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We provide a causal inference framework to model the effects of machine learning algorithms on user preferences. We then use
this mathematical model to prove that the overall system can be tuned to alter those preferences in a desired manner. A user can
be an online shopper or a social media user, exposed to digital interventions produced by machine learning algorithms. A user
preference can be anything from inclination towards a product to a political party affiliation. Our framework uses a state-space
model to represent user preferences as latent system parameters which can only be observed indirectly via online user actions
such as a purchase activity or social media status updates, shares, blogs, or tweets. Based on these observations, machine learning
algorithms produce digital interventions such as targeted advertisements or tweets. We model the effects of these interventions
through a causal feedback loop, which alters the corresponding preferences of the user. We then introduce algorithms in order
to estimate and later tune the user preferences to a particular desired form. We demonstrate the effectiveness of our algorithms
through experiments in different scenarios.

1. Introduction

Recent innovations in communication technologies, cou-
pled with the increased use of Internet and smartphones,
greatly enhanced institutions’ ability to gather and process
an enormous amount of information on individual users
on social networks or consumers in different platforms [1–
4]. Today, many sources of information from shares on
social networks to blogs, from intelligent device activities
to security camera recordings are easily collectable. Efficient
and effective processing of this “big data” can significantly
improve the quality ofmany real life applications or products,
since this data can be used to accurately profile and then
target particular users [5–7]. In this sense, abundance of new
sources of information and previously unimaginable ways of
access to consumer data have the potential to substantially
change the classical machine learning approaches that are
tailored to extract information with rather limited access to
data using relatively complex algorithms [8–11].

Furthermore, unlike applications where the machine
learning algorithms are used as mere tools for processing
and inferring using the available data such as predicting the
best movie for a particular user [12], the new generation of
machine learning systems employed by enormously large and
powerful data companies and institutions have the potential
to change the underlying problem framework, that is, the user
itself, by design [8, 13]. Consider the Google search engine
platform and its effects on user preferences. The Google
search platform not only provides the most relevant search
results but also gathers information on users and provides
well-tuned and targeted content (from carefully selected
advertisements to specifically selected news) thatmay be used
to change user behavior, inclinations, or preferences [14].

Online users are exposed to persuasive technologies and
are continually immersed in digital content and interventions
in various forms such as advertisements, news feeds, and
recommendations [15]. User decisions and preferences are
affected by these interventions [16]. We define a feedback
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Figure 1: The Digital Feedback Loop.

framework in which these interventions can be selected in a
systematic way to steer users in a desired manner. In Figure 1,
we introduce “The Digital Feedback Loop” on which we base
our model.

To this end, in this paper, we are particularly interested
in the causal effects of machine learning algorithms on users
[17, 18]. Specifically, we introduce causal feedback loops to
accurately describe effects of machine learning algorithms
on users in order to design more functional and effective
machine learning systems [18, 19]. We model the latent
preferences and/or inclinations of a user, as an unknown state
in a real life causal system, and build novel algorithms to
estimate and, then, alter this underlying unobservable state
in an intentional and preferred manner. In particular, we
model the underlying evolution of this state using a state-
space model, where the latent state is only observed through
the behavior of the user such as his/her tweets and Facebook
status shares. The internal state is causally affected by the
outputs of the algorithm (or the actions of the company),
which can be derived from the past observations on the user
or outputs of the system.Thepurpose of themachine learning
algorithm can be, for example, (i) to drive the internal
system state towards a desired final state, for example, trying
to change the opinion of the population towards a newly
introduced product; (ii) to maximize some utility function
associated with the system, for example, enticing the users to
a new and more profitable product; or (iii) to minimize some
regret associated with the disclosed information, for exam-
ple, minimizing the effects of unknown system parameters.
Alternatively, themachine learning systemmay try to achieve
a combination of these objectives.

