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Universal Piecewise Linear Prediction
Via Context Trees

Suleyman S. Kozat, Andrew C. Singer, Senior Member, IEEE, and Georg Christoph Zeitler

Abstract—This paper considers the problem of piecewise linear
prediction from a competitive algorithm approach. In prior work,
prediction algorithms have been developed that are “universal”
with respect to the class of all linear predictors, such that they per-
form nearly as well, in terms of total squared prediction error, as
the best linear predictor that is able to observe the entire sequence
in advance. In this paper, we introduce the use of a ‘“context tree,
” to compete against a doubly exponential number of piecewise
linear (affine) models. We use the context tree to achieve the total
squared prediction error performance of the best piecewise linear
model that can choose both its partitioning of the regressor space
and its real-valued prediction parameters within each region of the
partition, based on observing the entire sequence in advance, uni-
formly, for every bounded individual sequence. This performance
is achieved with a prediction algorithm whose complexity is only
linear in the depth of the context tree per prediction. Upper bounds
on the regret with respect to the best piecewise linear predictor are
given for both the scalar and higher order case, and lower bounds
on the regret are given for the scalar case. An explicit algorithmic
description and examples demonstrating the performance of the
algorithm are given.

Index Terms—Context tree,
universal.

piecewise linear, prediction,

I. INTRODUCTION

INEAR prediction and linear predictive models have long
been central themes within the signal processing literature
[1]. More recently, nonlinear models, based on piecewise linear
[27] and locally linear [2] approximations, have gained signif-
icant attention as adaptive and Kalman filtering methods also
turn to methods such as extended Kalman and particle filtering
[3] to capture the salient characteristics of many physical phe-
nomena. In this paper, we address the problem of sequential pre-
diction and focus our attention on the class of piecewise linear
(affine) models. We adopt the nomenclature of the signal pro-
cessing literature, and use the term “piecewise linear” to refer
generally to affine models rather than strictly linear models.
We formulate the prediction problem in a manner similar
to that used in machine learning [4]-[6], adaptive signal pro-
cessing [7], [13], and information theory [14], to describe “uni-
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versal” prediction algorithms, in that they sequentially achieve
the performance of the best model from a broad class of models,
for every bounded sequence and for a variety of loss functions.
These algorithms are sequential such that they may use only
the past information, i.e., z[1],...,z[t — 1], to predict the next
sample z[t]. By treating the prediction problem in this context,
algorithms are sought which are competitive-optimal with re-
spect to a given class of prediction algorithms, in that they can
perform nearly as well, for each and every possible input, as the
best predictor that could have been chosen from the competition
class, even when this “best predictor” is selected only after ob-
serving the entire sequence to be predicted, i.e., noncausally.

Finite and parametrically continuous linear model classes
have been considered, where sequential algorithms that achieve
the performance of the best linear model, tuned to the under-
lying sequence, have been constructed. Competition against
linear models is investigated both in prediction and in regres-
sion in [4], [7]. However, the structural constraint on linearity
considerably limits the potential modeling power of the un-
derlying class, and may be inappropriate for a variety of data
exhibiting saturation effects, threshold phenomena, or other
nonlinear behavior. As such, the achievable performance of
the best linear model may not be a desirable goal in certain
scenarios.

In the most general extension of linear models, the prediction
is given by an arbitrary nonlinear function, i.e., the prediction
of z[t] is given by f(x[t—1],...,z[1]) for some arbitrary func-
tion f. However, without any constraint on the nonlinear model,
this class would be too powerful to compete against, since for
any sequence, there always exists a nonlinear function with per-
fect prediction performance, i.e., one can choose f such that
f(z[t —1],...,2[1]) = z[t]. By constraining the class of pre-
dictors to include piecewise linear (affine) functions, we can re-
tain the breadth of such models, while mitigating the overfit-
ting problems associated with too powerful a competition class.
Piecewise linear modeling is a natural nonlinear extension to
linear modeling, in which the space spanned by past observa-
tions is partitioned into a union of disjoint regions over each of
which, an affine model holds. In each region, an estimate of the
desired signal is given as the output of a fixed linear regressor.
For example, suppose that for a scalar linear predictor, the past
observation space z[t — 1] € [—A,, A;] is parsed into J dis-
joint regions R; where Uj:l R; = [-A,,A;] and A, € R.
At each time ¢, the underlying predictor forms its prediction of
x[t] as Z[t] = wjz[t — 1] + ¢j,w; € R and ¢; € R, when
z[t — 1] € R;. As the number of regions grows, the piecewise
linear model can better approximate any smoothly varying pre-
dictor Z[t] = f(«z[t — 1]). This statement will be made more
precise in the context of the main results of this paper, namely,
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the upper bounds on regret of the prediction error of the uni-
versal predictor can be given with respect to the best piecewise
linear prediction algorithm and then extended to bounds on re-
gret with respect to a broad class of smoothly varying nonlinear
predictors. Such piecewise linear models have been referred to
in the signal processing literature as “nonlinear autoregressive
models” [2], and in the signal processing and statistics litera-
ture as self-exciting threshold autoregressive (SETAR) models
[8], [9], and have been used in modeling a wide range of data
in fields ranging from population biology [10] to econometrics
[11] to glottal flow in voiced speech [12].

In this paper, we first present results for the piecewise linear
regression problem when the regions IZ; are fixed and known.
We will demonstrate an algorithm that achieves the performance
of the best piecewise linear regressor for a given partition and
then extend these results to when the boundaries of each region
are also design parameters of the class. In this case, we try to
achieve the performance of the best sequential piecewise linear
regressor when the partitioning of the regressor space is taken
from a large class of possible partitions. These partitions will
be compactly represented using a “context tree” [17]. Here, we
have neither a priori knowledge of the selected partition nor the
best model parameters given that partition. We initially focus on
scalar piecewise linear regression, such that each prediction al-
gorithm in the competition class is a function of only the latest
observation, i.e., z[t — 1]. These results are then extended to
higher order regression models by considering context tree par-
titionings of multiple past observations.

We start our discussion when the boundaries of each re-
gion are fixed and known. Given such a partition U‘»]=1 R; =
[- Ay, A;], the real valued sequence z" = {z[t]}}_, is
assumed to be bounded but is otherwise arbitrary, in that
|z[t]] < A, for some A, < co.Given past values of the desired
signal z[t],t = 1,..., n — 1, we define a competing algorithm

’ ’

from the class of all scalar piecewise affine regressors as
iwc[f] = ws[t—l]x[t - 1] + Cs[t—l]

where s[t—1] = jwhenz[t—1] € Rj,w; € Randc; € R,j =
1,...,J. Foreachregion,w; € Randc; € R,j=1,...,.J,
can be selected independently.

Here we try to minimize the following regret:

n n
inf

sup & - (alt) = )2 = inf Y (alt) = uclt)?

t=1 je{1..gy t=1

ey

where, Zue[t] = wyp—1)y[t]+cspi—1), and 2, [t] is the prediction
of a sequential algorithm; i.e., we try to achieve the performance
of the best model tuned to the underlying sequences z".

We first demonstrate an algorithm £[¢] whose prediction error,
over that of the best piecewise linear predictor, is upper-bounded
by O(2JA21In(n/J)), i.e.,

Sl =) < | _inf 3" (alt] = dult)?
t=1 jef1,..gy t=1

+O0(2JA21n(n/J)) )
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Fig. 1. A full tree of depth 2 that represents all context-tree partitions of the
real line [— A, A.] into at most four possible regions.

for any z". Our algorithm pays a “parameter regret” of
O(2A21n(n/.J)) per region to effectively learn (or compete
against) the best parameters for that region. We also derive
corresponding lower bounds for (1) and show that under certain
conditions, our algorithms are optimal in a minmax sense, such
that the upper bounds cannot be further improved upon.

