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Abstract—We introduce novel diffusion based adaptive estima-
tion strategies for distributed networks that have significantly less
communication load and achieve comparable performance to the
full information exchange configurations. After local estimates of
the desired data is produced in each node, a single bit of informa-
tion (or a reduced dimensional data vector) is generated using cer-
tain random projections of the local estimates. This newly gener-
ated data is diffused and then used in neighboring nodes to recover
the original full information. We provide the complete state-space
description and the mean stability analysis of our algorithms.

Index Terms—Compressed, diffusion, distributed, single-bit.

I. INTRODUCTION

ISTRIBUTED adaptive estimation utilizes a network of

nodes that observe a monitored phenomena with different
view points. This broadened perspective can be used to enhance
estimation performance or eliminate obstructions in the envi-
ronment, which may not be achieved using a single node [1].
The distributed algorithms usually target to reach the best es-
timate that could be produced when the individual nodes have
access to all observations across the whole network. However,
there is naturally a trade-off between the amount of cooperation
and required communication among the nodes [1], [2].

The diffusion based distributed algorithms define a strategy
in which the nodes from a predefined neighborhood could share
information with each other [1], [2]. Such approaches are stable
against time-varying statistical profiles [1], however, require a
high amount of communication resources. For example, in a net-
work of N nodes, where 2 denotes the average number of nodes
in a neighborhood, then N X 7% number of parameter estimates
should be communicated among nodes on the average at each
time.

In this letter, we propose diffusion based cooperation strategies
that have significantly less communication load (e.g., a single bit
of information exchange) and achieve comparable performance
to the full information exchange configurations under certain set-
tings. In this framework, after local estimates of the desired vector
is produced in each node, a single bit of information (or areduced
dimensional data vector) is generated using certain random pro-
jections of the local estimates. This new information is diffused
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and used in neighboring nodes instead of the original estimates;
significantly reducing the communication load in the network.
We only require synchronization of this randomized projection
operation, which can be achieved using simple pilot signals [3].
Note that our approach differs from quantization based diffusion
strategies such as [4] in terms of the compression of the diffused
information. In [4], a quantized parameter estimate is exchanged
among nodes to avoid infinite precision in the transmission. In
[5], the sign of the innovation sequence in the context of decen-
tralized estimation and in [6], the relative difference between the
states of the nodes in a consensus network are exchanged using
a single bit of information. Here, we substantially compress the
exchanged information, even to a single bit, and perform local
adaptive operations at each node to recover the full information
vector. In this sense, our method is more akin to compressive
sensing rather than to a quantization framework.

Our main contributions include: 1) We propose algorithms
to significantly reduce the amount of communication between
nodes for diffusion based distributed strategies; 2) We analyze
the stability of the algorithms in the mean under certain statis-
tical conditions; 3) We illustrate the comparable convergence
performance of these algorithms in different numerical exam-
ples. We emphasize that although we only provide the mean sta-
bility analysis due to space limitations, the mean-square conver-
gence and tracking analysis are carried out in a similar fashion
(following [1]) in a separate paper submission.

The letter is organized as follows. In Section II, we introduce
the framework and the studied problem. The new approaches
are derived in Section III. In Section IV, we analyze the mean
stability of our approaches. Numerical examples and concluding
remarks are provided in Section V.

II. PROBLEM DESCRIPTION

Consider the widely studied spatially distributed framework
[1], [2]. Here, we have N number of nodes where two nodes
are considered neighbors if they can exchange information. For
anode 1, the set of indexes of its neighbors including the index
of itself is denoted by AN;. At each node, an unknown desired
vector!, w, € IR™, is observed through a linear model d;(¢) =
wlu;(t) + v;(t),2 assuming the observation noise is tempo-
rally and spatially white (or independent), i.e., E[v;(t)v;(1)] =
a26(i — j)6(t — 1), where §( - ) is the Kronecker delta and o2 is

I Although we assume a time invariant desired vector, our derivations can be
readily extended to certain non-stationary models [3].