This problem framework readily models a wide range of
real life applications and scenarios [18, 19]. As an example, an
advertiser may aim to direct the preferences of his/her target
audience towards a desired product, by designing advertise-
ment using data collected by consumer behavior surveys [18].
This framework is substantially different from the classical
problem of targeted advertisement based on user profiling.
In the case of targeted advertising, the goal is to match the
best advertisement to the current user, based on the user’s

profile. Another part of the classical problem is to measure
the true impact of an ad (a “treatment” or an “intervention”
in the general case) and thus find its effectiveness to help the
ad selection for the next time or the next user as well as for
billing purposes. Here, we assume that the underlying state,
that is, the preferences of the consumers, are not only used
to recommend a particular product but also intentionally
altered by our algorithm. As in some of the earlier works
[12, 17, 20], we use a causal framework to do our modeling.
We then take it a step further tomathematically prove that the
impact of a treatment can be predesigned and the user can,
in theory, be swayed in accordance with the designer’s intent.
To the best of our knowledge, this is unique to our work. We
can further articulate the difference between our work and
some of the earlier works using an example in the context of
news recommendation. The classical approach tries to show
the user news articles he/she might be interested in reading,
based on their profile and possibly some other contextual
data. A separate process collects information on whether
the user clicked on a particular news item and what that
item’s context is. This collected data is then used to augment
the user’s profile so that the recommendation part of the
process makes a better decision the next time or for the next
user. The connection between separate decisions is mainly
the enhanced user profile. In reality, the recommended news
articles have impacted the user’s news preferences to some
degree. This is a classical counterfactual problem [8]. While
the user preferences themselves are latent and cannot be
directly measured, the impact manifests itself in a number of
ways that are observable. For instance, the user might tweet
about that news with a particular sentiment or buy a book
online which is related to the topic in the news item.What we
prove with our framework is that, using the observable data
and our model, one can produce a sequence of actions which
will influence and steer the user’s preferences in a pattern that
is intended by the recommender system.These actions can be
in the form of content served to the user such as news articles,
social media feeds, and search results.

In different applications the preferences can be the
state and the advertisements (content, the medium of the
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advertisement, the frequency, etc.) are the actions or output
of the machine learning algorithm. In a different context,
the opinions of the social network users on Facebook of
a particular event or a new product can be represented
as a state. Our model is comprehensive such that the
relevant information on the user such as his/her age, gender,
demographics, and residency is collectively represented by a
side information vector since the advertiser collects data on
the consumer such as the spending patterns, demographics,
age, gender, and polls.

A summary of our work in this paper is as follows, with
the last bullet being our key contribution:

(i) We model the effects of machine learning algorithms
such as recommendation engines on users through
a causal feedback loop. We introduce a complete
state-space formulation modeling: (1) evolution of
preferences vectors, (2) observations generated by
users, and (3) causal feedback effects of the actions
of algorithms on the system. All these parameters
are jointly optimized through an Extended Kalman
Filtering framework.

(ii) We introduce algorithms to estimate the unknown
system parameters with and without feedback. In
both cases, all the parameters are estimated jointly.
We emphasize that we provide a complete set of
equations covering all the possible scenarios.

(iii) To tune the preferences of users towards a desired
sequence, we also introduce a linear regression algo-
rithm and introduce an optimization framework
using stochastic gradient descent algorithm. Unlike
all the previous works that only use the observations
to predict certain desired quantities, as the first time
in the literature, we specifically design outputs to
“update” the internal state of the system in a desired
manner.

The rest of the paper is organized as follows. In the next
section, we present a comprehensive state-space model that
includes the evolution of the latent state vector, underlying
observationmodel and side information. In the same section,
we also introduce the causal feedback loop and possible
variations to model different real life applications. We then
introduce the Extended Kalman Filtering framework to
estimate the unknown system parameters. We investigate
different real life scenarios including the system with and
without the feedback. We present all update and estimation
equations. In the following section, we introduce an online
learning algorithm to tune the underlying state vector, that
is, preferences vector, towards a desired vector sequence
through a linear regression and causal feedback loop. We
then demonstrate the validity of our introduced algorithms
under different scenarios via simulations. We include our
simulation results to show that we are able to converge on
unknown parameters in designing a system which can steer
user preferences. The final section includes conclusions and
scope of future work.

