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Abstract This paper considers the problem of online piece-
wise linear regression for big data applications.We introduce
an algorithm, which sequentially achieves the performance
of the best piecewise linear (affine) model with optimal par-
tition of the space of the regressor vectors in an individual
sequence manner. To this end, our algorithm constructs a
class of 2D sequential piecewise linear models over a set
of partitions of the regressor space and efficiently combines
them in themixture-of-experts setting.We show that the algo-
rithm is highly efficient with computational complexity of
only O(mD2), where m is the dimension of the regressor
vectors. This efficient computational complexity is achieved
by efficiently representing all of the 2D models using a “lex-
icographical splitting graph.” We analyze the performance
of our algorithm without any statistical assumptions, i.e., our
results are guaranteed to hold. Furthermore, we demonstrate
the effectiveness of our algorithm over the well-known data
sets in the machine learning literature with computational
complexity fraction of the state of the art.
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1 Introduction

We study online nonlinear regression and introduce a highly
efficient and effective algorithm suitable for big data appli-
cations. Nonlinear regression and adaptive filtering are
extensively studied problems in the signal processing [1,2]
and machine learning [3] literatures, especially for applica-
tions where linear modeling [4] does not provide satisfactory
results. However, in contemporary big data applications, the
amount, dimensionality, and streaming rate of the data to be
processed are significantly large compared to the classical
frameworks [5]. Hence, we need online algorithms, which
process the data in a sequential manner and then discard the
processed data. Moreover, for such applications, the com-
putational complexity is an important issue [5]. To this end,
we introduce an online nonlinear regression algorithmwith a
significantly low computational complexity while providing
superior modeling power.

In the regressionproblem, theobjective is tofinda function
to model the relationship between given regressor vectors
and desired data. As detailed later, this generic setup can
be applied in a wide range of problems including prediction
and modeling problems. Since the class of nonlinear models
is too powerful to optimize for [2], we consider piecewise
linear models, which can avoid overfitting while accurately
modeling the nonlinear relationship between the desired data
and the regressor vectors [6]. In such models, the space of
regressor vectors is divided into several disjoint regions, and
in each region, an independent linear model is used. Note
that in order to provide satisfactory results, the optimal par-
tition of the regressor space should be known. However, in
real-world applications, there is no prior information about
the optimal partition of the regressor space. Using tree-based
regression algorithms [2,7] is a common approach in such
scenarios. These algorithms form a class of models over a
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set of partitions of the regressor space and adaptively com-
bine these models, such that the combination asymptotically
achieves the performance of the best model in the class. In
particular, in nonstationary environments, where the opti-
mal partition varies over time, this adaptive combination
significantly improves the performance, in comparison to
the models over fixed partitions. Furthermore, using hier-
archical characteristics of trees leads to drastic reduction in
computational complexity of themodels combination [2] and
makes these algorithms appropriate for big data applications.
However, the partitioning technique used in most of previous
studies on tree-based nonlinear regression problem is binary
partitioning [2,7]. It is shown in [2] that given a set of D fixed
splitting positions in the regressor space, the binary tree rep-
resents roughly 1.5D+1 different partitions of the regressor
space and the piecewise linear models over these partitions.
However, 2D different partitions can be built using D given
splitters, most of which are not represented by the binary
trees.

In this paper, we use the lexicographical splitting graph
[8], in the regression context for the first time in the litera-
ture. We propose an algorithm, which given a set of D fixed
splitting positions, builds a sequential piecewise linearmodel
over all of the 2D possible partitions, and combines them
with computational complexity of only O(D2). Hence, we
asymptotically achieve the performance of the optimal piece-
wise linear model, in the accumulated squared error sense,
without any statistical assumptions on the data. Note that
when the true partition of the regressor space is one of the
lexicographical partitions, but none of the binary partitions,
the performance of our algorithm is significantly better than
binary tree-based algorithms. Hence, our algorithm is more
generic, compared to the binary tree-based algorithms. We
point out that our results are guaranteed to hold in an indi-
vidual sequence manner [9].