We then extend these results and demonstrate an algo-
rithm that achieves the performance of the best sequential
predictor (corresponding to a particular partition) from the
doubly exponentially large class of such partitioned predictors.
To this end, we define a depth-K context tree for a parti-
tion with up to 2% regions, as shown in Fig. 1, where, for
this tree, K = 2. For a depth-K context tree, the 2K finest
partition bins correspond to leaves of the tree. On this tree,
each of the bins are equal in size and assigned to regions
[A:, A /2], [Az/2,0],]0, — A, /2], [-As /2, —AL]. Of course,
more general partitioning schemes could be represented by
such a context tree.

For a tree of depth-K, there exist 2K+1 _ 1 nodes, including
leaf nodes and internal nodes. Each node 7 on this tree repre-
sents a portion of the real line, I?,,. The region corresponding to
each node 7, IR, (if it is not a leaf) is constructed by the union of
regions represented by the nodes of its children; the upper node
R, and the lower node R,,, R, = R, U R, . By this defini-
tion, any inner node is the root of a subtree and represents the
union of its corresponding leaves (or bins).

We define a “partition” of the real line as a specific parti-
tioning P; = {Ri1,..., Ri g} with UL, Ry j = [~ A., A,
where each R; ; is represented by a node on the tree in Fig. 1
and I?; ; are disjoint. There exist a doubly exponential number,
Ni =~ (1.5)2K, of such partitions, P;,i = 1,..., Ng, em-
bedded within a full depth-K tree. This is equivalent to the
number of “proper binary trees” of depth at most K, and is given
by Sloane’s sequence A003095 [18], [19]. For each such parti-
tion, there exists a corresponding sequential algorithm as in (2)
that achieves the performance of the best piecewise affine model
for that partition. We can then construct an algorithm that will
achieve the performance of the best sequential algorithm from
this doubly exponential class.
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To achieve the performance of the best sequential algorithm
(i.e., the best partition), we try to minimize the following regret:

Sup{Z(x[]—zq[L‘] 1nfz f]—xp[t])} 3)

= =1
where Zp,[t] is the corresponding sequential piecewise linear
predictor for partition P;, and Z,4[t] is the prediction of a se-
quential algorithm.
We will then demonstrate a sequential algorithm Z[¢], such
that the “structural regret” in (3) is at most O(2C(P;)), where
C(P;) is a constant which depends only on the partition P;, i.e.,

Z(a,[ — z[t])? <1n1fz

t=1
which yields, upon combining the parameter and structural re-
gret, an algorithm achieving

S (alt) - @) < i;;_f{ inf 3" (aft] - @ [1))?

=1 f Wi, j,Ci, € =1

—ip,[t])* + 0(20(Py))

+0(2JIn(n/.J)) + 0(20(7%))}

uniformly for any ™, where

Tp,[t] = w; g, p—112[t — 1] + € 5, [t—1]-

Hence, the algorithms introduced here are “twice-universal”
in that they asymptotically achieve the prediction performance
of the best predictor in which the regression parameters of the
piecewise linear model and also the partitioning structure of the
model itself can be selected based on observing the whole se-
quence in advance. Our approach is based on sequential proba-
bility assignment from universal source coding [17], [23], [24]
and uses the notion of a context tree from [17] to compactly rep-
resent the N partitions of the regressor space. Here, instead of
making hard decisions at each step of the algorithm to select a
partition or its local parameters, we use a soft combination of all
possible models and parameters to achieve the performance of
the best model, with complexity that remains linear in the depth
of the context tree per prediction.

In [14], sequential algorithms based on “plug-in” predictors
are demonstrated that approach the best batch performance
with additional regret of O(n~!In(n)) with respect to cer-
tain nonlinear prediction classes that can be implemented by
finite-state machines. It is shown that Markovian predictors
with sufficiently long memory are asymptotically as good
as any given finite-state predictor for finite-alphabet data. A
similar problem is investigated for online prediction for classes
of smooth functions in [6], where corresponding upper and
matching lower bounds are found (in some cases) when there
is additional information about the data, such as the prediction
error of the best predictor for a given sequence. The problem
of universal nonlinear prediction has also been investigated in
a probabilistic context. In [25], the authors propose a universal
minimum complexity estimator for the conditional mean (min-
imum mean-square error predictor) of a sample, given the past,
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for a finite-memory process, without knowing the true order of
the process. In [15], a class of elementary universal predictors
of an unknown nonlinear system is considered using an adap-
tation of the well-known nearest neighbor algorithm [26]. They
are universal in the sense that they predict asymptotically well
for every bounded input sequence, every disturbance sequence
in certain classes, and every nonlinear system, given certain
regularity conditions. In [27], a regression tree approach is de-
veloped for identification and prediction of signals that evolve
according to an unknown nonlinear state-space model. Here,
a tree is recursively constructed partitioning the state space
into a collection of piecewise homogeneous regions, resulting
a predictor which nearly attains the minimum mean-squared
error.

In the computational learning theory literature, the related
problem of prediction as well as the best pruning of a deci-
sion tree has been considered, in which data structures and algo-
rithms similar to context trees have been used [20]-[22]. In [20],
the authors develop a sequential algorithm that, given a decision
tree, can nearly achieve the performance of the best pruning of
that decision tree, under the absolute loss function. While the
data structure used is similar to that we develop, its use is sim-
ilar in spirit to that of the Willems et al. context-tree weighting
paper [17], in which the “context” of the data sequence is based
on a temporal parsing of the binary data sequence. As such, the
leaves of a given context tree (or pruning of the decision tree)
are reached at depth k after £ symbols of the data have been
observed. The predictor then makes its prediction based on the
label assigned to the leaf of the tree reached by the sequence. In
[20], the observed sequence is binary, i.e., ™ € {0, 1}", while
the predictions are real-valued, 2" € [0, 1]™, but fixed for each
leaf of the decision tree.

These results are extended to other loss functions, including
the square error loss, in [21], [22] using similar methods to [20]
and an approach based on dynamic programming. The main re-
sult of [21] is an algorithm that competes well against all pos-
sible prunings of a given decision tree and upper bounds on
the regret with respect to the best pruning. However, in this
result, predictions are permitted only to be given by the la-
bels of the leaves of the decision tree. As such, the main result
of [21] considers essentially competing against a finite (albeit
large) number of predictor models. While the label function is
permitted to change with time (time-varying predictors at each
leaf), it is only in the last section of [21] that the competi-
tion class of predictor models is extended to include all pos-
sible labelings of the leaves of the tree. However, for this case,
the discussion and the subsequent bounds are only given for
binary sequences z", for finite-alphabet predictions #[n], and
the absolute loss function, rather than the continuous-alphabet
quadratic loss problem discussed in this paper. In our work,
we consider piecewise linear predictors, which would corre-
spond to labels within the leaves of the pruned decision tree
that are not single prediction values (labels), but are rather func-
tions of samples of the sequence z", i.e., the regressor space
z[n — 1], z[n — 2],...z[n — p]. Further, the “context” used in
our context trees correspond to a spatial parsing of the regressor
space, rather than the femporal parsing discussed in [21], [22],
[20]. Another key difference between this related work and that
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developed here is the constructive nature of our results. We il-
lustrate a prediction algorithm with a time complexity that is
linear in the depth of the context tree and whose algebraic op-
erations are explicitly given in the text. This is in contrast to
the methods described in these related works, whose time com-
plexity is stated as polynomial (in some cases linear), but whose
explicit algebraic description is not completely given. This is
largely due to the search-like process necessary to carry out
the final prediction step in the aggregating algorithm, on which
these methods build.

In Section II, we begin our discussion of piecewise linear
modeling with the case when the partition is fixed and known.
We then extend these results using context trees in Section III
to include comparison classes with arbitrary partitions from a
doubly exponential class of possible partitions. In each section,
we provide theorems that upper-bound the regret with respect
to the best competing algorithm in the class. The theorems are
constructive, in that they yield algorithms satisfying the corre-
sponding bounds. An explicit MATLAB implementation of the
context tree prediction algorithm is also given. Extensions to
higher order piecewise linear prediction algorithms are given in
Section IV. Lower bounds on the achievable regret are discussed
in Section V. The paper is then concluded with simulations of
the algorithms on synthetic and real data.

