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We introduce a novel family of adaptive robust channel estimators for highly challenging underwater 
acoustic (UWA) channels. Since the underwater environment is highly non-stationary and subjected 
to impulsive noise, we use adaptive filtering techniques based on minimization of a logarithmic cost 
function, which results in a better trade-off between the convergence rate and the steady state 
performance of the algorithm. To improve the convergence performance of the conventional first and 
second order linear estimation methods while mitigating the stability issues related to impulsive noise, 
we intrinsically combine different norms of the error in the cost function using a logarithmic term. 
Hence, we achieve a comparable convergence rate to the faster algorithms, while significantly enhancing 
the stability against impulsive noise in such an adverse communication medium. Furthermore, we 
provide a thorough analysis for the tracking and steady-state performances of our proposed methods 
in the presence of impulsive noise. In our analysis, we not only consider the impulsive noise, but 
also take into account the frequency and phase offsets commonly experienced in real life experiments. 
We demonstrate the performance of our algorithms through highly realistic experiments performed on 
accurately simulated underwater acoustic channels.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Underwater acoustic (UWA) communication has attracted much 
attention in recent years due to proliferation of new and excit-
ing applications such as marine environmental monitoring and sea 
bottom resource exploitation [1–3]. However, due to the constant 
movement of waves, multi-path propagation, large delay spreads, 
Doppler effects, and frequency dependent propagation loss [3,4], 
the underwater acoustic channel is considered as one of the most 
detrimental communication mediums in use today [4,5]. In these 
mediums, channel equalization [6,7] plays a key role in providing 
reliable high data rate communication [3]. Note that, in order to 
combat the effects of long and time varying channel impulse re-
sponse (CIR), orthogonal frequency division multiplexing (OFDM) 
seems to be an elegant solution [8]. However, one needs an ac-
curate estimate of the time varying channel to be used for OFDM 
as well as equalization. Furthermore, due to rapidly changing and 
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unpredictable nature of underwater environment, such process-
ing should be adaptive [3]. Nevertheless, the impulsive nature of 
the ambient noise in UWA channels introduces stability issues for 
adaptive channel estimation [9,10]. To this end, we propose and 
analyze the performance of a family of new adaptive linear chan-
nel estimators, which provides a relatively fast convergence rate 
as well as strong stability against the ambient noise in the UWA 
channels.

Although the additive white Gaussian noise (AWGN) model is 
widely used in digital and wireless communication contexts, this 
model is insufficient to appropriately address the ambient noise in 
UWA channels [11–13]. For example, in warm shallow waters, the 
high frequency noise component is dominated by the “impulsive 
noise” [14–17] resulted from numerous noise sources such as ma-
rine life, shipping traffic, underwater explosives, and offshore oil 
exploration-production [18]. The impulsive noise consists of rela-
tively short duration, infrequent, high amplitude noise pulses. In 
this paper, in order to rectify the undesirable effects of UWA chan-
nels, especially to mitigate the effects of the impulsive noise, we 
introduce a radical approach to adaptive channel estimation.

In [19], the authors propose a low-complexity decision feed-
back equalizer, which employs a sphere detection-Viterbi algorithm 
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(SDVA) with two radii in a decision feedback equalization (DFE). 
[19] provides a simple operating condition for the SDVA, under 
which the algorithm only searches a small fraction of the lattice 
points lying between two radii, hence, provides a lower complex-
ity. However, the impulsive noise in underwater channels degener-
ates the performance of the SDVA-algorithm. Thus, some prepro-
cessing steps can reduce the impulsive noise effect and improve 
the performance. Also, in [20], for localization of multiple acoustic 
sources in an impulsive-noise environment, the authors employ a 
data-adaptive zero-memory nonlinear preprocessor to process each 
sample of the contaminated data to obtain less-noisy data. Specif-
ically, if the sample’s value is less than a threshold, they assume 
it is not affected by the impulsive noise, hence, its value does not 
change during the process. However, samples above the threshold 
are assumed to be corrupted by a large noise impulse and are sup-
pressed. Note that the threshold is determined based on the noise 
statistics, hence, one has to estimate the noise statistics.

Linear adaptive channel estimation methods (e.g., sign algo-
rithm (SA), least mean squares (LMS) or least mean fourth (LMF) 
algorithms [21,22]) are the simplest as well as low complexity 
methods. However, the conventional linear estimators either have 
a slow convergence speed (e.g., sign algorithm (SA)) or suffer 
from stability issues (e.g., LMF) in impulsive noise environments, 
hence, cannot fully address the problem [23]. These methods are 
commonly based on minimization of a cost function of the form 
C(em) � E[|em|k] (where E[.] indicates the expectation), using the 
stochastic gradient descent method [24,25]. However, there is al-
ways a trade-off between the “robustness” of such algorithms 
against impulsive noise and their convergence speed [23]. In this 
sense, the algorithms that use lower powers of the error as the 
cost function (e.g., SA [25]) provide a better robustness, while, the 
algorithms based on higher powers of the error, usually exhibit 
faster convergence [23].

The mixed norm algorithms, combining different norms of the 
error in the cost function, are used to achieve a better trade-off 
between robustness and convergence speed [26,27]. Nevertheless, 
optimization of the combination parameters in such algorithms 
needs “a priori” knowledge of the noise and input signal statistics 
[23]. On the contrary, the mixture of experts algorithms [28–30], 
adaptively learn the best combination parameters. However, such 
algorithms are infeasible in UWA scenarios due to the high com-
putational complexity resulted from running several different algo-
rithms in parallel [23,31].

Recently, in [32] and [33], the authors proposed recursive least 
squares (RLS)-type robust adaptive estimation and equalization 
methods, which leverage the sparsity of the underwater channels 
by adding an l0-norm to the cost function. However, the meth-
ods in [32] and [33] are not completely adaptive in the sense 
that they need a few threshold values to be determined in ad-
vance, and the values of these thresholds are highly dependent on 
the transmitted data statistics. In [34], a hyperbolic function, e.g., 
C(em) = cosh(em), is used as the cost function to inherently com-
bine different powers of the error. Moreover, [35] uses a sparse 
least mean p-power (LMP) algorithm to adaptively provide a ro-
bust estimate of the underwater channel.