Our main contributions include: (1) We propose a novel,
highly efficient and effective nonlinear regression algorithm
suitable for big data applications; (2) we show that our algo-
rithm asymptotically achieves the performance of the best
piecewise linear model, over the optimal partition of the
regressor space demonstrating the optimality in a strong
mathematical sense without any statistical assumptions; (3)
we show that even though our algorithm combines 2D dif-
ferent sequential piecewise linear models, its computational
complexity is just of O(D2); (4) in our simulations, we show
that the proposed algorithm provides significantly better per-
formance compared to otherwell-knownnonlinear filters and
regression algorithms.

The remainder of the paper is as follows. In Sect. 2, we
provide the problem description and explain the challenges
using an example.We introduce and discuss the performance
of our algorithm in Sect. 3. Finally in Sect. 4, we demon-
strate the performance of the introduced algorithm over the

well-known data sets in the machine learning literature and
a synthetic scenario.

2 Problem description

In this paper, all vectors are column vectors and denoted by
boldface lower case letters. For a K -element vector u, u{i}
represents the i th element, uT is the ordinary transpose, and
‖u‖1 = ∑K

i=1 |u{i}| is the L1-norm of u, where |u{i}| is the
absolute value of u{i}. We study sequential nonlinear regres-
sion, where at each round t , we observe a regressor vector xt ,
xt ∈ [−A, A]m , and predict a desired data dt ∈ R, using a
sequential nonlinear regression function ft (·), such that our
predict d̂t is d̂t = ft (xt ). After predicting d̂t , we observe the
desired data dt and suffer a loss according to dt and d̂t , i.e.,
l(dt , d̂t ). Then, using the observed dt , we update ft (·). Using
this update procedure, we seek to minimize the accumulated
loss function in an n round trial, i.e.,

∑n
t=1 l(dt , d̂t ). Note

that n is not known or used in this paper for optimization,
i.e., we work in a truly sequential manner [2]. In this paper,
we use the squared error function as the loss function due to
notational simplicity, i.e., l(dt , d̂t ) = (dt − d̂t )2. In Sect. 3.6,
we show how to modify the algorithm to use different loss
functions.

The regret of a sequential regression algorithmA , which
produces regression functions ft (·), against a class of fixed
regression functions, i.e., S = { f (1), f (2), . . .}, is defined
as

R(A ,S ) =
n∑

t=1

l(dt , ft (xt )) − min
f (i)∈S

n∑

t=1

l(dt , f (i)(xt )).

(1)

Note that if the regret grows sublinearly as n increases, i.e.,
R(A ,S ) < O(n), then the average regret per round, i.e.,
R(A ,S )/n, tends to zero as n goes to infinity, whichmeans
that the sequential algorithm A asymptotically achieves the
performance of the best fixed regression function inS .

Given a partition of the regressor space, i.e., Ri for i =
1, 2, . . . , P , where Ri ⊂ [−A, A]m , ∪P

p=1Rp = [−A, A]m ,
and Ri∩R j = ∅ for∀i �= j , we define a sequential piecewise
linear regression (SPLR) function as

ft (xt ) = vt,I (xt )
T xt + bt,I (xt ), (2)

where I (xt ) = p if xt ∈ Rp for p = 1, 2, . . . , P . For the
sake of notational simplicity, with an abuse of notation, we
rearrange (2) as

ft (xt ) = vt,I (xt )
T xt , (3)

where xt = [xt ; 1] and vt,I (xt ) = [vt,I (xt ); bt,I (xt )].
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(a) (b)

Fig. 1 Nonlinear regressionwith given partition and arbitrary partition

We use SPLR functions as our nonlinear regression func-
tion. In piecewise linear regression with squared error loss
function, if the optimal P-region partition of the regressor
space is given, we can consider the problem as a collec-
tion of P independent sequential linear regression problems.
Hence, the well-known least mean square (LMS) algorithm
[10] can be used for each region of the given partition in
order to search for the optimal linear regression function in
a sequential manner.