II. PIECEWISE LINEAR PREDICTION: KNOWN REGIONS

In this section, we consider the problem of predicting as well
as the best piecewise affine predictor, when the partition of the
regression space is given and known. As such, we seek to min-
imize the following regret:

— inf
w;ER,c;ER

Z(fﬂ[t]—ws[tq]ﬂ?[t - 1]_05[751])2} “)

t=1

where Z,[t] is the prediction from a sequential algorithm and
|z[t]] < A,. That is, we wish to obtain a sequential algorithm
that can predict every sequence z" as well as the best fixed
piecewise linear (affine) algorithm for that sequence with a par-
tition of the regressor space given by U;.Izl R; =[-A;, Ayl
One of the predictors from the class against which this algo-
rithm will compete can be represented by the parameter vector
§= [e1,...,cq,w1,...,ws]T and would accumulate the loss

n

l(z,i5) = Z ([t] — wyp—nz[t — 1] = cop1))®. ()

t=1

Equation (5) can be written in a more compact form if we de-
fine extended vectors §[t] = [z[t — 1]1]7 and Wy [t] =
[wsge—11¢se—17]"

L(w,d5) =y (alt] — & [1]311])*.

t=1

Since the number and boundaries of the regions are known, we
have J independent least squares problems. Defining J time
vectors (or index sequences) of length n;, t}” ={t:s[t—1] =
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j}.withj =1,...,J, and sequences ;" = {[t;[k]]},Z, and
g;‘f = {g[t;[k]]},,. then the universal predictor we suggest
can be constructed using the universal affine predictor of [7] in
each region, i.e.,

- =T -

.CEQ}[TL] = ws[n—l] [7’L - 1]:‘/[77’]
with

Wi —1] = (D’JL

YiYi

—1
¥ 5]1) priTt 6)

z;Y;
where n; is the number of points of 2"~ 1 that belong to R;,

6; > 0 is a positive constant,
n]- — 1

DYt =N aft [T (),
t=1

D =S s 1)

and [ is an appropriate sized identity matrix. The following the-
orem relates the performance of the universal predictor

n

In(z.5g) =Y (xft] — i5[t])?

t=1

to that of the best batch scalar piecewise linear predictor.
Theorem 1: Let ™ be an arbitrary bounded, real-valued se-
quence, such that |z[t]| < A, for all ¢. Then l,,(z, &) satisfies

1 1 o
=l (&) < —ming{l (w, 5) + 6]1]2}
n n

with

where 7, is the number of elements of region & that result
from a transition from region j and |z[t]| < A, i when z[t] €
Ry, 6 > 0and 6; > 0 are arbitrary constants. Here

n

ln(iﬂ,:ﬁé‘) = Z (:E[t] — ws[t_l]iﬂ[t — 1] — Cs[t_l])z

t=1

and s[t — 1] is the state indicator variable.

The proof of Theorem 1 is based on sequential probability as-
signment and follows directly from [28]. A relaxed, but perhaps
more straightforward upper bound on the right-hand side of (7)
can be obtained by maximizing the upper bound with respect to
n;j, replacing A, with A,, and 6; with ¢ yields

1 1
() — —min{l, (z, ) + 6|
() = mindl (. 5) + 8]7°)

< 2JA§M +0 <l> . ®
n mn

III. PIECEWISE LINEAR PREDICTION: CONTEXT TREES

We now consider the prediction problem where the class
against which the algorithm must compete includes not only the
best predictor for a given partition, but also the best partition of
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the regressor space as well. As such, we are interested in the
following regret:

sup {Z(l’[t] — g[t])* ~ ig_fz (=t] = Zp, [t])Q}
t=1

rn = f

where Z,[t] is the prediction of any sequential algorithm, P;
is a partition of the real line with the state indicator variable
Si[t — 1] =7 ifa:[t — 1] € Riﬂ', and P; = {Ri717. .. ,Ri7]q.}
with szl R; ; = [-A,, A;] for some J;, and &, [t] is the cor-
responding sequential algorithm for the partition P;. The parti-
tion P; can be viewed as in Fig. 1 as a subtree or “context tree”
of a depth K full tree with the I?; ; corresponding to the nodes
of the tree. Each R; ; is represented by a node on the full tree
and R, ; are disjoint. Given the full tree, there exist Ng such
partitions, i.e., P;,i = 1,..., Nk, where Ny = Nz | + 1.
Although, we use the sequential predictors introduced in The-
orem 1 for each partition P;, our algorithm has no such restric-
tions; given any sequential algorithms running independently
within each region I?; ;, our algorithm will achieve the perfor-
mance of the best partition with the corresponding sequential
algorithms. Nevertheless, by using these specific universal al-
gorithms in each region, we also achieve the performance of the
best affine model for that region from the continuum of all affine
predictors for any bounded data z™. Hence, our algorithms are
twice-universal [30].

Similar to [24], we define C(P;) as the number of bits that
would have been required to represent each partition P; on the
tree using a universal code

C(PJ =J; + np, — 1

where np, is the total number of leaves in P; that have depth
less than K, i.e., leaves of P; that are inner nodes of the tree.
Since np, < J;

C(P;) < 2J; — 1.

We note that for our context tree, this definition of C(P;) is iden-
tical to the “size” of a pruning |P;| used in [20]. Given the tree,
we can construct a sequential algorithm with linear complexity
in the depth of the context tree per prediction that asymptotically
achieves both the performance of the best sequential predictor
and also the performance of the best affine predictor for any par-
tition as follows.

Theorem 2: Let 2™ be an arbitrary bounded scalar real-valued
sequence, such that |z[t]] < A,, for all ¢. Then we can con-
struct a sequential predictor &1y [t] With complexity linear in
the depth of the context tree per prediction such that

Z(x[t] B jWIin[tDZ = i7I>14f (wi.jegfi.jGR {Z (x[t]

t=1 t=1
T 2 S 2
—w; [t—l]ﬂﬂ) + 6| )
+8A2C(P;) In(2)

+ 2J;A2 1n(n/Ji)> +0(1) (9
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and also another sequential predictor Zpo1[t] With complexity
polynomial in the depth of the context tree per prediction such
that

n

S (]~ )

t=1

n 2
. . X _ 7T i =112
slgif<wi,j€ggi,jen{§ (alt] = @, -1 ol )}

t=1

+ 2A2C(P;) In(2) + 2J; A2 ln(n/Ji)> +0(1)

where 6 > 0, P; is any partition on the context tree, C(P;)
is a constant that is less than or equal to 2.J; — 1,; 4, [1—1) =
[wi,si[t—l]ci,si[t—l]]T7 "7[f] = [‘T[t - 1]1]T

The construction of the universal predictor Zyin[t] and
Twpol[t] are given at the end of the proof of Theorem 2. Note
that the inequality in Theorem 2 holds for any partition of the
data, including that achieving infp, over the right-hand side.
This implies that, without prior knowledge of any complexity
constraint on the algorithm, such as prior knowledge of the
depth of the context tree against which it is competing, the
universal prediction algorithm can compete well with each and
every subpartition (context tree) within the depth-K full tree
used in its construction.

In the derivation of the universal algorithm we observe the
following result. Suppose we are given sequential predictors
&,[t] for each node 7 on the context tree. Without any restric-
tion on these sequential algorithms, Z,[t], we have the following
theorem.