In this paper, in order to obtain a comparable performance to 
the robust algorithms, while retaining the fast convergence of con-
ventional least square methods, we use a logarithmic function as a 
regularization term in the cost function of the well-known adap-
tive methods. In this sense, we choose a conventional method that 
uses a power of the error as the cost, e.g, least mean squares 
(LMS), and improve that method through adding a logarithmic 
term to its cost function. Due to the characteristics of the loga-
rithmic functions, when the error is high, e.g., when there is an 
impulse, the cost function resembles the cost function of the orig-
inal method, while for the small errors a correction term is added. 
The correction term includes the higher powers of the error, which 
yields a faster convergence. Hence, we intrinsically mitigate the 
effect of the impulsive noise pulses and provide an improved ro-
bustness, while increase the convergence speed when there is no 
impulsive noise.

Specifically, we present first and second order channel estima-
tion algorithms using the logarithmic cost. The first order methods, 
logarithmic cost least mean absolute (LCLMA) and logarithmic cost 
least mean squares (LCLMS), are based on the first and second 
powers of the error as in SA and LMS. Similarly, we use the first 
and second powers of the error to introduce logarithmic cost re-
cursive least squares (LCRLS), and logarithmic cost recursive least 
absolutes (LCRLA), which are second order (RLS-type) algorithms. 
An alternative design could use a conventional equalizer, aided by 
a preprocessing step that performs impulsive noise reduction. For 
instance, if OFDM is used, the probability density function of the 
noise-free signal is approximately Gaussian, since an OFDM signal 
consists of a sum of many independent and identically distributed 
signals and due to the Central Limit Theorem, results in a nearly 
Gaussian distributed signal [36]. Therefore, a Bayesian minimum 
mean squared error (MMSE) approach, applied to the signal-plus-
impulsive-noise, would reduce the impulsive noise [37,38]. Note 
that this approach would maximize the SNR at the output of the 
preprocessing step [38]. After reducing the impulsive noise in the 
preprocessing step, a conventional equalizer (designed for Gaussian 
noise) could be employed.

Moreover, we provide a thorough analysis of the tracking and 
steady state performance of our algorithms. In these analyses, in 
order to be consistent with the real world UWA channels, we as-
sume that there are frequency and phase offsets as well as impul-
sive noise in the channel. For the first order algorithms, we avoid 
mentioning all of the intermediate steps of the analyses, instead 
we discuss the important steps, use the results of [39], and estab-
lish the final results based on them. However, for the second order 
analyses, we completely explain the steps since it is a nontrivial 
extension of the existing analysis methods. We show the improved 
performance of our algorithms and the correctness of our analyses 
through highly realistic simulations.

The paper is organized as follows: In Section 2, we introduce 
the notation and describe the problem mathematically. Then, in 
Section 3, we provide a family of stable and fast converging chan-
nel estimators based on logarithmic cost functions. We provide the 
performance analysis for our methods in Section 4. We demon-
strate the performance of the presented methods through highly 
realistic simulations in Section 5 and conclude the paper with sev-
eral remarks in Section 6.

2. Problem description

2.1. Notations

All vectors are column vectors and are denoted by boldface 
lower case letters and all matrices are denoted by boldface up-
per case letters. For a vector x, xH is the Hermitian transpose. We 
denote the all zero vector of size L × 1 by 0L . In addition, E[x]
denotes the expectation of the random variable x, and Tr( A) de-
notes the trace of the matrix A . Also, the discrete time variables 
are shown as subscripts, while the continuous time variable t is 
parenthesized. Furthermore, for a vector w the squared l2-norm 
is defined as ‖w‖2 � w H w , and the weighted squared l2-norm is 
defined as ‖w‖2

P � w T P w , where P is a positive definite weight-
ing matrix.



D. Kari et al. / Digital Signal Processing 68 (2017) 57–68 59
Fig. 1. The block diagram of the model we use for the transmitted and received signals. The transmitted data {sm}m≥1 are modulated, and after pulse shaping with a raised 
cosine filter g(t) and up-conversion to the carrier frequency fc , pass through a time varying intersymbol interference (ISI) channel h(t, τ ). The received signal is the output 
of the ISI channel contaminated with the ambient noise n(t). The equalizer is fed with rm and generates the soft output ŝm . Q (ŝm) is the hard estimation for the mth

transmitted symbol. We use the hard estimates Q (ŝm) for adapting the channel estimator, and use the channel estimation to reduce the ISI.
2.2. Setup

As depicted in Fig. 1, we denote the received signal by r(t), 
r(t) ∈ R, and our aim is to determine the transmitted symbols 
{sm}m≥1. To transmit the symbols {sm}m≥1, we use the raised co-
sine pulse shaping filter g(t), which generates the signal s̃(t), and 
then up-convert the signal to the carrier frequency fc , and send 
it through the channel. Using the linear time varying convolution 
between s̃(t) and h(t, τ ) [40], the received signal at time t is

r(t) =
τmax∫
0

s̃(t − τ )h(t, τ )dτ + n(t), (1)

where s̃(t) is the transmitted signal after pulse shaping at time t . 
h(t, τ ) indicates the CIR at time t corresponding to the impulse 
sent at time t − τ and τmax shows the maximum delay spread of 
the channel. Also, n(t) is the ambient noise of the channel, which 
is represented as

n(t) = ng(t) + ni(t), (2)

where ng(t) indicates the white Gaussian part of the noise and 
ni(t) indicates the impulsive part. Note that the effects of time de-
lay and phase deviations are usually addressed at the front-end 
of the receiver, hence, in this paper, we do not deal with these 
problems explicitly. We then sample the received signal every Ts

seconds (Ts is the symbol duration) such that the discrete time 
channel model is represented as [40]

rm =
L−1∑
k=0

sm−khm,k + nm, (3)

and

nm = ng,m + ni,m, (4)

where L = �τmax/Ts� indicates the length of the CIR. In the fol-
lowing sections, we use the discrete time model of the channel to 
address the estimation and equalization problems. Note that (3) is 
a causal representation of the channel, i.e., the channel output at 
time m depends only on the transmitted symbols before m.