2. A Mathematical Model for User Preferences
with Causal Feedback Effects

In this paper, all vectors are column vectors and denoted
by lower case letters. Matrices are represented by uppercase
letters. For a vector u,

‖u‖ = √u𝑇u (1)

is the 𝑙2-norm,whereu𝑇 is the ordinary transpose. For vectors
a ∈ R𝑚 and b ∈ R𝑛, a𝑇 is the transpose and [a; b] ∈ R𝑚+𝑛 is
the concatenated vector. Here, I represents an identitymatrix,
0 represents a vector or a matrix of all zeros, and 1 represents
a vector or a matrix of all ones, where the size is determined
from the context. The time index is given in the subscript;
that is, x𝑡 is the sample at time t. 𝛿𝑡 is the Kronecker delta
functions.

We represent preferences of a user as a state vector p𝑡,
where this state vector is latent; that is, its entries are unknown
by the system designer. The state vector can represent affinity
or opinions of the underlying social network user for different
products or for controversial issues like privacy. The actual
length and values of the preferences depend on the applica-
tion and context. As an example for the mood of a person in
a context of 6 feelings (happy, excited, angry, scared, tender,
and sad), the preference vector might be [0, 1, 0, 0, 0, 0]𝑇.

The relevant information on the user such as his/her age,
gender, demographics, and residency is collectively repre-
sented by a side information vector s𝑡. The side information
on users on the social networks can be collected based on
their profiles or their friendship networks. We assume that
the side information is known to the designer and, naturally,
change slowly so that s𝑡 = s is constant in time.

Themachine learning system collects data on the user, say
x𝑡, such as Facebook shares, comments, status updates, and
spending patterns, which is a function of his/her preferences
p𝑡 and the side information s, given by

x𝑡 = 𝐹𝑡 (p𝑡, s) , (2)

where the functional relationship 𝐹(⋅) will be clear in the
following. Since the information collection process may be
prone to errors or misinformation, for example, untruthful
answers in surveys, we extend (2) to include these effects as

x𝑡 = 𝐹𝑡 (p𝑡, s) + n𝑡, (3)

where n𝑡 is a noise process independent of p𝑡 and s. We
can use other approaches instead of an additive noise model;
however, the additive noise model is found to accurately
model unwanted observation noise effects [21].We use a time
varying linear state-spacemodel to facilitate the analysis such
that we have

x𝑡 = F𝑡p𝑡 + n𝑡, (4)

where F𝑡 is the observation matrix [22] corresponding to the
particular user and n𝑡 is i.i.d. with

𝐸 [n𝑡n𝑇𝑟 ] = 𝛿𝑡−𝑟R, (5)
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Figure 2: A state-space model to represent evaluation of the user
preferences without feedback effects.

where R is the autocorrelation matrix. The autocorrelation
matrix R is assumed to be known, since it can be readily
estimated from the data [22] in a straightforward manner.
We do not explicitly show the effect of s on F for notational
simplicity.

Based on prior preferences, different user effects and
trends, and the preferences of the user change, we represent
this change as

p𝑡+1 = 𝐺𝑡 (p𝑡, s) + n𝑡, (6)

with an appropriate 𝐺𝑡(⋅) function. To facilitate the analysis,
we also use a state-space model

p𝑡+1 = G𝑡p𝑡 + k𝑡, (7)

where G𝑡 is the state update matrix, which is usually close to
an identitymatrix since the preferences of user cannot rapidly
change [19, 20]. Here, k𝑡 models the random fluctuations or
independent changes in the preferences of users, where it is
i.i.d. with

𝐸 [k𝑡k𝑇𝑟 ] = 𝛿𝑡−𝑟Q (8)

and Q is the autocorrelation matrix. The autocorrelation
matrix Q is assumed to be known, since it can be readily
estimated from the data [22] in a straightforwardmanner.The
model without the feedback effects is shown in Figure 2.