Theorem 3: Let x™ be an arbitrary bounded scalar real-valued
sequence, with |z[t]| < A, for all ¢. Given a context tree with
corresponding nodes 7, = {1,...,25*1 — 1} and sequential
predictors for each node Z,[t], we can construct a sequential pre-
dictor Zw1in [t] with complexity linear in the depth of the context
tree per prediction such that

Sl — inl])? < inf (Z (o] ~ o, [1)?

t=1 t=1

+ 8A2C(P) ln(Z)) +0(1)

and another sequential predictor Zwpo1[t] with complexity poly-
nomial in the depth of the context tree per prediction such that

t=1

> (@[t] = Fupailt])* < inf (Z ([t] — #p,[1])°
+ 242C(P;) 111(2)) + O(1)

where § > 0 and C(P;) is a constant that is less than or equal
to 2J; — 1, and Zp,[t] is the sequential predictor obtained by
the combination of the sequential predictors corresponding to its
piecewise regions P; = {R; 1,...,R; s}, 1e., &p,[t] = &,[t] if
x[t — 1] S Ri7j and Riyj = R’I'
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We can also consider expanding the class of predictors against
which the algorithm must compete to include any smooth non-
linear function f in the following manner.

Corollary 3: Let z™ be an arbitrary bounded scalar
real-valued sequence, with |z[t]] < A, for all ¢. Let F be
the class of all twice differentiable functions #[t] = f(z[t —1]),
such that |f..| < Ky, Ko > 0, where f,. is the second
derivative of f. Then we have that Z  [t] satisfies

n

> (aft] - &xt])?

t=1

< mfz [t] —

where, Z i [t] is a depth- K context-tree predictor of Theorem 2.

Corollary 3 follows from Theorems 2 and 3 and application
of the Lagrange form of Taylor’s theorem applied to f about the
midpoint of each region in the finest partition.

Flalt — 1)) + KZZ*QK +O(In(n))

A. Proof of Theorem 2

We first prove Theorem 2 for piecewise constant models, i.e.,
when 7[t] = [0 1]" and &, [t] = ¢s[r—1], Cs[t—1] € R. The proof
will then be extended to include affine models.

Given a partition P; = U;I=1 R; ;, we consider a family of
predictors P; € P (the competing class), each with its own pre-
diction vector & = [¢; 1,...,ci )T . Here, each c; ; represents
a constant prediction for the jth region of partition P;, i.e., when
z[t—1] € R; j, %z = c; ;. For each pairing of P; and &;, we also
consider a measure of the sequential prediction performance, or
loss, of the corresponding algorithm

n

Pi) &Yy (alt] = cisp1)’

t=1

ln,(x7§j6i|€i7

where s;[t — 1] is the state indicator variable for partition P;,
ie., st —1] = jif «[t — 1] € R; j. We define a function of the
loss, namely, the “probability”

P(z" | &, P;) éexp( 1@ Z(g;[t] Ciosi[t—1]) )

1
= exp <—%ln($,.§787 |617P2)>

which can be viewed as a probability assignment of P;, with
parameters ¢;, to " induced by the performance of the corre-
sponding predictor with P; and ¢; on the sequence =", where
a is a positive constant, related to the learning rate of the algo-
rithm. Given P;, the algorithm in the family with the best con-
stant predictor in each region assigns to 2" the probability

1
P*(z" | P;) £ exp (—%i%fln(x,a?a |6}’Pz)> .
Maximizing P*(z"|P;) over all P; (on the tree) yields

P*(z"|P}) £ sup P*(z"|P;).
Pi

Here, P*(z™|P}) corresponds to the best piecewise constant
predictor in the class on the tree of depth K. Note that without
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any constraint on the complexity of the algorithms in the
competing class, and since this performance is computed based
on observation of the entire sequence in advance, P*(z"|P})
would correspond to the finest partition of the interval with the
best piecewise constant predictors in each interval, i.e., the full
binary tree. There is no guarantee, however, that the sequential
performance of our algorithm will be the best if we choose
the finest grain model, given the increase in the number of
parameters that must be learned sequentially by the algorithm,
and, correspondingly, the increase in the regret with respect to
the best “batch” algorithm, which is permitted to select all of its
parameters in hindsight (i.e., given all of the data in advance).
In fact, the finest grain model generally will not have the best
performance when the algorithms are required to sequentially
compete with the best batch algorithm within each partition.
As such, our goal is to perform well with respect to all pos-
sible partitions. As will be shown, the context-tree weighting
approach enables the algorithm to achieve the performance
of the best partition-based algorithm. Within each partition,
the algorithm sequentially achieves the performance of the
best batch algorithm. This “twice-universality, ” once over the
class of partitions of the regressor space, and again over the set
of parameters within each partition, enables the algorithm to
sequentially achieve the best possible performance out of the
doubly exponential number Ny of partitions and the infinite
set of parameters given the partition.

Given any P;, using the sequential algorithm introduced in
(6) with ¢;[n] = Zz[n], where @; = [0 ¢;] and #[t] = [0 1]%,
for all ¢, and for the partition P; yields

n

P(a"[Py) 2 exp (—; S (wlt] - 2,

t=1

gt — 1])2> . (10)

As the first step, we will derive a universal probability assign-
ment P, (z") to z™ as a weighted combination of probabilities
on the context tree. We will then demonstrate that this universal
probability is asymptotically as large as that of any predictor in
the class, including P*(z™|P;}). As the final step, we construct a
sequential prediction algorithm of linear complexity whose as-
sociated probability assignment to z" is as large as P, (z™) and
hence the desired result.

As the next step, we assign to each node 7 on the context tree
a sequential predictor working only on the data observed by this
particular node. For a node 7 representing the region I2,;, we first
assign a time vector (or index sequence) of length n,,, ty" =
{t : z[t — 1] € R,} and a sequence d," = {z[ty" [k]]} ;-
Clearly, for each node 7, there corresponds a portion of the ob-
servation sequence of length n,, and for a parent node in the
tree with upper and lower children we have n, = n,, + n,,,
where n,), is the length of the subsequence that is shared with
the upper child and n,, is the partition shared with the lower
child. For each node, we assign a predictor

>l dylt]

C?}[”] nn + 1 +6

Y

where ¢ is a positive constant for the prediction of d,[n, + 1].
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We then define a weighted probability of a leaf node as

Py(a™) = exp (—; S (dylt) = eglt - 11)2) (12)

t=1

which is a function of the performance of the node predictor on
the sequence d,,". The probability of an inner node is defined as
[17]

Py(a") = 5 P 0" Py a7)
+ %exp (—% g(dn[t] — Cylt — 1])2> (13)

which is a weighted combination of the probabilities assigned to
the data by each of the child nodes operating on the substrings,
[ty and z[tn"], P, (™) and P, (z™), and the probability
assigned to d,,” by the sequential predictor of R,,. We then de-
fine the universal probability P, (z") of 2™ as the probability of

the root node

P,(z") = P, (z™)

where we represent the root note with = r. Using the recur-
sion in (13), it can be shown, as in [24, Lemma 2], that the root
probability P,(z™) is given by the sum of weighted probabili-
ties of partitions P;

Pu(z™) =Y 27°PI p(am|p;)
Pi

where C(P;) = J;+np, —1is defined as the “cost” of partition
P; and P(P;) & 2-C(P:) can be viewed as a prior weighting
of the partition 7;. It can also be shown that }_,, 27¢() =1
[17]. Hence, for any P;

Pu(am) > 2-CP) PP
since P; > 0 and ]5(:1:”|’Pi) > 0, for all 4; this yields

—2a ln(f’u(a:n)) < 2aC(P;)In(2) — 2a1n(1~’(x"|73i)).
Using (8) on P(z"|P;), we obtain

—2aln(P,(z")) < 2aC(P;)In(2)

+ mefR {Z (x[t]_Ci,57[t—1])2+5||5i”2}

t=1
+ JiAZIn(n/J;) + O(1). (14)
Hence, we have a probability assignment f’“(:v”) which is
as large as the probability assignment of the best partition
P*(x™|P}) to ™, to first order in the exponent. However,
P,(z™) is not in the form of the assigned probability from a
valid sequential predictor. That is, we have no prediction algo-
rithm that achieves ﬁ’u(x") We now demonstrate a sequential
prediction algorithm whose probability assignment to z™ is
as large as P, (z™) and which is also in the proper prediction
form, i.e., it arises from a valid sequential predictor.
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x{n—1]-a

Fig. 2. K + 1 nodes to be updated.