2.3. Doppler compensation

In order to compensate for the Doppler effects, a linear inter-
polation method is used to convert the sampling rate of the signal 
[41]. The complex baseband signal (after the matched filter), is 
sampled at four times the symbol rate and shown by ym′ . The 
output of the interpolator is then down-sampled to two samples 
Fig. 2. The block diagram of our adaptive channel estimator and equalizer. We 
present new algorithms for the channel estimation block (which determines how 
should ĥm be updated based on the error amount em), which yields improved per-
formance over the conventional methods in the impulsive noise environments.

per symbol shown by rm′′ , which is finally used as the input to the 
equalizer [41]. The adaptive resampling algorithm is given as

rm′′ = (Im − 1)ym′+1 + Im ym′ ,

Im+1 = Im + K pφm,

φm = arg
{

s̄mŝ∗
m

}
,

where K p ∈ [10−6, 10−4] is the phase tracking constant, and ŝm

is the output of the equalizer. In addition, in the training phase, 
s̄m = sm , and in the decision directed phase, s̄m indicates the hard 
estimate of the sm . Also, note that m′ ∈ {1, 3, 5, ...} and m′′ ∈
{1, 2, 3, ...} [41].

2.4. Channel estimation and causal ISI removal

Our aim is to estimate the communication channel, hm , and 
based on that, estimate the transmitted symbols {sm}m≥1 according 
to the channel outputs {rm}m≥1. We introduce a new adaptation 
method to obtain an accurate estimate of the causal part of the 
channel, denoted by ĥm . Mathematically, the output of the esti-

mated channel is r̂m = ĥ
T
msm , where sm � [sm, . . . , sm−L+1]T is the 

vector of the current and past L − 1 transmitted symbols. We use 
the error em = rm − r̂m to adapt the estimated channel after pro-
cessing each sample, as shown in Fig. 2. As depicted in Fig. 2, 
sm consists of the hard estimates of the transmitted symbols, i.e., 
in the training mode we use sm , however, in the decision directed 
mode we use the quantized estimates Q (ŝm), as the input to the 
channel estimator.

As depicted in Fig. 2, we first remove the inter-symbol inter-
ference (ISI) effect generated by the causal part of the channel, 
i.e., hm , to obtain “cleaned” symbols r̃m . We then use the past Nc
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cleaned symbols at each time, in the causal part of the equalizer, 
to further reduce the ISI effect. Since the channel has a length of L, 
in order to obtain cleaned symbols r̃m , we must remove the effect 
of the past L − 1 symbols from each received symbol rm , based on 
the estimated channel at time m. Therefore, inserting in a matrix 
form, we have

r̃m+1 = rm+1 − Ĥm[sm−Nc−L+2, ..., sm]T , (5)

where Ĥm is the channel convolutional matrix defined as

Ĥm �

⎛
⎜⎜⎜⎜⎜⎝

ĥ
T
m−Nc+1 0T

Nc−1

0 ĥ
T
m−Nc+2 0T

Nc−2
...

. . .
...

0T
Nc−1 ĥ

T
m

⎞
⎟⎟⎟⎟⎟⎠

Nc×(Nc+L−1)

.

In addition, rm = [rm−Nc+1, ..., rm] is the Nc × 1 received signal 
vector, and r̃m = [r̃m−Nc+1, ..., ̃rm] is the cleaned version of the re-
ceived signal vector (rm) to be used as the input of the causal part 
of the equalizer.

In order to update the channel estimate, i.e., ĥm , a cost func-
tion C(em) is defined, e.g., in LMS method the cost is defined as 
C(em) = E[|em|2]. Then, we derive an algorithm for updating ĥm

based on minimization of this cost function using the stochas-
tic gradient descent method [25]. Therefore, we update the tap 
weights vector as follows.

ĥm+1 = ĥm − 1

2
μ∇ĥm

C̃(em),

where ∇ĥm
C̃(em) denotes an instantaneous approximation of the 

gradient of the cost function C(em) with respect to ĥm , i.e., the 
gradient obtained by removing the expectation and taking the gra-
dient of the term inside [25]. As an example, in LMS method 
C(em) = E[|em|2], hence we update the tap weights vector of an 
LMS estimator as

ĥm+1 = ĥm + μemsm, (6)

where μ > 0 is the learning rate. Note that according to [25], for 
the LMS algorithm the learning rate (step size) should satisfy the 
following inequality:

μ ≤ 2

λmax

where λmax shows the maximum eigenvalue of the signal covari-
ance matrix.

The updating expression in (6) is the well-known LMS update. 
However, we seek to provide a more robust updating algorithm 
through minimization of a different cost function. Note that the 
cost functions of the form C(em) = E[|em|k], which consist of only 
the kth power of the error, either have a slow convergence, or 
do not perform well, from the stability viewpoint, in an impulsive 
noise environment [23]. Therefore, in Section 3, we use a loga-
rithmic term in the cost function, which intrinsically introduces 
different powers of the error into the cost function. As a result, 
when an impulsive error occurs, the algorithm mitigates the ef-
fect of that sample in updating the equalizer coefficients by simply 
using the lower order norms of the error, whereas in impulse-
free environments the algorithm accelerates the convergence using 
higher order norms of the error.