Remark 1. To include local trends and seasonality effects, one
can use k𝑡 = B𝑡u𝑡, where B𝑡 may not be full rank when local
trends exist (local trends can cause some data points to be
derived from others). Also, u𝑡 is an i.i.d. noise process. Our
derivations in the next sections can be generalized to this case
by considering an extended parameter set.

In the following, we model the effect of the actions of
the machine learning algorithm in the “observation” (4) and
“evolution” (7) equations.

2.1. Causal Inference through theActions of theMachine Learn-
ing System. Based on the collected data x𝑡, the algorithm
takes an action represented by 𝑎𝑡. The action of the machine
learning system or the platform can be either discrete or
continuous valued depending on the application [21]. As an
example, if the action represents a campaign advertisement to
be sent to a particular Facebook user, then the set of campaign
ads is finite. On the other hand, the action of the machine
learning system can be continuous such as providing money
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Figure 3: A complete state-space model of the system with action
generation and feedback effects.

incentives to particular users to perform certain tasks such as
filling questionnaires. We model the action as a function of
the observations as

𝑎𝑡 = 𝑊𝑇𝑡 (x𝑡) , (9)

where𝑊(⋅) may correspond to different regression methods
[21]. To facilitate the analysis, wemodel the action generation
using a linear regression model as

𝑎𝑡 = 𝑊𝑇𝑡 x𝑡. (10)

If we have a finite set of actions, that is, 𝑎𝑡 ∈ {1, . . . , 𝐾}, we
replace (10) by

𝑎𝑡 = 𝑄 (w𝑇𝑡 x𝑡) , (11)

which is similar to saturation or sigmoid models [23], where𝑄(⋅) is an appropriate quantizer. The linear model in (11) can
be replaced by more complex models since x𝑡 can contain
discrete entries such as gender and age. However, we can
closely approximate any such complex relations by piecewise
linear models [24]. The piecewise linear extension of (11) is
straightforward [24].

Based on the actions of the machine learning algorithm
(and prior preferences), we assume that the preferences of
the user changes in a linear state-space form with an additive
model for the causal effect [18–20], which yields the following
state model:

p𝑡+1 = G𝑡p𝑡 + k𝑡 + c𝑡𝑎𝑡, (12)

where c𝑡 is the unknown causal effect. The complete linear
state-space model is illustrated in Figure 3. Although there
exists other models for the feedback, apart from the linear
feedback, the linear feedback was found to accurately model
a wide range of real life scenarios provided that causal effects
are moderate [19], which is typically the case for social
networks; that is, advertisements usually do not have drastic
effects on user preferences [19, 20]. Our linear feedback
model can be extended to piecewise linearmodels to approxi-
mate smoothly varying nonlinearmodels in a straightforward
manner.

Remark 2. We can also use a jump state model to represent
the causal effects for the case where 𝑎𝑡 is coming from a finite
set. In this case, as an example, the causal effects will change
the state behavior of the overall system through a jump state
model as

p𝑡+1 = G𝑡,𝑄(w𝑇x𝑡)p𝑡 + k𝑡. (13)
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Our estimation derivations in the following sections can
also be extended to cover this case using a jump state model
[22].

Remark 3. For certain causal inference problems, the actions
sequence 𝑎𝑡 may be required to be predictive of some
reference sequence 𝑑𝑡, in a traffic prediction context, to sway
driver preferences p𝑡 in a certain direction by disclosing
estimates 𝑎𝑡 for a certain road 𝑑𝑡, using some publicly
available data x𝑡. To account for these types of scenarios, we
complement the model in (12) by introducing

𝑑𝑡 = 𝐻𝑡 (p𝑡) + 𝜎𝑡, (14)

where 𝜎𝑡 is i.i.d. In this case, the feedback loop will be
designed in order to tune 𝑑𝑡 to a particular value.

In the following, we introduce algorithms that optimize
w𝑡 so that the overall system behaves in a desired manner
given the corresponding mathematical system. However,
we emphasize the overall system parameters including the
feedback loop parameters are not known and should be
estimated only from the available observations x𝑡. Hence, we
carry out both the estimation and design procedures together
for a complete system design.