The universal probability Pu(x") can be calculated recur-
sively by defining a conditional probability, from the induced
probability, i.e.,

Pu(alaen ) 2 AT
P,(zn1)
where P, (2") = [[7_; Pu(z[t]|z*~1). To achieve P, (z"), we
will demonstrate a sequential algorithm with probability assign-
ment as large or larger than P, (z[t]|z* 1) for all . For this, we
will present a sequential update from P, (z"~") to P, (z").

Given 2"~ and P,(2"~') node probabilities, P,(z"~1)
should be adjusted after observing z[n] to form P, (z"). How-
ever, owing to the tree structure, only probabilities of nodes that
include z[n — 1] need to be updated to form P, (z"). We have
K + 1 nodes that contain z[n — 1]: the leaf node that contains
z[n — 1] and all the nodes that contain the leaf that contains
x[n — 1]. Hence, at each time n, only K + 1 node probabilities
in P,(z"~') must be adjusted to form P, (™). This enables us
to update P, (z"~1), a mixture of all N predictors with only
K + 1 updates, instead of updating all Nx ~ (1.5)2K predictor
probabilities to reach P, (z™).

We now illustrate this update procedure by an example.
Without loss of generality, suppose z[n — 1] belongs to the
lowest leaf of the tree in Fig. 2. All the nodes along the path
of nodes indicated by filled circles in Fig. 2 include z[n — 1]
and only these need to be updated after observing z[n]. For any
x[n — 1], there exits such a path of K + 1 nodes, which we refer
to as “dark nodes.” Here, we represent the root node as n = 7;
upper and lower children of the root node as 7, and r;; and
recursively, the upper child of the upper child of the root node
as 7., and the lower child of the upper child of the parent node
as r,,;. By this notation, we will now apply the recursion in (13)
to all dark nodes in P, (z"~'), and indicate those probabilities
updated using the symbol “|” in (15), to obtain

R 1. b
Pu(wn_l) = EPTIL ('Tn_l) Py, (wn_l)
+ %exp (—% ; (d[t] = &t — 1])2)
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};*(Xn_l )

uu

E(Xn—l )

E(xn-l )
Tyl

E(X“'l )

Fig. 3. Node probabilities at time » — 1. Only dark nodes are to be updated,
where each dark node uses a single sibling node to calculate o [n — 1].

= %PTH (m"fl) (%Rlu(xnl)% exp
1 nT”—l
ot = _ 2
(30 2 Gl == 07)
1 Oy
~ 2
+ 5 exp < ~ 5 t; (dr,[t] = ¢, [t — 1]) ))
1 1A
+Lexp <—% > (dnl] i - 11>2> (15)

where the recursion is applied for all nodes 7, 7, . . . until we
reach the final node at depth K, i.e., r; in the last line of (15)
for this example. Using (15), P, (z"~1) can be compactly rep-
resented as sum of K + 1 terms, collecting all terms that will
not be affected by z[n], i.e.,

K
Pu(z"") =Y oxln —1]exp
k=0

n,,k—l

Y (dy [t = &, [t = 1))

t=1

1

X —_
2a

(16)

where, for this example, the dark nodes are labeled as
no = r,m = 7 and 192 = ;. We will enumerate the dark
nodes using the notation 7,k = 0, ..., K. For each dark node
Nk, ok[n — 1] contains products of node probabilities P, (™)
that share the same parent nodes with 7;, but will be unchanged
by z[n] (i.e., the sibling node of a dark node that does not include
x[n—1]). As an example, consider the same tree of depth K = 2
in Fig. 3 where we also included node probabilities. Then, it
can be deduced from Fig. 3 and (15) that for each time n — 1

Uo[n — 1] = %
oufn — 1] = (%) (2" 1)
= % P, (#" Nog[n — 1]
3
oa[n—1] = (%) P., (:U"_l)f’r,u(:c”_l)
= P (" o~ 1]
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where for a tree K > 2, in which z[n — 1] falls in the region
for node rx (a leaf), ox[n—1] = (1)/(2)P, op—1[n—1]

Tik—1,
(where we use shorthand notation [F = [[¥ _11). Hence, at each
time n — 1, ox[n — 1] can be calculated recursively with only
K updates. Clearly, in the calculation of ox[n — 1], we use
the nodes that will be unchanged by z[n], i.., P. (z") =

P. ("), P, (z") = P, (z"""). Thus, to obtain P,(z"),

u

we need to update only the exponential terms in (15) or in (16).

Since also d.[n,] = dy, [ny,] = dp [00,] = ... = x[n]
K 1 Mg, —1
P (z") = -1 - — & [t—1])?
)= ol tewp | =5, 3 ()= e l1-1)

1 -
e (= o ([ ] fne —117)
Ny, —1

=Y ol 1ep (-~ D [yt 1))

t=1

hence, the sequential update for P,(z"). A complete algo-
rithmic description of this tree update with required storage and
number of operations will be given in Section III-C.

Thus, P, (z[n]|#" 1) can be written

where weights p;[n — 1] are defined as

pre[n —1]
, okl = exp (= 02 (dy, 1] = &, 1t — 11)°)

P,(zn1)

We are now ready to construct sequential prediction algorithms
whose associated probability assignments asymptotically
achieve P,(z") by upper-bounding P, (x[n]|z" 1) at each
time n. If we can find a prediction algorithm such that

exp{ = 5o alnl = 2.} > Pulalulle™ ™)
then we have achieved the desired result, that is, we will have
a sequential prediction algorithm whose prediction error is
asymptotically as small as that of the best predictor in the
competition class. We will now introduce two different ap-
proaches to finding an Z.[n] satisfying (17). The first method
is based on a concavity argument and results in an algorithm
that can be constructed using a simple linear mixture. Although
this approach results in a looser upper bound, it may be more
suitable for adaptive filtering applications, given the reduced
computational complexity. The second approach is based on
the Aggregating Algorithm (AA) of [4] and requires a search,
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taking substantially greater, yet still polynomial time to con-
struct each prediction. This second approach results the tighter
upper bound introduced in Theorem 3. Both approaches use the
same context tree and probabilities, and only differ in the last
stage to form the final output.

Observe that P, (z[n]|z™~") can be written

1) = Zﬂk[n — 1] fn(Cny g, —1])

Py (z[n]]z"~ (18)
k=0
where f;(-) is defined as
z[t] — 2)?
fi(z) & exp (—%) (19)
Since

K

k=0
P, (z[n]]z™~") is a sum of a function evaluated at a convex com-

bination of values.
In the first method, if the function f;(-) is concave and
i 0; =1, then

f <Z 9127> > Zeift(z )
i=1 i=1

by Jensen’s inequality. The function defined in (19) will be con-
cave for values of z; such that (z[n] — 2;)? < a. This cor-
responds to —v/a < (z[n] — ¢[n]) < \/a, where ¢[n] is any
prediction in (18). Since the signal |z[n]| < A, the prediction
values in (18) can be chosen such that |¢[n]| < A,. If the pre-
dicted values are outside this range, the prediction error can only
decrease by clipping. Therefore, by Jensen’s inequality, when-
ever a > 4A2, the function f;(-) will be concave at all points of
the prediction and

P, (x[n]ja""1)

1 K
< exp ~%a <x[n] - Z prn

k=0

—1Jén[n - 1])

which gives the universal predictor as

Z fie[n

where 7, are the nodes such that z[n — 1] € R, ie., dark
nodes. By using (14) we conclude that

— 1)éy, [ng, — 1] (20)

n

> (xlt] - & [1)?
< 2a0(Py) In(2)
+ nf {Z (al1) -

2 .
Cissift—1]) +5||Ci||2}
t=1

+ J;A%In(n/J;) + O(1)
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< 8AZC(P;)In(2)