2.5. Channel equalization

To obtain the estimate ŝm , we use a linear channel equal-
izer, which is mathematically represented as ŝm = w T

m řm , where 
řm � [r̃m−Nc+1, . . . , ̃rm, rm+1, . . . , rm+Na ]T , Na and Nc represent 
the lengths of anti-causal and causal equalizers, respectively, and 
wm � [w−Nc+1,m, . . . , w Na,m]T is the tap weights vector of the lin-
ear equalizer at time m. We define the error in estimating the 
transmitted symbol sm as εm = sm − ŝm . We then use the conven-
tional normalized LMS (NLMS) method to update the equalizer. In 
the rest of the paper, we focus on the channel estimation part of 
the system.

3. Adaptive channel estimation based on logarithmic cost 
functions

In this section, we explain our method mathematically and in-
troduce two channel estimators based on the logarithmic costs 
[23]. Thus, we define the new cost as

C(em) � �(em) − 1

a
ln

(
1 + a�(em)

)
, (7)

where a > 0 is a design parameter. From the properties of the log-
arithmic function [23], we deduce that when a�(em) � 1

C(em) → a

2
�2(em) − a2

3
�3(em) + . . .

and,

C(em) → �(em), as em → ±∞.

It is straightforward to show that the new cost function C(em) is a 
convex function of em , if the cost function �(em) is convex. There-
fore, in the new algorithm, we seek to minimize a cost function 
that is mainly consisted of the first and second powers of the pri-
mary cost function �(em), based on the error amount.

3.1. First order methods

In this section, we use first order methods to adaptively adjust 
the channel estimate ĥm . For this purpose, we use the stochastic 
gradient method [25] to derive a recursion expression for updating 
ĥm . This yields,

ĥm+1 = ĥm − 1

2
μ∇ĥm

C(em)

= ĥm − μ
a�(em)

1 + a�(em)

[∇ĥm
�(em)

]
.

Particularly, in this framework, we adopt a well-known cost func-
tion, e.g., �(em) = E[|em|2], as the primary cost function �(em). 
Suppose that �(em) is the expectation of another function ϕ(em), 
i.e., �(em) = E[ϕ(em)]. Then, using the instantaneous approxima-
tion for �(em) [25], the general stochastic gradient update is given 
by

ĥm+1 = ĥm + μ
aϕ(em)

1 + aϕ(em)

[∇emϕ(em)
]
sm. (8)

We present two channel estimation methods based on the in-
troduced approach. We then show the superior performance of 
these methods through highly realistic experiments in Section 5.

1. The logarithmic cost least mean squares (LCLMS):
Here, we adopt ϕ(em) = |em|2, which (according to (8)) yields 
the following update on the tap weights vector

ĥm+1 = ĥm + μ
a |em|2

1 + a |em|2 [2em]s∗
m

= ĥm + μ′ em |em|2
1 + a |em|2 s∗

m.



D. Kari et al. / Digital Signal Processing 68 (2017) 57–68 61
2. The logarithmic cost least mean absolutes (LCLMA):
In this case, we adopt ϕ(em) = |em|, and according to (8), ob-
tain the following update on the tap weights vector,

ĥm+1 = ĥm + μ
a |em|

1 + a |em|
[
csgn(em)

]
s∗

m

where csgn(em) = 1√
2
(sign(Re(em)) + j sign(Im(em))), like 

in [39].

As shown in the simulations, the LCLMS algorithm results in an 
improved convergence speed over the conventional LMS algorithm, 
while achieving the comparable stability to LMS method. Similarly, 
we achieve an improved convergence speed performance over the 
conventional SA algorithm by using LCLMA algorithm, while pre-
serving the robustness against impulsive noise. Hence, these are 
elegant alternatives to the conventional methods for UWA channel 
estimation.

3.2. Second order methods

By defining the cost function as Jm �
∑m

i=0 λm−i C(ei), we seek 
to update ĥm in order to minimize Jm . Therefore, by solving 
∇ĥ Jm|ĥ=ĥm+1

= 0, we have

∇ĥ Jm =
m∑

i=0

λm−i∇ĥC(ei)

=
m∑

i=0

λm−i ∂C(ei)

∂ϕ(ei)

∂ϕ(ei)

∂ei
∇ĥei

=
m∑

i=0

λm−i aϕ(ei)

1 + aϕ(ei)

∂ϕ(ei)

∂ei
(−si)

=
m∑

i=0

λm−i
a ϕ(ei)

ei

1 + aϕ(ei)

∂ϕ(ei)

∂ei
(−si)ei

=
m∑

i=0

λm−i w(ei)(−si)
(
ri − sH

i ĥ
)
, (9)

where w(ei) =
a ϕ(ei)

ei

1 + aϕ(ei)

∂ϕ(ei)

∂ei
is considered as the weight of 

the ith sample. Finally, the equation ∇ĥ Jm|ĥ=ĥm+1
= 0 yields the 

following equation for ĥm+1

m∑
i=0

λm−i w(ei)si s
H
i ĥm+1 =

m∑
i=0

λm−i w(ei)siri .

Hence [24]

ĥm+1 = �−1
m ψm,

where �m = ∑m
i=0 λm−i w(ei)si sT

i and ψm = ∑m
i=0 λm−i w(ei)siri . 

We also observe that

�m = λ�m−1 + w(em)smsH
m, (10)

and

ψm = λψm−1 + w(em)smrm. (11)

Thus, by using the matrix inversion lemma [25], �−1
m can be cal-

culated as follows.