3. Design of the Overall System with
Causal Inference

We consider the problem of designing a sequence of actions{𝑎𝑡}𝑡≥1 in order to influence users based on our observations{x𝑡}𝑡≥1, where behavior of the user is governed by his/her
hidden preference sequence {p𝑡}𝑡≥1. The machine learning
system is required to choose the sequence {w𝑡}𝑡≥1 in order
to accomplish its specific goal. The specific goal naturally
depends on the application. As an example, in social net-
works, the goal can be to change the opinions of users about a
new product by sending themost appropriate content such as
news articles and/or targeted tweets. In itsmore general form,
we can represent this goal as a utility function and optimize
the cumulative gain:

max
w𝑡≥1

∞∑
𝑡=1

𝐸 [𝑈𝑡] , (15)

where 𝑈𝑡 = 𝑈𝑡(p𝑡) is an appropriate utility function for
a specific application. To facilitate the analysis, we choose
the utility function as the negative of the squared Euclidean
distance between the actual consumer preferencep𝑡 and some
desired state q𝑡. We emphasize that, as shown later in the
paper, our optimization framework can be used to optimize
any utility function provided that it has continuous first-order
derivatives due to the stochastic gradient update. In this case
(15) can be written as

minw𝑡≥1

∞∑
𝑡=1

𝐸 [p𝑡 − q𝑡
2] . (16)

The overall system parameters, {F,G, c}, are not known
and should be estimated fromour observations.We introduce

an Extended Kalman Filtering (EKF) approach to estimate
the unknown parameters of the system. We separately con-
sider the estimation framework without the feedback loop,
that is, w = 0, and with the feedback loop, that is, w ̸=
0. Clearly the estimation task for {F,G} can be carried out
before we produce our suggestions w. In this case, we can
estimate these parameters with a better accuracy without the
feedback effects sinceweneed to estimate a smaller number of
parameters under less complicated noise processes. However,
for certain scenarios where this feedback loop is already
active, we also introduce a joint estimation framework for
all parameters. A system with feedback is more general,
realistic, and comprehensive. And feedback is needed in
order to tune or influence the preferences of a user in a
desired manner. However, a system with feedback is more
complex to design and analyze. Therefore, we first provide
the analysis for a system without feedback and build on it
for an analysis of a system with feedback. After we get the
estimated system parameters, we introduce online learning
algorithms in order to tune the corresponding system to a
particular target internal state sequence, which can be time
varying, nonstationary, or even chaotic [23, 25].

3.1. Estimating the Unknown Parameters of the System without
Feedback. Without the feedback loop, the system is described
by

p𝑡+1 = G𝑡p𝑡 + k𝑡, (17)

x𝑡 = F𝑡p𝑡 + n𝑡, (18)

where k𝑡 and n𝑡 are assumed to be Gaussian with correlation
matricesQ and R, respectively. We then define

𝜃𝑡 ≜ [G𝑡 (:) ; F𝑡 (:)] , (19)

where G𝑡(:) is the vectorized G𝑡; that is, the columns of G𝑡
are stacked one after another to get a full column vector. To
jointly estimate p𝑡 and 𝜃𝑡, we formulate an EKF framework
by considering

𝜃𝑡+1 = 𝜃𝑡 + 𝜀𝑡, (20)

where 𝜀𝑡 is the noise in estimating 𝜃𝑡 through the EKF. Then,
using (17) and (20) and considering p𝑡 and 𝜃𝑡 as the joint state
vector, we get

x𝑡 = 𝑓1 (𝜃𝑡, p𝑡) + n𝑡,
(p𝑡+1
𝜃𝑡+1

) = (𝑓2 (𝜃𝑡, p𝑡)
𝜃𝑡

) + (k𝑡
𝜀𝑡
) , (21)

where

𝑓1 (𝜃𝑡, p𝑡) ≜ F𝑡p𝑡,
𝑓2 (𝜃𝑡, p𝑡) ≜ G𝑡p𝑡

(22)
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are the corresponding nonlinear equations so that we require
the EKF framework. The corresponding EKF equations to
estimate the augmented states are recursively given as

