and only if

f �−ε − xt
2σ 2

n

(h̃t + ε)2σ 2
x + σ 2

n

− σ 2
n

(h̃t + ε)σ 2
x

+ h̃tσ
2
n

(h̃t + ε)2

(
(h̃t + ε)2σ 2

x + σ 2
n

h̃2
t σ

2
x + σ 2

n

)2

� 0.

We next substitute δht = −ε in the cost function in (21) to get
the following minimization problem:

{
w∗

2, l∗2
} = arg min

w,l

{
x2

t + w2(h̃t − ε)2x2
t + w2σ 2

n + l2

− 2w(h̃t − ε)x2
t − 2xtl − 2xt w(h̃t − ε)l

− σ 2
n σ 2

x

h̃2
t + σ 2

n

− ε
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2

}
. (26)

Since the cost function in (26) is a convex function of w and l, we
get that

w∗
2 = (h̃t − ε)σ 2

x

(h̃t − ε)2σ 2
x + σ 2

n

, l∗2 = xtσ
2
n

(h̃t − ε)2σ 2
x + σ 2

n

.

Note that [w∗
2, l∗2] ∈N if and only if

g � ε − xt
2σ 2

n

(h̃t − ε)2σ 2
x + σ 2

n

− σ 2
n

(h̃t − ε)σ 2
x

+ h̃tσ
2
n

(h̃t − ε)2

(
(h̃t − ε)2σ 2

x + σ 2
n

h̃2
t σ

2
x + σ 2

n

)2

� 0.

There are four cases depending on the values of h̃t , ε , xt , x2
t ,

σ 2
n :
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Fig. 2. Sorted MSEs for the minimax, minimin and minimax regret equalization methods over 200 trials when ε = 0.3.
• Case 1: f � 0 and g � 0.
In this case, we have

w3,t = (h̃t + ε)σ 2
x

(h̃t + ε)2σ 2
x + σ 2

n

and

l3,t = xtσ
2
n

(h̃t + ε)2σ 2
x + σ 2

n

since [w∗
1, l∗1] ∈M and [w∗

2, l∗2] /∈N .
• Case 2: f � 0 and g � 0.

In this case, we have

w3,t = (h̃t − ε)σ 2
x

(h̃t − ε)2σ 2
x + σ 2

n

and

l3,t = xtσ
2
n

(h̃t − ε)2σ 2
x + σ 2

n

since [w∗
1, l∗1] /∈M and [w∗

2, l∗2] ∈N .
• Case 3: f � 0 and g � 0.

In this case, we have [w∗
1, l∗1] ∈M and [w∗

2, l∗2] ∈N so that

[w3,t, l3,t] = arg min
[w,l]∈{[w∗

1,l∗1],[w∗
2,l∗2]}

{
max

|δht |�ε

{
E
[(

xt

− w
(
(h̃t + δht)xt + nt

) − l
)2]

− σ 2
n σ 2

x

h̃2
t + σ 2

n

+ δht
2h̃tσ

2
n σ 4

x

(h̃2
t σ

2
x + σ 2

n )2

}}
.

• Case 4: f � 0 and g � 0.
In the last case, we have the optimum points on the curve

h̃t + lxt

wx2
t

− 1
w + h̃tσ

2
n σ 4

x

w2x2
t (h̃2

t σ 2
x +σ 2

n )2
= 0. Therefore δh∗

t = 0 and the

corresponding coefficients are given as the solution to the fol-
lowing optimization problem:

[w3,t, l3,t] = arg min
[w,l]

{
E
[(

xt − w(h̃t xt + nt) − l
)2]

− σ 2
n σ 2

x

h̃2
t + σ 2

n

}

subject to

h̃t + lxt

wx2
t

− 1

w
+ h̃tσ

2
n σ 4

x

w2x2
t (h̃2

t σ
2
x + σ 2

n )2
= 0.