�−1
m = λ−1

(
�−1

m−1 − 1
λ + sH

m�−1 sm
�−1

m−1smsH
m�−1

m−1

)
.

w(em) m−1
Now by defining P m � �−1
m , and gm � w(em)P m−1sm

λ+w(em)sH
m P m−1sm

, we have

Pm = λ−1(P m−1 − gmsH
m Pm−1

)
, (12)

and rearranging the terms in the definition of gm yields

gm = w(em)

λ

[
P m−1 − gmsH

m Pm−1
]
sm

= w(em)P msm. (13)

Substituting (11) and (12) in the expression ĥm+1 = P mψm and 
expanding it results in

ĥm+1 = λP mψm−1 + w(em)P msmrm

= (
P m−1 − gmsH

m P m−1
)
ψm−1 + gmrm

= ĥm + gm

(
rm − sH

m ĥm
)
. (14)

Hence, the final second order updating algorithm is

em = rm − sH
m ĥm,

gm = w(em)P m−1sm

λ + w(em)sH
m P m−1sm

,

ĥm+1 = ĥm + em gm,

Pm = λ−1(P m−1 − gmsH
m Pm−1

)
, (15)

where P 0 = v−1 I , and 0 < v � 1. We point out that for the 
ϕ(em) = |em|2, we have w(em) = 2a |em|2

1+a |em|2 . However, according to 
(9) multiplying the w(em) by a constant term does not affect 
the algorithm. Therefore, we use w(em) = |em|2

1+a |em|2 in (15) to ob-

tain the logarithmic cost recursive least squares (LCRLS) algorithm. 
Moreover, by using ϕ(em) = |em|, we achieve w(em) = 1

1+a |em| , 
which results in the logarithmic cost recursive least absolutes 
(LCRLA) algorithm.

4. Performance analysis

In this section we provide a thorough analysis for the mean 
square error (MSE) performance of the proposed methods. Since 
the channel is highly time-varying, we use the notion of excess 
MSE (EMSE) as in [25]. Furthermore, in order to be more realistic, 
we assume carrier frequency offset as well as impulsive ambient 
noise. We first present the impulsive noise model used in the anal-
yses, then we establish our analyses based on the widely used 
assumptions in the literature. Note that although for the sake of 
notational simplicity, we assume a = 1 in all algorithms, the re-
sults can be readily extended to other values of a.

In order to analyze the tracking performance of the introduced 
algorithms, we assume a random walk model [25] for the discrete 
channel vector hm that yields the minimum mean squared error 
such that

hm = h + θm,

θm+1 = αθm + qm. (16)

Moreover, due to the carrier offsets, we consider the following 
model for the received data

rm = sH
mhme j
m + nm. (17)

We define h̃m � hme j
m − ĥm and qm ∈ R
L is a zero-mean vector 

process with covariance matrix E[qmqH
m] = Q .

MSE = σ 2
n + lim

m→∞|sH
m h̃m|2. (18)

We define the EMSE as
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ζ � lim
m→∞|sH

m h̃m|2 = lim
m→∞|ea,m|2. (19)

We next introduce the impulsive noise model we use in our anal-
yses.

Impulsive noise model: Since the received signal is subjected 
to impulsive noise, we model the estimation noise as a summation 
of two independent random terms [42,43] as

nm = ng,m + zm ni,m,

where ng,m is the ordinary AWGN noise signal that is zero-mean 
Gaussian with variance σ 2

g and ni,m is the impulsive part of the 
noise that is also a zero-mean Gaussian random process with a 
significantly large variance σ 2

i . Here, zm is generated through a 
Bernoulli random process and determines the occurrence of the 
impulses in the noise signal with p Z (zm = 1) = νi and p Z (zm =
0) = 1 − νi , where νi is the frequency of the impulses. The overall 
probability density function of the noise signal nm is given by

pn(nm) = 1 − νi√
2πσg

exp

(
− n2

m

2σ 2
g

)
+ νi√

2πσn
exp

(
− n2

m

2σ 2
n

)
,

where σ 2
n = σ 2

g + σ 2
i .

4.1. MSE analysis of the first order methods

Assuming that qm is independent from the received and noise 
signals, at the steady state, we have the following general variance 
relation for an adaptive filter with the error nonlinearity g(em)

[25,39],

2Re
{

E
[
e∗

a,m g(em)
]}

= μE
[‖sm‖2|g(em)|2] + μ−1Tr( Q )

+ μ−1|1 − e j
|2‖h‖2 + μ−1|1 − αe j
|2Tr(�)

− 2μ−1Re
{(

1 − e− j
)
hE

× [(
h̃m−1 − μs∗

m g(em)
)
e− j
(m−1)

]}
− 2μ−1Re

{(
1 − α∗e− j
)

hE

× [
θ∗

m−1

(
h̃m−1 − μs∗

m g(em)
)
e− j
(m−1)

]}
, (20)

where

� � lim
m→∞ E

[
θmθ∗

m

] = 1

1 − |α|2 Q ,

and g(em) is the nonlinear error function [44]. Moreover, em =
ea,m + nm , in which ea,m = smh̃m is a priori estimation error and 
nm is the estimation noise, i.e., the error resulted from the optimal 
linear estimator. For the proposed algorithms, g(em) is defined as

g(em) � ∂ϕ(em)

∂em

ϕ(em)

1 + ϕ(em)
. (21)

We note that in an impulse-free environment, i.e., when em � 1, 
we have

aϕ(em)

1 + aϕ(em)
≈ aϕ(em). (22)

On the other hand, in an impulsive noise environment we have

aϕ(em)

1 + aϕ(em)
≈ 1. (23)

Therefore, we decompose the left hand side of (20) as
E
[|ea,m|2] = E

[|ea,m|2 | zm = 1
]

p Z (zm = 1)

+ E
[|ea,m|2 | zm = 0

]
p Z (zm = 0)

= E

[
|ea,m|2 | g(em) = ∂ϕ(em)

∂em

]
νi

+ E

[
|ea,m|2 | g(em) = ∂ϕ(em)

∂em
ϕ(em)

]
(1 − νi), (24)

and we also note that

E
[
e∗

a,m g(em) | zm = 1
] = E

[
e∗

a,m
∂ϕ(e(t))

∂e(t)

]
,

E
[
e∗

a,m g(em) | zm = 0
] = E

[
e∗

a,m
∂ϕ(e(t))

∂e(t)
ϕ

(
e(t)

)]
. (25)

We use (25) to calculate the terms on the right hand side of (24). 
We also note that for the LCLMS and LCLMA methods, ϕ(em) =
|em|2 and ϕ(em) = |em|, respectively. In our analysis, we use the 
following assumptions:

Assumption 1. The noise signal nm is a zero-mean, independently, 
and identically distributed (i.i.d.), Gaussian random variable, and 
independent from sm . The transmitted signal sm is also a zero-
mean i.i.d. Gaussian random variable with the auto-correlation ma-
trix Rs � E[smsH

m].