We emphasize that the performance of the piecewise
linear regression algorithm heavily depends on the correct
selection of the partition of the regressor space. As an exam-
ple, in Fig. 1, a set of particular dt and xt pairs for scalar
regressors xt = xt are shown, where the underlying rela-
tionship is defined using the partition shown in Fig. 1a.
If one uses the regions of the partition determined in Fig.
1a, i.e., {R∗

1 , R
∗
2 , R

∗
3}, and runs an LMS algorithm on each

region of this partition, the SPLR function determined by
{vt,1, vt,2, vt,3}, seeks the piecewise linear function deter-
mined by {v∗

1, v
∗
2, v

∗
3} as shown in Fig. 1a. However, if

one wrongly commits to the partition given in Fig. 1b, i.e.,
{R1, R2, R3}, the performance severely degrades, because
the SPLR function seeks the wrong function determined by
{v1, v2 ,v3}, in Fig. 1b.Here,we assumenopriori information
about the correct partition of the regressor space. Hence, we
seek to find an algorithm to search for the best fixed piece-
wise linear regression function over the unknown optimal
partition of the regressor space.

3 A lexicographical sequential algorithm

In order to search for the best SPLR function, we form a
class of lexicographical partitions of the regressor space and
build SPLR model over each one of them. As detailed in the
following sections, each model runs an LMS algorithm in
each region of its corresponding partition in order to seek the
best linear regression function in each region, and forms an
SPLR function. At each round, each model uses its corre-

Spli�ng Posi�ons

1)

2)

3)

4)

5)

6)

7)

8)

-A -A/2 A/2 A0

Fig. 2 Lexicographical partitions of the regressor space with D = 3
when xt ∈ [−A, A]

sponding regression function to predict the desired data. We
use amixture-of-experts approach to combine the predictions
of all models and produce our final prediction d̂t . We show
that our combination of models converges to the best convex
combination of the models. The key point of our algorithm
is the efficient implementation of this combination.

To this end, first the lexicographical partitioning of the
regressor space is introduced in Sect. 3.1. In Sect. 3.2, the
SPLRmodels constructed over these partitions are explained.
Section 3.3 explains the method used to combine the predic-
tions of these models in a sequential manner. Section 3.4
shows how all of the lexicographical partitions can be com-
pactly represented using a lexicographical splitting graph.
Using this graph leads to an efficient implementation of the
proposed combination of models, which is explained in Sect.
3.5. For the sake of representation simplicity, we explain the
lexicographical partitioning for one-dimensional regressor
space, i.e., xt = xt ∈ [−A, A]. However, in Sect. 3.6, it is
shown that the proposed algorithm can be directly extended
to m-dimensional regressor space case. It is also explained
that our algorithm can be easily modified to use different loss
functions.

3.1 Lexicographical partition of the 1-dimensional
regressor space

In this section, we illustrate the lexicographical partition-
ing of the regressor space. As shown in Fig. 2, for the
1-dimensional regressor data {xt }t≥1, we assume that xt ∈
[−A, A]. In lexicographical partitioning with D-split, we
consider D fixed splitting positions in the regressor space,
i.e., [−A, A]. Splitting of the regressor space can just hap-
pen in these D points; hence, one can build 2D different
partitions of the regressor space with these D splitting posi-
tions. As an example, in Fig. 2, we represent lexicographical
partitions with 3-split, which results K = 23 = 8 different
possible partitions. Note that we choose equispaced splitting
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positions. However, in general, one can select the splitting
positions in an arbitrary manner. Note that if we select a
sufficiently large D, then one of these K partitions will suf-
ficiently approximate the optimal partition of the regressor
space. For example, one can observe that the 6th partition in
Fig. 2 fits well to the accurate partition of the regressor space
for (xt , dt ) pairs given in Fig. 1. In this paper, we use lexico-
graphical partitioning with parameter D and build K = 2D

SPLR models using produced lexicographical partitions as
described in the following section.

3.2 Sequential piecewise linear models on the partitions

For each lexicographical partition described previously, we
form an SPLRmodel, which runs an LMS algorithm on each
region of its corresponding partition of the regressor space.
Suppose a specific partition has P regions denoted by R1, R2,

. . . , RP , e.g., say the last partition in Fig. 2, where P =
4. The SPLR function over this partition is defined as (3),
where we update vt,i for i = 1, 2, . . . , P , using the LMS
algorithm. At round t , after we made our prediction, i.e.,
d̂t = vt,I (xt )

T xt , and observed the true desired data dt , we
calculate vt+1,i as follows:

vt+1,i =
{
vt,i + μ(dt − d̂t )xt , if i = I (xt )

vt,i , if i �= I (xt ),

where μ is a small step size. Using this update rule, each
model searches for the best fixed piecewise linear regression
function over its corresponding partition.