Hence, the proof follows. �
4. Simulations

We provide numerical examples in different scenarios in order
to illustrate the performances of the equalization methods. We first
illustrate the performances of the channel equalization methods
for a given perturbation bound. We demonstrate that the minimax
equalization method yields the best worst case MSE performance
among all methods for these simulations since it optimizes the
worst case MSE with respect to the worst case channel coefficient.
We next present the average MSE performance of each method
over different channel perturbations. We show that the minimax
regret method has better average MSE performance than the min-
imax and minimin equalization methods for these simulations.

In the first set of experiments, we randomly generate a trans-
mitted signal xt of length 500 with mean 0.01 and variance 1.
We also generate a Gaussian channel noise nt with zero mean
and unity variance. The channel estimates are constructed using
h̃t = ht +δht , where ht = 1.05 and the perturbation δht is randomly
generated from a zero mean and ε standard deviation Gaussian
distribution and truncated to give |δht | � ε with ε = 0.03 for each
trial. Here, we label the method in Theorem 1 as “Minimax”, the
method in Theorem 2 as “Minimin”, and finally the method in
Theorem 3 as “Minimax regret”. For each method and for each ran-
dom perturbation, we find the corresponding equalizer parameters
wt and lt to calculate the estimates of the transmitted signal xt .
After we calculate the mean-square errors for each method and
for all random perturbations, we plot the corresponding sorted er-
rors in ascending order in Fig. 2 for 200 trials. Since the minimax
equalization method optimizes the worst case MSE with respect
to worst possible perturbation, it yields the smallest worst case
MSE among all methods for these simulations. However, the over-
all performance of the minimax method is significantly inferior to
the minimax regret method due to its highly conservative nature.
Furthermore, we notice that the minimax regret method provides
better average performance compared to the minimax and the
minimin methods and superior worst case performance compared
to the minimin method for these simulations.

For the second experiment, we randomly generate 200 ran-
dom perturbations δht , where |δht | � ε for different perturbation
bounds and compute the averaged MSEs over 200 trials for the
minimax, minimin and the minimax regret methods. In this case,
we randomly generate a transmitted signal xt of length 500 with
zero mean and variance 1. The channel noise nt is generated from a
Gaussian distribution with zero mean and unity variance. Here, we
construct the estimates of the channel coefficient by h̃t = ht + δht ,
where ht = 1.05 and the perturbation δht is randomly generated
from a zero mean and ε standard deviation Gaussian distribution
and truncated to give |δht | � ε . In Fig. 3, we present the aver-
aged MSEs for each method where the perturbation bound varies,



1600 M.A. Donmez et al. / Digital Signal Processing 23 (2013) 1592–1601
Fig. 3. Averaged MSEs for the minimax, minimin and minimax regret equalization methods over 200 trials when ε ∈ [0.1,0.3].
ε ∈ [0.1,0.3]. We observe that the minimax regret method has the
best average MSE performance over different perturbation bounds
compared to the minimax and the minimin equalization methods.

5. Conclusion

In this paper, we investigated the channel equalization prob-
lem for time-varying flat fading channels when the channel coef-
ficient is not accurately known. We analyzed three robust meth-
ods to equalize time-varying flat fading channels that incorporate
the channel uncertainties into the problem formulation. We first
studied the affine minimax channel equalization framework that
optimizes equalizer parameters to minimize the worst case MSE
in the uncertainty region. We next investigated the affine minimin
channel equalization method, which minimizes the MSE for the
most favorable channel coefficient in the perturbation bounds. Fi-
nally, we analyzed the affine minimax regret channel equalization
framework, which minimizes the worst case regret in the uncer-
tainty region. We explicitly provide the equalizer coefficients and
the estimates of the desired signal for each method and for both
zero mean and nonzero signals. We illustrated the performances
of these equalization methods through simulations. We observed
that the minimax approach leads to a better worst case MSE
performances than the minimin and minimax regret approaches
for these simulations. We also presented the average MSE perfor-
mances of the equalization methods over different channel pertur-
bations and showed that the minimax regret equalization method
has the best average MSE performance among all methods for
these simulations.
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