2We represent vectors (matrices) by bold lower (upper) case letters. For a
matrix A (or a vector @), A7 is the transpose. ||a]| is the Euclidean norm. For
notational simplicity we work with real data and all random variables have zero
mean. The sign of « is denoted by sign(a) (0 is considered positive without loss
of generality). For a vector @, dim(a) denotes the length. The expectation of a
vector or a matrix is denoted with an over-line, i.c., E[a] = @. The diag(A)
returns a new matrix with only the main diagonal of A while diag(e) puts @ on
the main diagonal of the new matrix.
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the variance of the noise. The regression vectors are also as-
sumed to be spatially and temporally uncorrelated with each
other and with the observation noise. At each node an adaptive
estimation algorithm is working such as the LMS algorithm [3]
given as

¢i(t+1) = (I — powi(t)u (£)wi(t) + pidi(t)ui(?),

1: > 0. As the diffusion strategy, we use the adapt-then-com-
bine (ATC) diffusion strategy as an example since it is shown
to outperform the combine-then-adapt diffusion and consensus
strategies under certain conditions [7]. However, our derivations
also cover these distributed strategies. In the ATC strategy, at
each node ¢, the final estimate is constructed as

Z )\L’i¢k 7L+1)

kEN;

'th—i—l

where A; ;s are the combination weights > kEN: Aix =1and
Aik > 0. The combination weights A; ;. can also be adapted
in time, affinely constrained or unconstrained [8]. We stick to
constant-in-time weights with the simplex constraint since the
stabilization effect of such weights is demonstrated in [1].

In the diffusion based distributed networks, whole parameter
estimates are exchanged within the neighborhood. In the next
section, we introduce two different approaches in order to re-
duce the amount of information exchange between nodes.

III. NEW DIFFUSION STRATEGIES

A. Reduced Dimension Diffusion

In the first approach, each node calculates a reduced dimen-
sional vector through a linear transformation z;(t+1) = C(t +
1)¢, (¢t + 1), where dim (zx(¢ + 1)) < dim (¢,(t + 1)),
and transmits zx (7 + 1) instead of ¢, (¢ + 1). We use a ran-
domized linear transformation matrix C(¢ + 1) where the size
of the matrix determines the compression amount. Each neigh-
boring node uses the same C(£+1). After receiving z;(t+1), a
neighbor node 7 constructs an estimate a,(# + 1) of the original
¢, (t + 1) using a minimum disturbance criteria [3] as

a;(t+ 1) = argmin ||a — ar(¢)||
Ct+ Da = zx(t + 1), (1)
IR™. Note that (1) yields the NLMS algorithm

such that

where a(t) €
[3] as
ar(t +1) = ar(t) + oxC(t + DT[C(t + 1) x

Ct+ 1)1 (zx(t + 1) — C(t + Dax (1)), )

where a learning rate o > 0. is also incorporated after (1).

After ar(f + 1)’s are calculated, we construct the final estimate
at node ¢ as

wi(t+1) = A (t+ 1) + Z Aigar(t +1).
kEN\i

3

Remark 1: For a time invariant projection matrix, C(t) =
C, the exchanged estimate a(t) converges to the projection of
the original parameter estimate ¢,,(¢) onto the column space of
the matrix C (provided that adaptation is fast enough). In order
to avoid biased convergence, we choose randomized projection
matrices that span the whole parameter space.

Remark 2: One can also use an ordinary LMS update to
train a(t) to avoid the inversion operation in (2), considering

$.(1+1)

Fig. 1. Single bit diffusion in two dimensions, i.e., w, € IR?. As an example,
one can have ax(t) = @1 orax(t) = a-. ¢, denotes the vector space perpen-
dicular to e{t + 1) in two dimensions and the shaded area represents the update
region for ax(t) = a-.