(p𝑡|𝑡
𝜃𝑡|𝑡
) = (p𝑡|𝑡−1
𝜃𝑡|𝑡−1

) + L𝑡 (x𝑡 − 𝑓1 (𝜃𝑡|𝑡−1, p𝑡|𝑡−1)) ,
p𝑡+1|𝑡 = 𝑓2 (𝜃𝑡|𝑡, p𝑡|𝑡) ,
𝜃𝑡+1|𝑡 = 𝜃𝑡|𝑡,

L𝑡 = P𝑡|𝑡−1H𝑡 (H𝑇𝑡 P𝑡|𝑡−1H𝑡 + R)−1 ,
P𝑡|𝑡 = P𝑡|𝑡−1 − L𝑡H

𝑇
𝑡 P𝑡|𝑡−1,

P𝑡+1|𝑡 = D𝑡P𝑡|𝑡D
𝑇
𝑡 +Q,

(23)

where

p𝑡|𝑡 ≜ 𝐸 [p𝑡 | x𝑡, x𝑡−1, . . .] ,
p𝑡|𝑡−1 ≜ 𝐸 [p𝑡 | x𝑡−1, x𝑡−2, . . .] ,
𝜃𝑡|𝑡 ≜ 𝐸 [𝜃𝑡 | x𝑡, x𝑡−1, . . .] ,
𝜃𝑡|𝑡−1 ≜ 𝐸 [𝜃𝑡 | x𝑡−1, x𝑡−2, . . .]

(24)

are EKF terms that approximate the optimal “linear” MSE
estimated values in the linearized case and H𝑡 and D𝑡 are
the gradients for the first-order Taylor expansion needed to
linearize the nonlinear state equations in (21)

H𝑡 = ((∇p𝑡𝑓1 (𝜃𝑡|𝑡−1, p𝑡|𝑡−1))
𝑇

(∇𝜃𝑡𝑓1 (𝜃𝑡|𝑡−1, p𝑡|𝑡−1))𝑇) , (25)

D𝑡 = (∇p𝑡𝑓2 (𝜃𝑡|𝑡, p𝑡|𝑡) ∇𝜃𝑡𝑓2 (𝜃𝑡|𝑡, p𝑡|𝑡)0 I
) , (26)

respectively. Here, L𝑡 is the gain of the EKF and P𝑡 is the
error variance of the augmented state. The complete set of
equations in (23) defines the EKF update on the parameter
vectors. We next consider the case when there is feedback.

3.2. Estimating the Unknown Parameters of the System with
Feedback. For estimating the parameters of the feedback
loop, that is, c𝑡 (please see Figure 3), we have two different
scenarios. In the first case, where we can control w, we set
w = 0, estimate {F,G}, and then subsequently estimate c
for fixed w. For scenarios where the feedback loop is already
present (or we cannot control it), that is, w ̸= 0, we need to
estimate all the system parameters under the feedback loop.
Naturally, in this case the estimation process is more prone
to errors due to compounding effects of the feedback loop on
the noise processes. We consider both cases separately.

Using (10) in (12), we get

p𝑡+1 = G𝑡p𝑡 + k𝑡 + c𝑡w
𝑇
𝑡 x𝑡

= G𝑡p𝑡 + k𝑡 + c𝑡w
𝑇
𝑡 F𝑡p𝑡 + c𝑡w

𝑇
𝑡 n𝑡. (27)

Hence, the complete state-space description with causal
loop is given by

p𝑡+1 = (G𝑡 + c𝑡w
𝑇
𝑡 F𝑡) p𝑡 + k𝑡 + c𝑡w

𝑇
𝑡 n𝑡, (28)

x𝑡 = F𝑡p𝑡 + n𝑡. (29)

In (29), w𝑡 is known; however, all the parameters includ-
ing c are unknown. We have two cases.