+ mefR {Z (&[] = €ipuipe—n)* + 5||5z'||2}

t=1
+ JiAZIn(n/J;) + O(1). 1)
For the second method, since P, (z[n] | ™) in (18) is the
sum of certain exponentials evaluated at a convex combination
values, then for values of a > Ai there exists an interval of
Z.[n] that satisfies (17) and a value in this interval can be found
in polynomial time [4]. Using this value of a yields an upper
bound with one fourth the regret per node of that in (21). Hence,
using the AA of [4] in the final stage, instead of the convex
combination, results in the following regret:

Xn: (z[t] —z[t])2 <242C(P;) In(2)

t=1
. s 2 =12
+c:JI-1€fR {Z(x[t] cz,si[tfl]) +6||Cl|| }

t=1
+J;A2 In(n/J;)+0(1)

This concludes Proof of Theorem 2 for piecewise constant
models. The Proof of Theorem 2 for general affine models fol-
lows along similar lines. For construction of the universal algo-
rithm, ., [n], we need only replace the prediction algorithm in
(11) with [7]

eyln] 2 40 [n — 11370 22)
with
~ 1
Wy ln) = <(QJ§J+WI +oI) QZ,’@)
where §[n] = [z[n — 1]1]7,

Ny

Q5 —Zﬂt"”] (7],

nn

Q5 = > alty 1y,

t=1

6>0

and [ is an appropriate sized identity matrix. Here z,[t] and
1/, [t] are the samples that belong to node 7. By this replacement,
the universal algorithm is given by

Zukn—l]w n —

where 7, are the nodes such that z[n—1] € R, . This completes
Proof of Theorem 2. ]

1gln]

B. Outline of Proof of Theorem 3

Proof of Theorem 3 follows directly the Proof of Theorem 2.
We first update the definition of (10) as

P(a"[P:) £ exp (—} S Gl =i, W)

t=1
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Variables:

n=1,...,2K+1 _1:

Py[n—1] £ Py(2™1) : Total node probability.
(dylt] — ahft — l]g‘['n,])Q) : Prediction performance of node 7.

A nn—1
En[n — 1] =exp (—% t=71

Cyln—1] 2 u:)% [t — 1]§[n] : Prediction of node n for z[n).

8,01, 09 : small, positive real constants.

A : Upper bound for the absolute value of the underlying process |z[n]| < A.

dlk] : the kth component of vector d.

Initilization:

Forn=1,...,25+ — 1. pyl0] = 672, Epl0] = 65, Cpl0] = 0.
For k =1,...,K + 1: p[0] = O (initial weights of the universal predictor.), o4[0] =0

Algorithm:
Forn=1,...,N,
d =[] (vector containing indices of dark nodes)

Fornp=1,...,25+! _ 1, (find dark nodes in O(K) computations)

if z[n — 1] € Ry,
d=[dn]

oo[n — 1] = 3 (find weight for each node)

Forn=d[2,...,dK +1],

opln—1] = %Ps[n — 1]og—1[n — 1] (where RJ[k] URs = Ri[k—l]
ie., s is the sibling node of d[k])

ox[R—1]Egyy[n—1]
p[n — 1] = _n%[#:]ﬂ_

Teln] = K Jpeln — 1] Cﬂk] [n — 1] (prediction in O(K) operations)

For k= K +1,...,1, (update node probabilities in O(K) operations)
B[] = Egyyln — 1] exp (~ & (aln] - Cayyln —1]?)
ifk=K+1, Py, [n] = Py [n] (leaf node).

elseif k # K + 1, Py, =13

Cagln = 1551:1 [nlgln + 1]

Py, [0 = 1Pgyq [n— 1] + $E g ).

Fig. 4. Complete algorithmic description of the context tree algorithm.

where @R, | [t] = i,[t] when R; ; is the region represented by
the node 1. The weighted probability of each node in (12) is now
defined as

Py(a") = exp (—% > (- :f:n[t1>2> .

t=1

Using the same recursion used in (13), we again conclude
Py(z") = Pp(z") =27 “PIP(a"|Py)
Pi
where 7 is the root node. After this point, we follow the Proof

of Theorem 2 which concludes the outline of the Proof of The-
orem 3. [ |

C. Algorithmic Description

In this subsection, we give a description of the final context
tree prediction algorithm. A complete description is given in

Fig. 4.
For this implementation, given a context tree of depth
K, we will have 2K+1 _— 1 nodes. Each node, indexed

n=1,...,25+1—1 hasacorresponding predictor C;,[n—1] =

i

W, [n — 1]y[n] and two node variables, the total assigned prob-
ability of the node n

Pyln = 1] £ Py(a"1)

and the prediction performance of the node 7

n,—1

E,[n—1] 2 exp (—% Z (dy[t] — u‘)’f[n - 1]§[n])2) .
t=1

Hence, for a full tree of depth K, we need to store a total of

3(25+1 — 1) variables. At each time n — 1, only K + 1 of these

predictors or variables will be used or updated.

At each time n — 1, we first determine the dark nodes, i.e., the
nodes 7, such that z[n—1] € R, . For these nodes, we calculate
or[n — 1] which are in turn to be used to calculate pj[n — 1]
and final output, after O(K) operations. Here, each o [n — 1]
is recursively generated by the product of the probability of the
corresponding sibling nodes P, (z"~") and oj_1[n — 1]. For
the update, only the variables and the predictors of the selected
nodes (K + 1 of them) are updated using the new sample value
x|n]. Hence, we efficiently combine Nk predictors only using
K + 1 predictions and O(K + 1) operations per prediction.
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2D context tree

x[n]

x[n]

x[n-1] x[n-1]

K=2 Partition Trees

1] An-1]
P P, '

1]
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x[n-1]

An-1]

BT

An-1] qn=1]

Fig. 5. Multidimensional extension: A two-dimensional prediction using a context tree with ' = 2. Each leaf in the context tree corresponds to a different
quadrant in the real space [— A, A.]?, which is represented as a dark region in the figure. In the same figure, we also present the five different partitions represented
by the X' = 2 context tree algorithm. For each partition, again, the darker regions represents a leaf or a node. For each partition, the union of all dark regions

results in the space [—A., A.]>.

IV. TwWO-DIMENSIONAL PREDICTION WITH
CONTEXT TREE ALGORITHM

For a two-dimensional predictor, the predictions in each re-
gion can be given as a function of z[n — 1] and x[n — 2]. The
past observation space [—A,., A,]? is now divided into disjoint
regions (areas) by the context tree, szl S; = [-As, A%, as
seen in Fig. 5. Each area S; is assigned to a leaf in the context
tree. On this figure, we present a partition of [~ A, A,]? by a
K = 2 context tree into four different regions, i.e., each leaf of
the tree corresponds to a quadrant. For each region, the predic-
tion is given by Z[t]=wn jz[n—1]+ws jz[n—2]4+c;, w1 ; ER,
wy; € R,c; € R when (z[n — 1],z[n — 2]) € S,. For
K = 2, there exist five different partitions as seen in Fig. 5.
Each of these partitions can be selected by the competing al-
gorithm which then selects the corresponding two-dimensional
predictors in each region. After the selection of the context tree
and the assignment of each region to the corresponding leaf, the
algorithm proceeds as a one-dimensional context tree algorithm.
For each new sample z[n — 1], we again find the nodes corre-
sponding to (z[n — 1], z[n — 2]) on the tree which are labeled as
dark nodes. Then, we accumulate the corresponding probabili-
ties based on the performance of each node. Only the prediction
equations need to be changed to second-order linear predictions.

In this section, we use the context tree method to represent a
partition of the (z[n — 1], z[n — 2]) regressor space. The same
context tree can be generalized to represent any partition of an

arbitrary multidimensional space. Furthermore, a context tree
can be used to represent more general state information. Here,
the state information is derived from the membership of sam-
ples. The state information can be derived from an arbitrary
source provided that the state information has a tree structure,
i.e., membership in inner nodes infer membership in the corre-
sponding leaves.

The algorithm from Theorem 2 can be extended to include
pth-order partitioning of the p-dimensional regressor space by
a straightforward generalization, yielding the following result.