21 (t + 1) as the desired data and G(# + 1) as the regression ma-
trix. However, since the dimensions of . ( - )’s are much smaller
than the dimension of w,,, €.g., in our simulations we use scalar
zi(+)’s with m = 1, one can use the NLMS update for a;( - )’s
without significant computational increase.

In the following, we further reduce the amount of transmitted
information by diffusing a single bit of information instead of a
scalar.

B. Single Bit Diffusion

In this approach, we exchange only the sign of the linear
transformation z;(t + 1) = e(t + 1)T ¢, (# + 1). According
to the transmitted sign, the neighboring node  can construct an

estimate ax(t + 1) of ¢, (L + 1) as
ap(t+1) =arg majn lla — ax(£)|| such that 4
sign (¢(t +1)Ta) = sign (zx(t + 1)) and ®)
el = L. (©)

To solve (4), we observe from Fig. 1 that we can only have
two different cases for a (). In the first case, we have sign (e(t+
DT ap(t)) = sign(z(t + 1)), e.g., ax(t) = ay in the figure. In
this case, no update is needed, a (t+1) = a. (), since a;(t) sat-
isfies both conditions (5), (6) and || (t+1) —ax(¢)|| = 0. Inthe
second case, we have sign(e(t + 1) ax(t)) # sign(zx(t + 1)),
e.g., ar(t) = a2 in the figure. For this case, i.e., ax(t) = aq,
we only need to project ax(¢) to the half hyper sphere (shown
as a half circle in two dimensions in Fig. 1), which corresponds
to the constraints (5) and (6). This projection can be readily ac-
complished by first projecting a(¢) to the vector space perpen-
dicular to ¢(t + 1) and then scaling the projected vector to have
unit norm. This yields the following

ap(t) —y(t + De(t + Vet + 1)Ta,k(t)
D) = B A+ el + Delr + 1) ax()]
update, where
Al —sign(z(t + 1))sign (e(t + 1) ax (1)) .

t+1
W+ D= 2e(t + Te(t 1 1)
Here, (6) is needed to resolve the inherent amplitude uncer-
tainty in (5) since the diffused sign bit does not carry any ampli-
tude information. Without (6), the amplitude of the constrained
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estimates diminishes to zero by updates. We resolve the ampli-
tude uncertainty in the final combination by multiplying the unit
norm estimate a;, (¢t + 1) with the magnitude of the local param-
eter estimate ¢, (¢ + 1). This scaling with the norm of ¢, (¢ + 1)
results in the rotated parameter estimation in the direction of
a;(t+1). After the construction of the exchange estimates, the
final estimate w; (¢ + 1) is calculated as

wi(t+1) = Aagy(t+ 1) + gt + DIl D Niwar(t +1).
ke N\

Remark 3: Fig. 1 also demonstrates the update procedure for
ai(t) = as. The update is performed if the line, ¢, , perpendic-
ular to ¢(t 4 1) passes through the shaded update region. Oth-
erwise, the exchanged sign provides no new information and is
discarded.

Alternatively, we can also resolve the amplitude uncertainty
by using a sign LMS [3] based approach. In this approach,
at each node, we run an adaptive algorithm considering
c(t + )T, (t + 1) as the desired data and c(t + 1) as
the regression vector. We then diffuse the sign of the error
2t +1) = eult + D2t + DTyt + 1) — et + 1) an(t).
Using the sign algorithm [3], each node & can construct the
exchange estimate as

ar(t +1) = ar(t) + opsign (ze(t+1))e(t+1).  (7)
Assuming ay(t)’s are initialized with the same values at each
node, (7) can be repeated at all neighboring nodes of % to pro-
duce the same a4 (¢). In the next section, we analyze the global
stability of the algorithms in the mean.