Assumption 2. The a priori estimation error ea,m has Gaussian 
distribution. This assumption is reasonable by the Assumption 1, 
whenever Lc is sufficiently large and the learning rate μ is suffi-
ciently small [44].

Assumption 3. The random processes ‖sm‖2
P m

and g2(em) are un-

correlated, which results in the following separation

E
[‖sm‖2

P m
g2(em)

] = E
[‖sm‖2

P m

]
E
[

g2(em)
]
.

Based on (20), Assumptions 1–3, and the Price’s Theorem [25]
for E[e∗

a,m csgn(em)], it can be straightforwardly shown that [25,
39]

E
[|ea,m|2 | g(em) = csgn(em)

] = ζ SA

E
[|ea,m|2 | g(em) = em

] = ζ LMS

E
[|ea,m|2 | g(em) = e3

m

] = ζ LMF. (26)

However, in [39], the excess MSE for SA, LMS, and LMF methods 
are calculated as follows,

ζ LCLMA = νiζ
SA + (1 − νi)ζ

LMS

= νi
2μ Tr(Rs) + μ−1β(η)

2η

+ (1 − νi)
μσ 2

g Tr(Rs) + μ−1β(1)

2
, (27)

where

η = 2√
π(ζ S A + σ 2

n )
,

β(γ ) = |1 − e j
|2 Re
{

Tr
((

I − 2(Xγ − μRs)
)
hhH)}

+ |1 − αe j
|2 Re
{

Tr
((

I − 2
(
α∗ Xγ ,α − μRs

))
�

)}
+ Re

{
Tr

((
I + 2

(
e j
 − α∗)Xα

)
Q

)}
, (28)

and for ∀γ
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Xγ = (I − μγ Rs)
[

I − e j
(I − μγ Rs)−1]−1
,

Xγ ,α = (I − μγ Rs)
[
α∗ I − e j
(I − μγ Rs)−1]−1

. (29)

Similarly, we obtain the following results for the excess MSE of the 
LCLMS method.

ζ LCLMS = νiζ
LMS + (1 − νi)ζ

LMF

= νi
μσ 2

n Tr(Rs) + μ−1β(1)

2

+ (1 − νi)
μξ6 Tr(Rs) + μ−1β(3σ 2

g )

6σ 2
g

, (30)

where

ξ6 � E
[|ng,m|6]. (31)

4.2. MSE analysis of the second order methods

Here, we use the same assumptions as the first order analy-
ses. According to (13), and defining g(em) � em w(em), we have the 
recursion ĥm+1 = ĥm + g(em)P msm . Thus,

h̃m+1 = h̃m − P msm g(em) + cme j
m, (32)

which yields the following relation between the a priori and a pos-
teriori error estimations

ep,m = sH
m

(
h̃m+1 − cme j
m)

= ea,m − ‖sm‖2
P m

g(em). (33)

Equivalently, we observe that

h̃m+1 − cme j
m = h̃m − P msm
ea,m − ep,m

‖sm‖2
P m

. (34)

Therefore, we have

‖h̃m+1 − cme j
m‖2
P −1

m

= ‖h̃m‖2
P −1

m

+ |ep,m|2 − |ea,m|2
‖sm‖2

P m

. (35)

Assuming that P −1
m converges to its mean value, E[P −1

m ] = P −1, 
in the steady state, we have E[‖h̃m+1‖2

P −1
m+1

] = E[‖h̃m‖2
P −1

m

] [39], 

which results in

E
[
e∗

a,m g(em)
] = E

[‖sm‖2
P m

|g(em)|2] + ‖cm‖2
P −1

m

+ 2Re
{

E
[
e− j
mc H

m P −1
m

(
h̃m − P msm g(em)

)]}
.

(36)

We next investigate three cases: g(em) = em , g(em) = em|em|2
and g(em) = sign(em). We define vm � E[P −1

m h̃m] and � �
E[P −1

m h̃mθ H
m]. In addition, we assume that in the steady state, P m

is independent of h̃m and cm .

1. For g(em) = em ,

vm+1 = (I − Rs)vm + P −1h
(
e j
 − 1

)
e j
m,

�m+1 = α(I − Rs)�m − P −1Ce j
m. (37)

With a method similar to [39], we obtain

E
[

P −1
m h̃m

] = ve j
m,

E
[

P −1
m h̃mθ T

m

] = �e j
m, (38)

where
v = [
I − Rs − e j
 I

]−1
P −1h

(
1 − e j
)

,

� = [
α(I − Rs) − e j
 I

]−1
P −1C , (39)

and

C = α∗[1 − αe j
]
� − e j
 Q , (40)

which yields the following expression for the excess MSE
[
1 − Tr(Rs P )

]
ζem

= Tr
(

P −1 Q
) + |1 − e j
|2‖h‖2 + |1 − αe j
|2Tr

(
P −1�

)
− 2Re

{(
1 − e− j
)

hT (I − Rs)v

+ Tr
[(

1 − α∗e− j
)
(I − Rs)�

]}
. (41)

2. For g(em) = em|em|2.
Since in our final analysis, this case appears when the noise 
is Gaussian (non-impulsive), we assume that the noise power 
is σ 2

g . Furthermore, we use the assumption |ea,m|2 � σ 2
g [39], 

hence by substituting g(em) in (36) and simplifying the result, 
we obtain the following expression for EMSE:
[
3σ 2

g − 15ξ4Tr(Rs P )
]
ζem|em|2

= ξ6Tr(Rs P ) + Tr
(

P −1 Q
)

+ |1 − e j
|2‖h‖2 + |1 − αe j
|2Tr
(

P −1�
)
. (42)

3. For g(em) = csgn(em).
By using the price theorem, we have

η ζcsgn(em)

= Tr(Rs P ) + Tr
(

P −1 Q
) + |1 − e j
|2‖h‖2

+ |1 − αe j
|2Tr
(

P −1�
)

− 2Re
{(

1 − e− j
)
hT (I − ηRs)v

+ Tr
[(

1 − α∗e− j
)
(I − ηRs)�

]}
, (43)

where η =
√

2
π (ζ+σ 2

n )
. Solving this equation for ζ , we obtain 

the EMSE.