3.3 Sequential combination of the piecewise linear
models defined by the lexicographical splittings

We combine predictions of all K = 2D different SPLR
models defined using the lexicographical splittings, to pro-
duce our final prediction. Our final prediction at each round
will be a convex combination of predictions of all K mod-
els. The weights of this combination will be updated based
on the performance of the models in a sequential manner.
We show later that using this update rule, we asymptotically
achieve the performance of the best fixed convex combina-
tion of the model predictions. Denoting the prediction of
kth SPLR model at round t by d̂{k}

t , for k = 1, 2, . . . , K ,
we define d̂t = (d̂{1}

t , d̂{2}
t , . . . , d̂{K }

t ). We produce the
final prediction d̂t , using the well-known EG algorithm [9]
by

d̂t = wt
T d̂t , (4)

where wt =
(
w

{1}
t , w

{2}
t , . . . , w

{K }
t

)
is the weights vector

at round t , where the kth element w
{k}
t is the weight corre-

sponding to the kthmodel at round t .Weupdate theseweights
recursively by

w
{k}
t+1 =

w
{k}
t exp

(
−ηεt d̂

{k}
t

)

∑K

j=1
w

{ j}
t exp

(
−ηεt d̂

{ j}
t

) , (5)

where η represents a positive, constant learning rate, and εt =
l ′(dt − d̂t ) is the first derivative of l(dt , d̂t )with respect to d̂t .
In this paper we use l(dt , d̂t ) = (dt − d̂t )2; therefore, εt =
2(d̂t −dt ). Now we show that the aforementioned sequential
convex combination achieves the performance of the best
fixed convex combination of the model predictions. Suppose
that predictions of the models are bounded, i.e., there exists
a fixed positive number B, such that −B ≤ d{k}

t ≤ B holds
for every k and t . Let Z be the class of all fixed K -element
vectors w = (w{1}, . . . , w{K }), with nonnegative elements
and L1-norm equal to one. Theorem 5.10 in [9] implies that if
we setw{k}

1 = 1/K , for k = 1, . . . , K , and run EG algorithm
as described in (4) and (5),

R(A ,Z ) =
n∑

t=1

(dt − d̂t )
2 − min

w∈Z

n∑

t=1

(dt − wT d̂t )
2

≤ O(
√
n). (6)

As discussed before, this sublinear bound implies that
our algorithm asymptotically achieves the performance of
the best fixed convex combination of the models. Note that
each model is searching for the best piecewise linear regres-
sion function; hence, the proposed combination searches for
the best piecewise linear regression function over the best
partition between our lexicographical partitions. If the D
parameter in our lexicographical partitioning is large enough,
the best partition in our partitions set will be close enough to
the true optimal partition.

3.4 Hierarchical nature of the lexicographical
partitioning

In this section, we represent the 2D different partitions using
a lexicographical splitting graph. In the lexicographical split-
ting graph, we partition the regressor space in a hierarchical
manner. For example in Fig. 3, a lexicographical splitting
graph with parameter D = 3 is shown. In this figure, we
have the first partition at top of the graph, i.e., {[−A, A]}.
We can split this region in 3 ways and make a new par-
tition of the regressor space. For example, if we choose
dashed lines on the figure, we will produce a new partition,
{[−A, A/2], [A/2, A]}. As shown in the figure, we cannot
split [A/2, A], but the interval [−A, A/2] can be splitted
again in two different ways, making two new intervals which
alongside [A/2, A] will be a new possible partition of the
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[-A , A]
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Fig. 3 Lexicographical splitting graph with D = 3 when xt ∈
[−A, A]

whole regressor space. For instance, by choosing the dotted
lines in Fig. 3, we can produce the partition {[−A,−A/2],
[−A/2, A/2], [A/2, A]}. In lexicographical splitting graph
with parameter D, different choices of splitting or not split-
ting on the lexicographical splitting graph will lead to 2D

different lexicographical partitions of the regressor space.We
label the nodes of the graph with Ri, j , 0 ≤ i < j ≤ D + 1,
such that Ri, j = Ri,k ∪ Rk, j .