Theorem 4: Let ™ be an arbitrary bounded real-valued se-
quence, such that |z[t]| < A, for all . Then we can construct
a sequential predictor Z,, [t] with complexity linear in the depth
of the context tree per prediction such that

n

> (alt] - #[1)°

t=1

< inf inf
P ﬁ‘)i,jGRP,ci,jGR

) & (o) gyl — i)+ 1)
+ 8A2C(P)In(2) + (p+ 1)J; A% In(n/J;) | + O(1)

(23)
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where § > 0, and for a given p-dimensional partition P; of
the regressor space, the sequential algorithm competes with the
vector of piecewise affine pth-order prediction vectors. A sim-
ilar sequential predictor with polynomial complexity can also be
constructed. The Proof of Theorem 4 is a straightforward gen-
eralization of that for Theorem 2.

V. LOWER BOUNDS: KNOWN REGIONS

To obtain lower bounds on the regret for any sequential pre-
dictor, we consider a set of J regions such that z[t] € R; if
Ag o1 < |z[t]] < A, , ie., we consider a set of J regions
which are concentric around the origin. Note that the upper
bound in this case continues to be valid, since we do not make
any assumption on the shape of the regions to obtain it, other
than assuming that inside the jth region |z[t]] < A ;. For
piecewise linear prediction, we have the following theorem.

Theorem 5: Let ™ be an arbitrary bounded, real-valued se-
quence such that |z[t]| < A, for all ¢. Let Z,[t] be the predic-
tions from any sequential prediction algorithm. Then

1
inf sup — {ln(x,:i’q) — inf ln(.’ll‘7:ﬁg,)}

qEQ zn M weRY

J
1 20 n;, —2
> I A2 .In(1 J 24
_”;2@'“ "‘”n< " 2@') @9

where Q is the class of all sequential predictors, C'; are positive
constants, l,(z,25) = >, (x[t] — wsp—1jz[t — 1])%, and
s[t —1] is the indicator variable for the underlying partition with
concentric regions around origin.

Theorem 5 provides a lower bound for the loss of any sequen-
tial predictor. Note that this bound depends on the values of A ;
and n; (i.e., the number of samples inside each region). Since
the values of A, ; are fixed and the lower bound holds for all
values of n;, ijl n; = n and n; integer, n; can be chosen
to maximize the lower bound with the hope of asymptotically
matching the upper bound derived in Theorem 1. A more gen-
eral, but weaker, lower bound, can be derived by maximizing
only with respect to n; as

inf Sup{ln(x,iq) — inf ln(x,ig)}

4€Q gv ZERY
J 2
] A2
Z (1 . 6) Ej_l x,]

ln(n/J) -G
for all € > 0. J

A. Proof of Theorem 5
We begin by noting that for any distribution on x"

‘112{2 e {in(z,&q) — infaepsln(w, 2)}

>.fExn l n7An_.fln 7A6 25
> in {(:v &g) — inf (wx)} (25)

q€Q
where E,.» ( -) is the expectation taken with respect to the distri-
bution on z™. Hence, to obtain a lower bound on the total regret,
we just need to lower-bound the right term in (25).
Consider the following way of generating the sequence :1:;-” .
Let 6; be a random variable drawn from a beta distribution with
parameters (C;, C;), such that

p(0;) = %9&1(1 2
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where C; > 0 is a constant, and I'(-) is the gamma func-
tion. The sequence x?j generated has only two possible values:
—A. j, Az ;. Hence, the sequence =™ can take a total of 2.J
different values: — A, y,...,—Az 1,420, A21,..., A5, 7. We
generate the sequence in such a way that it spends the first
n1 points in the first region, the next ny points in the second
region, and so on, s]]Jending the last ny points in the Jth re-
gion. Obviously, > j=1m; = n. Inside each region, the se-
quence is generated such that z[t] = x[t — 1] with proba-
bility 6; and z[t] = —z[t — 1] with probability (1 — §,). In
the transitions between regions, we generate the sequence such
that z[t] = A, ;41 with probability 1/2 and z[t] = — A, j1+1
with probability 1/2. Thus, given 6, any sequence z;” forms
a two-state Markov chain with transition probability (1 — 6;).
The corresponding two states of the jth Markov chain are — A, ;
and A, ;. Hence, we have J Markov chains with transitions be-
tween them at predefined instants, and a probabilistic transition
mechanism which determines the initial state of the (5 + 1)th
chain.

Given this distribution, we can now compute a lower bound
for (25). Due to the linearity of the expectation, the right-hand
side of (25) becomes

L(n) = qlélg E{l.(z,2,)} — E{irq%fln(z./itm)} (26)
where we drop the explicit dependence on x™ of the expecta-
tions to simplify notation. After this point, the Proof of The-
orem 5 directly follows from [7, Theorem 2], where we apply
the lower bound derived in Theorem 2 of [7] for each region
separately. |

VI. SIMULATIONS

In this section, we illustrate the performance of context tree
algorithm with several examples. The first set of experiments
involve prediction of a signal generated by a piecewise linear
model by the following equation:

z[t] = 0.1 x[t — 1] + 0.7 x z[t — 2] + wlt],
ifz[t—1]>0andz[t —2] >0
z[t] = 0.1 % [t — 1] — 0.7 % z[t — 2] + w[t],
ifz[t—1]>0and z[t —2] <0
z[t] = 025 x xt — 1] 4+ 0.1 x [t — 2] + w[t],
ifz[t—1]<O0and z[t —2] > 0
z[t] = 0.9 % [t — 1] — 0.1 x z[t — 2] + w[t],
ifzft—1] < O0andaft —2] <0 (27)

where wlt] is a sample function from a stationary white
Gaussian process of variance 1. Since the main results of this
paper are on prediction of individual sequences, Fig. 6(a) shows
the normalized accumulated prediction error of our algorithms
for a sample function of the process in (27). Here, we use a
two-dimensional binary context tree introduced in Section IV
where K = 4 with second-order linear predictors in each node.
In the figures, we plot normalized accumulated prediction error
for the context-tree algorithm, the sequential piecewise affine
predictor that is tuned to the underlying partition in (27) and the
sequential algorithm corresponding to the finest partition. The
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Fig. 6. (a) Prediction results for a sample function of the second-order piece-
wise linear process (27). The normalized accumulated sequential prediction
error 1, (x, &) /n for: a context tree algorithm of depth-4 with second-order pre-
dictors in each node; a sequential piecewise linear predictor that is tuned to the
underlying partition as in (27); a sequential piecewise linear predictor with the

finest partition on the context tree. (b) The same algorithms averaged over 100
trials.

underlying partition in (27) corresponds to one of the partitions
represented by the context tree. The context-tree algorithm
appears particularly useful for short data records. As expected,
the performance of the finest partition suffers when data length
is small, due to overfitting. The context tree algorithm also
outperforms the sequential predictor that is tuned to the un-
derlying partition. Since the context tree algorithm adaptively
combines predictors (for each different partition) based on their
performance, it is able to favor the coarser models with a small
number of parameters during the initial phase of the algorithm.
This avoids the overfitting problems faced by the sequential
algorithms using the finest partition or the exact partition in
(27). As the data length increases, all three algorithms converge
to the same minimum error rate. This makes the context tree
algorithm attractive for adaptive processing in time-varying
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environments for which a windowed version of the most recent
data is typically used. Such applications require that algorithms
continually operate in the short effective data length regime.

In Fig. 6(b), similar results to those in Fig. 6(a) are presented
and averaged over 100 different sample functions from (27).
The ensemble average performances and converge rates of each
algorithm are similar to those for a single sample function.

In Fig. 6(a) and (b), the superior performance of the
context-tree algorithm is shown with respect to the sequential
algorithms corresponding to best partition and the true partition.
As the data record increases, the context tree algorithm also
attains the performance of the best batch algorithm. Although
the other sequential linear predictors will also asymptotically
achieve their corresponding batch performance with different
rates, the rate at which the context tree algorithm achieves
the best batch performance and the performance of the best
sequential algorithm is upper-bounded by Theorem 2. These
rates are at most O(C(P;)/n)+ O(In(n)/n) and O(C(P;)/n),
respectively.