Finally, we achieve the following expressions for the EMSE of 
the second order methods.

ζ LCRLS = νiζem + (1 − νi)ζem|em|2 , (44)

and

ζ LCRLA = νiζcsgn(em) + (1 − νi)ζem . (45)

4.3. Verification of the analytical results

We use a random 10-tap channel to transmit 10000 bits gener-
ated by a Turyn sequence [45] (without pule shaping), and we con-
sider that the channel follows the model of (16), where σq = 10−4, 

 = 10−5 and α = 0.9. The Gaussian part of the noise has a vari-
ance of 10−6, while that of the impulsive part is 10−2. We average 
the results over 30 iterations. According to the results in Figs. 3
and 4, we see that there is a good match between the theoretical 
and simulation results.

5. Simulation results

5.1. Setup

In this section, we examine the performance of our algorithm 
under a highly realistic underwater acoustic channel equalization 
scenario through a highly accurate modeling of the underwater 



64 D. Kari et al. / Digital Signal Processing 68 (2017) 57–68
Fig. 3. The comparison between the simulation results and theoretical results for 
the MSE of our first order methods.

Fig. 4. The comparison between the simulation results and theoretical results for 
the MSE of our second order methods.

channels introduced in [46]. We add impulsive noise to the chan-
nel output to compare the robustness of the algorithms against 
impulsive noise. The simulation configurations and the parame-
ters used for simulating the channel are presented in the Table 1. 
We send 60000 bits generated by repeating a Turyn sequence 
[45] (with a length of 28 bits), over the simulated UWA chan-
nel shown in Fig. 5. In addition, the system setup is the same 
as the one described at Section 2.2. Also, we calculate the SNR 
after down converting and matched filtering (i.e., from the base-
band signal). The step sizes are set to μ = 0.01 for all algo-
rithms. In all of the algorithms we use a 10-tap NLMS equal-
izer, with the causal and anti-causal parts each of length 5. The 
length of the channel estimator is set to 140, since according to 
Fig. 5, τmax ≈ 35 ms and Ts = 1/4 ms (because the symbol rate is 
4 kHz).

We use a raised cosine pulse shaped signal with a roll-off factor 
of 0.25 and transmit the data at a rate of 4k symbol , i.e., each sym-
second
Table 1
The simulated channel configurations.

Parameters Values

Transmitter (Tx) depth 80 m
Receiver (Rx) depth 50 m
Distance between Tx and Rx 1 km
Carrier frequency ( fc ) 15 kHz
Signal bandwidth 5 kHz
Sample rate 16 kHz
Frequency resolution (df ) 16 Hz
Time resolution (dt) 1/16 ms
Symbol rate 4 kHz
Maximum multipath delay (τmax) 35 ms
Coherence time of the small scale variants (T S S ) 0.4 s
Total duration of simulated channel (Ttot ) 16 s

bol has a duration of 0.25 ms. Since we use the BPSK modulation, 
the signal bandwidth is BW = (1 + β)R = (1 + 0.25) × 4 kHz =
5 kHz, where β and R are roll-off factor and the transmitting rate, 
respectively. We use 4 samples to represent each symbol, hence, 
the time resolution of the signal (the time distance between two 
signal samples) is Ts = 1/16 ms.

In order to simulate the channel, we should use a time reso-
lution dt = Ts = 1/16 ms, which corresponds to using a sample 
rate of 16 kHz. Moreover, in practice, the maximum delay of an 
underwater channel is usually less than 50 ms [46], hence, we 
will observe Tobs = 62.5 ms of the channel. One may note that 
the choice of Tobs implies the frequency resolution we use for 
simulating the channel, i.e., df = 1/Tobs = 16 Hz. Note that since 
the maximum delay of the channel is around 35 ms, the effective 
channel length is almost 35/0.25 = 140 symbol durations. Also, we 
use a coherence time of T S S = 400 ms, since according to [5], for 
a general purpose design one should consider a coherence time of 
several hundred milliseconds. Furthermore, the sound speed in the 
water for this experiment is c = 1500 m/s [47] and the spreading 
factor is set to k = 1.7 [46].

The results are averaged over 30 repetitions, and show the su-
perior performance of our robust algorithm over other methods. 
We compare the bit error rate (BER) as well as the normalized 
time mean squared errors (MSE) of different algorithms to show 
the efficacy of our methods. In particular, to precisely evaluate the 
tracking performance of the algorithms, we compute the MSE ex-
actly after the causal ISI removal block, i.e., the MSE at time step 
n is defined as MSE � 1

n

∑n
m=1(sm − r̃m)2.