We use this graph to implement and combine our SPLR
models efficiently. Since all regions that form the mod-
els corresponding partitions are represented as nodes in
the lexicographical splitting graph, running an independent
sequential linear regression algorithm in each node of the
graph suffices to form all of the models. Therefore, even
though using lexicographical partitioning with parameter D,
we have K = 2D different sequential piecewise linear mod-
els, it suffices to run only 0.5(D+1)(D+2), i.e., the number
of nodes in a lexicographical splitting graph with D-splits,
sequential linear regression algorithms on nodes of the graph
to form all 2D models. Furthermore, when we observe xt at
round t , we do not need to update all of the linear regression
functions. In fact, if xt ∈ Ri,i+1 in the finest partition, then
xt ∈ Rk,i+1, Rk,i+2, . . . , Rk,D+1 for k = 0, 1, ..., i , there-
fore we need to update only (i + 1)(D − i + 1) sequential
regression functions at these nodes, which include xt . We
point out that the number of these nodes, which need to be
updated, is approximately half of the total number of nodes
at the worst-case scenario. In the following section we use
the hierarchical nature of the lexicographical splitting graph
to implement the combination given in (4) and (5) efficiently.

3.5 Efficient calculation of the weighted EG algorithm

In order to implement the EG algorithm effectively, first we
observe that (5) can be reduced to the following, by tak-
ing equal initial weights and applying some straightforward
algebra:

w
{k}
t =

exp

(

−η
∑t−1

τ=1
ετ d̂

{k}
τ

)

∑K

j=1

(

exp

(

−η
∑t−1

τ=1
ετ d̂

{ j}
τ

)) . (7)

Now we represent an efficient calculation of the denomi-
nator of (7) using the lexicographical splitting graph. As
mentioned before, each node in this graph corresponds to
one of the 0.5(D + 1)(D + 2) sequential linear regression
models. We denote the prediction of the sequential linear
regression function in Ri, j at time t , by d{i, j}

t . In order to
calculate the denominator of (7), we define Gt

{k} for each
model and Gt

{i, j} for each node of the graph, as

G{k}
t = exp

(

−η

t−1∑

τ=1

ετ d̂
{k}
τ

)

, (8)

G{i, j}
t = exp

(

−η

t−1∑

τ=1

1(xt∈Ri, j )ετ d̂
{k}
τ

)

, (9)

where

1(xt∈Ri, j ) =
{
1, if xt ∈ Ri, j

0, if xt /∈ Ri, j .
(10)

Now, denoting the denominator of (7) by Gt , we have

Gt =
K∑

k=1

G{k}
t . (11)

Also, we can express (8) as

Gt
{k} =

∏

Ri, j∈�{k}
Gt

{i, j}, (12)

where �{k} represents the set of regions composing the kth
lexicographical partition of the regressor space. Note that if

xt ∈ Ri, j and Ri, j ∈ �{k}, thend{k}
t = d̂t

{i, j}
.Now, the obser-

vation in (12) and the hierarchical nature of lexicographical
partitioning lead to a recursive calculation of (11). We define
an intermediate variable H on every node and calculate it as

Ht
{i, j} = Gt

{i, j} +
j−1∑

k=i+1

Ht
{i,k}Gt

{k, j}. (13)

We observe that using above recursion Gt = H {0,D+1}
t . Fol-

lowing the definition ofG{i, j}
t , the sequential update ofG{i, j}

t
can be expressed as

G{i, j}
t+1 =

{
G{i, j}

t exp(−ηεt d̂t
{i, j}

), if xt ∈ Ri, j

G{i, j}
t , if xt /∈ Ri, j .

(14)
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Wealso have H {i, j}
t+1 = H {i, j}

t for xt /∈ Ri, j . Hence, the update
rule for H variables is given by

H {i, j}
t+1 =

⎧
⎪⎪⎨

⎪⎪⎩

Gt+1
{i, j} +

j−1∑

k=i+1

Ht+1
{i,k}Gt+1

{k, j}, if xt ∈ Ri, j

H {i, j}
t , if xt /∈ Ri, j .