We next compare the performance of the context tree algo-
rithm to a sequential algorithm using a recursive least squares
(RLS) predictor with quadratic kernels. This set of experiments
involve prediction of a signal generated by the following non-
linear equation:

z[t] = 0.1 % z[t — 1] — 0.5 % (cos(3 * z[t — 1]))

+0.4 xsin(z[t — 2]) + 0.1 x z[t — 2] + w[t] (28)
where wlt] is a sample function from a stationary white
Gaussian process with unit variance. The RLS algorithm with
quadratic kernels is given by

&[t] = ax[t — 1] + ba[t — 2] + c(z[t — 1])?

+d(z[t — 2])* + ex[t — Nzt — 2] (29)
where each five parameters a, b, ¢, d, e are estimated using the
RLS algorithm. Since the lattice implementation of the RLS al-
gorithm would have complexity linear in the filter length per
prediction, we compare it with a one-dimensional context tree
algorithm which has K = 4 and linear predictors in each node,
i.e., £ = wz[t — 1] without the constant term. In Fig. 7, we
plot the normalized accumulated prediction error for the context
tree algorithm and the RLS algorithm with quadratic kernels for
100 trials. Again, the context tree algorithm appears particularly
useful for short data samples. The performance of the RLS al-
gorithm attains the performance of the context tree algorithm as
data lengths grows.

As the last example, we illustrate the performance of the con-
text tree algorithm for a zero-mean sequence generated by re-
moving the mean from a sample function of the Henon map, a
chaotic process given by

z[n] =1 — a(z[n —1])? + Bz[n — 2] (30)
and known to exhibit chaotic behavior for the values of & = 1.4
and § = 0.3. The chaotic behavior of z[n] can be seen in
Fig. 8, where we plot x[n] given n. Although, z[n] is chaotic,
it is perfectly predictable, via (30) given two prior samples. In
Fig. 9, we plot the normalized total mean square error (MSE) of
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Fig. 7. Prediction results for a sample function of a nonlinear process given in
(28). The average normalized accumulated sequential prediction error for: a one-
dimensional binary context-tree algorithm with K = 4 using linear predictors
at each node; a sequential algorithm using RLS with quadratic kernels as given
in (29).
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Fig. 8. Henon map. z[n] = 1 — 1.4x[n — 1]? + 0.3z[n — 2]. The chaotic
behavior of the Henon map. Time evolution of x[n] with respect to n (upper
left). z[n] versus z[n — 1] (upper right). Zoomed version of the lower rectangle
(lower left). Zoomed version of the upper rectangle (lower right).

several context tree prediction algorithms with different depths
K =1,2,3,...,10,ie., >, (z[t] — #[t])?. Each context tree
algorithm uses an affine predictor &[n] = w;z[n — 1] + ¢; for
prediction. We also plot the MSE of a linear predictor which
uses the RLS algorithm. The order of the RLS predictor is 10.
The context tree algorithms have superior performance with re-
spect to the linear RLS predictor. The context tree algorithms
are able to model the nonlinear term x[n — 1]2 in the Henon
map while the RLS predictor tries to approximate the nonlin-
earity with linear terms. The performance of the context tree
algorithms improve as we increase the depth of the tree K. Al-
though the modeling power of the algorithms increase with the
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Fig. 9. Context tree prediction of the Henon map. MSE performance
of one-dimensional context tree prediction algorithms with depths K =
1,2,3,4,...,10 with uniform partition of the real line, using affine predictors.
The Henon map is given in (30). Also, in the same figure, MSE performance of
a linear predictor of order 10 using the RLS algorithm.

Henon Map, 1D and 2D context trees, k=8
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Fig. 10. Context tree prediction of the Henon map. MSE performance of ' =
8, one-dimensional (scalar) and two-dimensional context tree prediction algo-
rithms with constant and linear (affine) predictors in each region. The Henon
map is given in (30). Since the Henon map is perfectly predictable by two-di-
mensional linear context tree algorithm, the MSE decreases continuously as 2n
increases.

increased depth, the performance of the algorithms eventually
saturate since the Henon map contains a second-order term.

We then construct two-dimensional context tree algorithms
as in Section IV, where we again try to predict the same Henon
map. In Fig. 10, we plot the MSE of one-dimensional and two-
dimensional context tree algorithms where each algorithm has
depth K = 8. We plot context tree algorithms using constant
predictors &[n] = c¢; and affine predictors Z[n] = wjz[n —
1] + ¢; in one dimension and constant predictors £[n] = ¢; and
affine predictors £[n] = wy jz[n— 1]+ ws jz[n—1]+¢; intwo
dimensions. Since, the Henon map is perfectly predictable, the
MSE of the second-order linear (affine) context tree algorithm
continuously decreases with K.
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Fig. 11. Context tree prediction of the Henon map. P, (™) is shown at depth
10 in the context tree for various times, n = 100, 500, 1000, 2000, and 4000.
The structure of the attractor becomes readily apparent as n increases.

To observe the learning process of the context tree, we sim-
ulate the performance of a two-dimensional context tree algo-
rithm with depth K = 10 for the same Henon map. In Fig. 11,
we plot the probability P, (z7) assigned by the context tree
algorithm to the predictor in each region of [—A,., A,]?, for
n = 100, 500, 1000, 2000, 4000 as a two-dimensional image. In
the figure, darker regions correspond to smaller weights. Since
the assigned probability of each region determines the contribu-
tion of its predictor to the final prediction, the larger the weight
the greater the contribution of that region’s prediction to the final
output, from (20). As n increases, the weight distribution of each
region closely depicts the attractor of the Henon map plotted in
Fig. 11, i.e., the algorithm rapidly adapts to the underlying struc-
ture of the relation.

To further illustrate the operation of the context tree algo-
rithm, Fig. 12 depicts the probabilities assigned by the context
tree algorithm to each level of the context tree for the same
Henon map process. Here, we use a two-dimensional context
tree algorithm of depth 3 with affine predictors in each node.
The probability assignments determines how much weight is
given to the prediction of each partition in the final output by
the context tree. In the figure, the first bar corresponds to the
root probability. The second row (first level) has two bars for
the two children, the third row (second level) has four bars for
the four grandchildren, and finally fourth row has eight bars for
eight leaves. Fig. 12 illustrates how the weights initially favor
coarser partitions. As the data length increases, the context tree
algorithm shifts its weights from coarser models to finer models.

From this representative set of simulations, we observe that
the context tree algorithms provide considerable performance
gains with respect to linear models (even with different effective
window lengths) with similar computational complexity for va-
riety of different applications. The unknown nonlinearity in the
models are effectively resolved by the context tree approach.
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Fig. 12. Two-dimensional context tree prediction of the Henon map. The
weights assigned to the sequential predictors represented by the context tree
are shown. The first bar is the root probability. The second row has two bars for
the two children, the third has four bars for the four grandchildren, and finally
fourth has eight bars for eight leaves. The heights are the node probabilities,
corresponding to root node, first level, second level, and third level.

VII. CONCLUSION

In this paper, we consider the problem of piecewise linear
prediction from a competitive algorithm perspective. Using
context trees and methods based on sequential probability
assignment, we have shown a prediction algorithm whose total
squared prediction error is within O(In(n)) of that of the best
piecewise linear model tuned to the data in advance. We use
a method similar to context tree weighting to compete well
against a doubly exponential class of possible partitionings of
the regressor space, for which we pay at most a “structural
regret” proportional to the size of the best context tree. For each
partition, we use a universal linear predictor to compete against
the continuum of all possible affine models, for which we pay
at most a “parameter regret” of O(In(n)). Upper and lower
bounds on the regret are derived and scalar and vector predic-
tion algorithms are detailed and demonstrated with examples.
The resulting algorithms are efficient, with time complexity
only linear in the depth of the context tree and perform well for
a variety of data.
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