5.2. Results and discussion

We perform two experiments to evaluate the performance of 
the algorithms in (1) different SNR values (2) and different im-
pulse probabilities. In the first experiment, in order to indicate the 
BER vs. SNR performance of our algorithms, i.e, LCLMA, LCLMS, 
LCRLS and LCRLA, we use a mixture of Gaussian and a 5% impul-
sive noise model, i.e., νi = 0.05, with the variance (power) of the 
impulsive noise being set to 104 times that of the Gaussian noise. 
In these experiments, we compare the BER and MSE of our meth-
ods with those of the conventional DFE and the state-of-the-art 
algorithms in the literature including: reweighted zero-attracting 
least mean p-power (RZALMP) [35], improved least sum of expo-
nentials (ILSE) [34], l0-RLS [32] (indicated as LZRLS in the figures), 
as well as the conventional SA, RLS and LMS algorithms. We em-
phasize that all of these algorithms are designed to combat the 
impulsive noise through minimization of different cost functions 
summarized in Table 2. For the sake of clarity, we demonstrate the 
results of each experiment in two different plots, one for the first 
order algorithms, i.e., LCLMA, LCLMS, LMS, SA, ILSE, RZALMP and 
another for the second order algorithms, i.e., LCRLA, LCRLS, RLS 
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Fig. 5. Time evolution of the magnitude baseband impulse response of the generated channel [46].
Table 2
Cost functions of the competing algorithms.

Algorithm Cost function

SA |em|
LMS |em|2
LCLMS |em|2 − 1

a ln(1 + a|em|2)

LCLMA |em| − 1
a ln(1 + a|em|)

ILSE 1
λ

cosh(λem)

RZALMP |em|p + λ
L∑

i=1
log(1 + |ĥi |

δ
)

RLS
m∑

i=1
λm−i |ei |2

LCRLS
m∑

i=1
λm−i |ei |2 − 1

a ln(1 + a
m∑

i=1
λm−i |ei |2)

LCRLA
m∑

i=1
λm−i |ei | − 1

a ln(1 + a
m∑

i=1
λm−i |ei |)

l0-RLS
m∑

i=0
λm−i |ei |2 + ζ‖ĥn‖0, where ‖ĥn‖0 ≈

K−1∑
k=0

(1 − exp(−η|ĥk|))

Table 3
Computational complexity comparison of different algorithms. Number of each op-
eration (on real numbers) needed by different algorithms per one sample processing 
is provided in the table. We have assumed that the exponentiating to a non-integer 
number needs M multiplication and N additions.

Algorithm × + / sign

SA 6L 4L 2
LMS 8L + 2 8L
LCLMS 2L + 6 2L + 1 1
LCLMA 6L + 3 4L + 1 1 2
ILSE 6L + 2M + 2 4L + 2N + 1 1
RZALMP 12L + M 7L + N 2L 2L + 2
RLS 14L2 + 10L + 1 12L2 + 4L − 1 2L + 1
LCRLS 14L2 + 10L + 4 12L2 + 4L 2L + 2
LCRLA 14L2 + 10L + 2 12L2 + 4L 2L + 2
l0-RLS 30L2 + 11L + LM + 4 29L2 − 4L + LN + 2 2L + 3 2L

and l0-RLS. We have also provided the complexity comparisons of 
different methods in Table 3.

As shown in the Figs. 6 and 7, our algorithms outperform all 
other algorithms in all SNR values. Also, observe that the conven-
tional DFE cannot perform well in lower SNRs, while in high SNRs, 
it delivers a comparable performance to our methods. Moreover, 
the Figs. 8 and 9 depict the MSE results for the first order and sec-
ond order algorithms over time at SNR = 20 dB, respectively (one
can observe the MSE comparison at first time steps in Figs. 10 and 
11). Again, the MSE results in Figs. 8 and 9, show how our algo-
rithms can successfully track the channel variations in this highly 
Fig. 6. BER vs SNR of the first order algorithms, in a 5% impulsive noise environ-
ment. This figure shows the superior performance of LCLMS and LCLMA algorithms.

Fig. 7. BER vs SNR of the second order algorithms, in a 5% impulsive noise environ-
ment. This figure shows the superior performance of LCRLS algorithm.
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Fig. 8. MSE of the first order algorithms, in 5% impulsive noise environment. This 
figure shows the superior convergence performance of the LCLMS and LCLMA meth-
ods at SNR = 20 dB.

Fig. 9. MSE of the second order algorithms, in 5% impulsive noise environment. 
This figure shows the superior convergence performance of the LCRLS method at 
SNR = 20 dB.

non-stationary and impulsive noise environment, yielding a supe-
rior performance related to the other competitors.

We also investigate the effect of the impulse probability, νi , 
on the performance of the proposed algorithms. To this end, we 
set the SNR to 20 dB and obtain the BER at different impulse 
probabilities, as shown in Figs. 12 and 13. Based on these sim-
ulations, when the impulse probability increases, our algorithms 
significantly outperform other methods. This superior performance 
makes our algorithms suitable candidates for the highly impulsive 
noise real life channels.

6. Conclusion

In this paper, we presented a novel family of linear channel 
estimation algorithms based on the logarithmic cost functions. 
Specifically, we introduce two first order methods, i.e., LCLMA 
Fig. 10. MSE comparison for different first order methods.

Fig. 11. MSE comparison for different second order methods.

and LCLMS, as well as two second order methods, i.e., LCRLA 
and LCRLS, as robust adaptive estimators for underwater acoustic 
channels. We implement these algorithms in a decision feedback 
equalization framework and remove the ISI in two consecutive 
stages, i.e., a channel estimation based equalizer followed by a 
blind equalizer. Our methods achieve a comparable convergence 
rate to the algorithms seeking to minimize higher order norms 
of the error, while maintaining the same stability of the lower 
order norm methods, with similar computational complexity to 
the conventional methods. We provide the tracking and steady-
state performance analysis of the proposed algorithms both in the 
impulse-free and impulsive noise environments, in the presence of 
frequency and phase offsets, which are among the common impair-
ments in underwater acoustic communications. Finally, we show 
the enhanced performance of the new algorithms in a highly real-
istic UWA communication scenario.
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Fig. 12. BER at different impulse probabilities for the first order algorithms. The 
experiments are done at SNR = 20 dB.

Fig. 13. BER at different impulse probabilities for the second order algorithms. The 
experiments are done at SNR = 20 dB.
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