(15)

Note that at t = 0, we have to calculate G and H at all
nodes, but at next rounds, when we observe xt , we just need
to update G and H variables at the nodes, which include
xt . Now we represent an efficient calculation of the final
prediction of algorithm d̂t . Note that we can express d̂t as

d̂t =
∑K

k=1 G
{k}
t d̂{k}

t

Gt
. (16)

In (16), we have calculated the denominator previously. We
can calculate the numerator using an approach similar to the
approach used to update Gt and calculate Gt+1. The only
difference between calculation of Gt+1 and the numerator
of d̂t is that G

{k}
t gets multiplied by an exponential term in

the former and by d̂t
{k}

in the latter. We define intermediate
variables G̃{i, j}

t and H̃ {i, j}
t at all nodes as

G̃{i, j}
t =

{
G{i, j}

t d̂{i, j}
t , if xt ∈ Ri, j

G{i, j}
t , if xt /∈ Ri, j ,

(17)

H̃ {i, j}
t =

{
G̃{i, j}

t + ∑ j−1
k=i+1 H̃

{i,k}
t G̃{k, j}

t , if xt ∈ Ri, j

H {i, j}
t , if xt /∈ Ri, j .

(18)

Note that with these definitions, d̂t = H̃ {0,D+1}
t /H {0,D+1}

t .
The final algorithm is summarized in Table 1. Note that

using this efficient implementation of the combination of the
models, instead of updating 2D sequential piecewise linear
models and their combination weights, at worst-case sce-
nario we update D2/4 sequential linear models, combine
them using D2/2 intermediate variables, and update half of
these intermediate variables. Hence, the computational com-
plexity of the proposed algorithm is of O(D2).

3.6 Extension to m-dimensional regressor space and
different loss functions

In this section, we extend our discussion to m-dimensional
regressor space and different loss functions. Actually, exten-
sion to m-dimensional regressor space is straightforward.
Throughout the text, we constructed our algorithm using 1-
dimensional regressor data for illustration purposes. In the
extension to m-dimensional case, the only difference is that

Table 1 Algorithmic description of lexicographical models weighting
algorithm

we need to use (m − 1)-dimensional disjoint hyperplanes
as separators. For instance, if the regressor data are two
dimensional, we need disjoint lines to separate our regres-
sor space. The extension to different loss functions is also
straightforward. In order to use a different loss function,
we have to change the LMS algorithm in the nodes, to a
sequential linear regression algorithm, which is appropriate
for our loss function. Also the variable εt = l ′(dt , d̂t ) in EG
algorithm (5) should be changed by selecting different loss
functions.

4 Simulations

In this section, we demonstrate the performance of our algo-
rithm,whichwe denote by lexicographical models weighting
(LMW), over the well-known data sets, California housing
and Abalone [11], and a synthetic scenario. Since the com-
putational complexity of the algorithms is a critical issue in
the big data applications, we have shown the computational
complexity of all of the algorithms used in this section in
Table 2.
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Table 2 Comparisonof the computational complexities of the proposed
algorithms

Algorithm Computational complexity

LMW O(mD2)

CTW O(mln(D))

VF O(mr )

B-SAF O(mr2)

CR-SAF O(mr2)

FNF O((mr)r )

In the table, m represents the dimensionality of the regressor space, D
represents the number of splitting positions in the respective algorithms,
and r represents the order of the corresponding filters and algorithms

4.1 Matched partitions

In the first setup, we compare the performance of our algo-
rithm with other tree-based algorithms such as context tree
weighting (CTW) [2] and otherwell-knownnonlinear regres-
sion algorithms such as Volterra filter (VF) [12] and Fourier
nonlinear filter (FNF) [13]. To this end, we created a scenario
such that there is a piecewise linear relationship between
desired data and regression vectors described by

dt =

⎧
⎪⎨

⎪⎩

vT1 xt + πt , if φT xt ≤ −0.5

vT2 xt + πt , if − 0.5 < φT xt ≤ 0.5

vT3 xt + πt , if 0.5 < φT xt ,

(19)

where φ = [1; 0], πt is a sample function from a zero
mean white Gaussian process with variance 0.1, and x{1}