IV. STABILITY ANALYSIS

We can write the reduced dimension diffusion (2) and the sign
algorithm inspired diffusion (7) approaches in a compact form
as

¢i(t + 1) = wi(t) + powi(t)ei(t), ®)
ar(t+1) = ar(t) + ore(t + Dhlep(t+1),¢(t + 1))

©)
wi(t +1) = gi(@i(t + 1), ar(t + 1)sk € Nj\d),  (10)

where p1; > 0 and o > 0 are the local learning rates, g;( - ) is
a combination function such as (3) and

ei(t) = di(t) — wi ()T wi(t),
cx(t+1) = e(t+1)7 (gt +1) — ar(t))

are the estimation and projected reconstruction errors. Here,

h(ep(t + 1),¢(t + 1)) is a generic function of (¢t + 1) and
¢(t+1), e.g., for the scalar diffusion case h (e, (t41), c(t+1)) =
(et + D)Te(t + 1)) ter(t + 1).
We define deviations from the parameter of interests as
A¢k(t+1) :w0_¢k(t+l)7 (ll)
Aap(t+1) =¢{t+1) —ar(t +1). (12)

Substituting (12) into (10), we get the final estimate as

= > Aiwdi(t+1) = > AirAag(t+1).

keN; keN\i

w; t+1

(13)
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In the analysis of the mean stability, we make the following
assumptions:

1) The projection signal ¢(¢) (or C(t)) and the regression data
wy,(t) are temporally independent.

2) The a priori construction error ¢z ( - ) and the projection
signal ¢( - ) (or C( - )) are jointly Gaussian. For sufficiently
small step size and long filter length, this assumption is
true [3].

3) The original parameter estimates ¢,( - ) vary slowly rela-
tive to the constructed estimates a;( - ) through the appro-
priate step sizes such that

Aay(t) = ¢i(t) — ap(t) 2 ¢ (t +1) —ar(t) or
Aak(t + 1) = (bk(t + 1) - ak(t + 1) = ¢k( ) - (I.k(t + 1).
We then define the following global variables
[ Ay (1) Aas(t)
AP = | Aa(t) 2|
| Agn(t) Aax(1)
-’ll-l (1’) .. 0 U1 (f)
O N N O
0 c..oUuUN (t) ’l)N(f,)

where the vector dimensions are (m/N x 1) and the matrix di-
mensions are (mN x N).
Using (8), (9), (11), (12), and (13), we get

Ag(t + 1) =(I - DUKU)T)GAP(t)—
(I - DUBUHT)GAa(t) + DU (H)u(t),
(14)
where GéA ® I, is the transition matrix (and ® is the Kro-
necker product), G2G - diag(G), Aé[)\,:,k] is the combination
matrix and Dédiag([/tl, U2y fiN]) @ Iy
The global update for the reconstructed parameters yields
(I - SH(1)Aa(t), (15)

where Sédiag([al, 02,...,0n]) © I, and H(t) is an appro-
priate transition matrix. As an example, for the scalar diffusion

case we have
_ c(t+ De(t + )T
HY)=Tn e <c(t + D)Te(t + 1)) ’

For the single-bit diffusion, A{ey(t + 1),e(t + 1)) =
sign{ex (¢t + 1)) is a nonlinear function of €, (# 4+ 1), hence it is
not straightforward to write (15). Although A(e(#+1), e(t+1))
is nonlinear, it can be linearized using a Taylor series expansion.
However, since we assume joint Gaussianity, by the Price’s
theorem [3], we can write the expectation of the deviation

Aap(t + 1) as [3]
¢ c T
Aag(t+1) = Aay(t) — oy ,\@E[ (;E:;(i —(l—t;;]l) ]

Note that the variance E[ei(t + 1)] is given by E[(c(t +

1)Aa(t))?], and we define F(t + 1) \/\dlag [e2(t +
1),...,€e%(t + 1)]) that leads

Aa(t+1) =

Aﬁ,k(t).

H)=[F(t+1)® L, [In® (Blelt+ et +1)T))].
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Fig. 2. Statistical profile of the example network.