t

and x{2}
t are sample functions from two independent zero

meanGaussian processeswith variance 1.We normalized the
regressor vectors such that they are bounded to 1, i.e., |x{1}

t | ≤
1 and |x{2}

t | ≤ 1. In order to observe the effect of nonstationar-
ity, we selected v1 = [7; 7], v2 = [−7;−7], v3 = [7;−7] in
the first half of the data and v1 = [−11;−11], v2 = [11; 11],
v3 = [−11; 11] in the second half. For CTWand LMWalgo-
rithms we used 2-dimensional hyperplanes x{1} = −0.5,
x{1} = 0 and x{1} = 0.5, in 3-dimensional (x{1}, x{2}, dt )
space, as splitting positions. In order to make a fair compar-
ison we set the order of FNF and VF algorithms to 3 and 2,
respectively. The average of the normalized mean squared
error prediction performance of aforementioned algorithms,
over 100 different realizations of the described model, is
shown in Fig. 4. This figure shows that our LMW algorithm
has superior performance both before and after the abrupt
change of the model.

4.2 Benchmark real-life data sets

In the first experiment, the regressor space is 2 dimensional.
In order to show that our algorithm also works good in
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Fig. 4 Performance of LMW,CTW,FNF, andVF algorithms for a non-
stationary data set, generated by (19), with abrupt change of parameters
at beginning of the second half

the higher-dimensional regressor spaces, we tested our algo-
rithm using the well-known data sets California housing and
Abalone [11], which have high-dimensional regressor space.
We compared the performance of our algorithm with other
well-known nonlinear regression algorithms Bezier spline
adaptive filter (B-SAF) [15], Catmull-Rom spline adaptive
filter (CR-SAF) [15], FNF [13], CTW [2], and VF [12]. In
both “California housing” and “Abalone” experiment, we set
the learning rates of the adaptive filters to 0.01. In order
to make a fair comparison between these methods, we set
the order of all the algorithms accordingly. For instance, we
set the parameter of the LMW as D = 3 and the depth
of the CTW as 2, to make the number of regions in the
finest partitions of this algorithms equal. In Figs. 5 and 6,
the normalized mean squared errors in all of the aforemen-
tioned algorithms are shown on the “California housing” and
“Abalone” data sets, respectively. In both figures, we observe
that the tree-based algorithms LMW and CTW have superior
performance with respect to the other algorithms. However,
we observe that the CTW algorithm and the LMW algo-
rithm performance is almost equal in these two experiments
as opposed to the previous experiments. Note that the LMW
and CTW algorithms are both mixture of types algorithms.
However, when the finest partition of these two algorithms
includes equal number of regions, the lexicographical parti-
tioning method used in LMW produces more partitions than
partitioning technique used in CTW. Hence, in the case of
prediction of a data sequence whose underlying partition is
one of the lexicographical partitions but none of the partitions
created in CTW, the LMW algorithm has better performance
as in the previous experiments. However, if the underlying
partition is one of the partitions of both LMW and CTW
algorithms, then they perform in a similar way.
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Fig. 5 Performance of LMW, CTW, B-SAF, CR-SAF, FNF, and VF
algorithms over well-known California housing data set
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Fig. 6 Performance of LMW, CTW, B-SAF, CR-SAF, FNF, and VF
algorithms over well-known Abalone data set

5 Conclusion

In this paper, we consider the problem of online piecewise
linear regression. We introduce an algorithm, which sequen-
tially achieves the performance of the best piecewise linear
model with optimal partition of the regressor space in an
individual sequence manner. Our algorithm uses a “lexico-
graphical splitting graph” to compactly represent a wide set
of piecewise linear models over different partitions of the
regressor space. Using this graph, we combine the piece-

wise linear models with a significantly low computational
complexity. We show that this combination asymptotically
achieves the performance of the best piecewise linear model
over the optimal partition of the regressor space. We avoid
any statistical assumption in the analysis of the performance
of our algorithm; hence, our results hold for any individual
sequence of data. In addition, we demonstrate the effective-
ness of our algorithm over the well-known data sets in the
machine learning literature. Our algorithm achieves this per-
formancewith computational complexity fraction of the state
of the art.
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