Taking the expectation of both sides of (14) and (15) and by
the first assumption, we get
Ad(t+1)] _ [BG BG Ad(t) (16)
Aa(t+1)| | 0 I—-SH@)||Aal) |’

where B2T — DU)U(¢)T. (16) covers both the reduced di-
mension and single bit diffusion strategies. From (16) we also
observe that our algorithms are stable in the mean if |A(] —
SH)| < 1 (provided that the full diffusion scheme is stable),
where A(-)’s are the eigenvalues. As example, for the scalar
case, assuming ¢ -) are i.i.d. zero mean with unit variance,
then [A(I — SH)| < 1 if and only if |1 — &;| < 1 for all .
Furthermore, the step sizes o; for the reconstruction algorithms
could be chosen accordingly for comparable convergence per-
formance with the full diffusion case. Following examples il-
lustrate these results.

V. NUMERICAL EXAMPLE AND CONCLUDING REMARKS

In this section, we compare the introduced algorithms with
the full diffusion and no-cooperation schemes for the example
network with N = 20 nodes. Here, we have stationary data
di(t) = whu;(t) + vi(t) fori = 1,2,..., N, where u;(¢) and
v;(t) are i.i.d. zero mean and their variances and w,, € R? are
randomly chosen (See Fig. 2).

The combination matrix A = [)\.,;: %] is chosen as

1/max(n;, ng) if ¢ # k arc linked,
AMr=2<0 for 4 and k not linked,
1-— ZkeNi\i Aig fori=k,

where n; and n; denote the number of neighboring nodes for ¢
and % according to the Metropolis rule.

The step sizes for the adaptation algorithms (8) of diffusion
schemes are set such that they converge with the same rate:
0.1 for no-cooperation scheme (i.e., the combination matrix
A = Iy), 0.2 for the single-bit and reduced dimension diffu-
sion strategies, and 0.028 for the full diffusion configuration.
The step sizes o; for the reconstruction algorithms (9) are set
as 0.25, 0.72, 0.36, and 0.18 for the single-bit, one-dimen-
sion, two-dimension, and three-dimension, respectively. The
randomized projection vectors ¢(f) (and matrices C(t)) are
generated i.i.d. zero mean Gaussian with standard deviation 1.
We point out that we set the learning rates for all algorithms
such that the convergence rate of all algorithms are the same
for a fair comparison of the final MSDs.

InFig. 3, we compare the mean-square deviation of various dif-
fusion schemes in terms of their steady state MSDs for the same
convergencerate. As expected, in our simulations, the introduced
algorithms readily outperform the no-cooperation scheme in
terms of the final MSDs. We observe from these simulations
that although we significantly reduce the amount of information

Global Mean-Square Deviation (dB) vs. Time
-5 T T T T T T T T T

No-coop. |
Single Bit
= = =Dim=1 B

MSD in dB

L L L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t

Fig. 3. Global mean-square deviation (MSD) of diffusion and no-cooperation
schemes.

exchange, the introduced algorithms perform similar to the full
information case. To illustrate this further, in Fig. 3, we plot the
performance ofthe reduced-dimension algorithm where we grad-
ually increase the number of dimensions that we kept. We observe
that as the number of dimensions increases, the reduced-dimen-
sion algorithm gradually achieves the performance of the full
information case. Note also that the no-cooperation scheme gives
stable error because the adaptation algorithms converge at all
nodes. If at least one of the nodes diverges, then the performance
of the no-cooperation scheme degrades severely whereas this
does not usually influence the diffusion algorithms.

In this letter we introduce novel diffusion based distributed
adaptive estimation algorithms that significantly reduce the
communication load while providing comparable performance
with the full information exchange approaches in our simula-
tions. We achieve this by exchanging either a scalar or a single
bit of information generated from random projections of the
estimated vectors at each node. Based on these exchanged
information, each node recalculates the estimates generated by
its neighboring nodes (which are then subsequently merged).
We also provide a mean stability analysis of the introduced ap-
proaches for stationary data. This analysis can also be extended
to mean-square and tracking analysis under certain settings.
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