Case 1. Since we can control w, we set w = 0 and estimate 𝜃
as F̃𝑡 and G̃𝑡 as in the case without feedback. Then, use these
estimated parameters in (29) yielding

p𝑡+1 = (G̃𝑡 + c𝑡w
𝑇
𝑡 F̃𝑡) p𝑡 + k𝑡 + c𝑡w

𝑇
𝑡 n𝑡,

x𝑡 = F̃𝑡p𝑡 + n𝑡. (30)

To estimate c𝑡, we introduce an EKF framework by consider-
ing c𝑡 as another state vector:

c𝑡+1 = c𝑡 + 𝜌𝑡, (31)

where 𝜌𝑡 is the noise in the estimation process, yielding

x𝑡 = F̃𝑡p𝑡 + n𝑡,
(p𝑡+1
c𝑡+1

) = (𝑓3 (c𝑡, p𝑡)
c𝑡

) + (k𝑡
𝜌𝑡
) + (c𝑡w𝑇𝑡

0
)n𝑡, (32)

where

𝑓3 (c𝑡, p𝑡) ≜ (G̃𝑡 + c𝑡w
𝑇F̃𝑡) p𝑡 (33)

is the corresponding nonlinearity in the system.
In the state update equation (32), unlike the previous EKF

formulation, the process noise depends on c𝑡 as c𝑡w𝑇𝑡 n𝑡, which
is unknown and part of the estimated state vector. Hence, the
EKF formulation is more involved.

After several steps, we derive the EKF equations to
estimate the augmented states for this case as

(p𝑡|𝑡
c𝑡|𝑡
) = (p𝑡|𝑡−1

c𝑡|𝑡−1
) + L𝑡 (x𝑡 − F̃𝑡p𝑡|𝑡−1) ,

p𝑡+1|𝑡 = 𝑓3 (c𝑡|𝑡, p𝑡|𝑡) + S𝑡Ω
−1
𝑡 (x𝑡 − F̃𝑡p𝑡|𝑡−1) ,

c𝑡+1|𝑡 = c𝑡|𝑡,
L𝑡 = P𝑡|𝑡−1H𝑡Ω

−1
𝑡 ,

S𝑡 = c𝑡|𝑡−1w
𝑇
𝑡 R,

P𝑡|𝑡 = H𝑇𝑡 P𝑡|𝑡−1H𝑡 + R,
P𝑡|𝑡 = P𝑡|𝑡−1 − L𝑡H

𝑇
𝑡 P𝑡|𝑡−1,

P𝑡+1|𝑡 = D𝑡P𝑡|𝑡−1D
𝑇
𝑡 − B𝑡Ω

−1
𝑡 B
𝑇
𝑡 + Q̂𝑡,

B𝑡 = D𝑡P𝑡|𝑡−1H𝑡 + (S𝑡0) ,

(34)
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where

p𝑡|𝑡 ≜ 𝐸 [p𝑡 | x𝑡, x𝑡−1, . . .] ,
p𝑡|𝑡−1 ≜ 𝐸 [p𝑡 | x𝑡−1, x𝑡−2, . . .] ,
c𝑡|𝑡 ≜ 𝐸 [c𝑡 | x𝑡, x𝑡−1, . . .] ,

c𝑡|𝑡−1 ≜ 𝐸 [c𝑡 | x𝑡−1, x𝑡−2, . . .]
(35)

are EKF terms that approximate the optimal “linear” MSE
estimated values in the linearized case and H𝑡 and D𝑡 are
the gradients for the first-order Taylor expansion needed to
linearize the nonlinear state equations in (32):

H𝑡 = ((∇p𝑡 (F̃𝑡p𝑡))
𝑇

(∇c𝑡 (F̃𝑡p𝑡))𝑇) = (F̃𝑇
0
) ,

D𝑡 = (∇p𝑡𝑓3 (c𝑡|𝑡, p𝑡|𝑡) ∇c𝑡𝑓3 (c𝑡|𝑡, p𝑡|𝑡)0 I
) ,

(36)

respectively. Here, L𝑡 is the gain of the EKF and P𝑡 is the error
variance of the augmented state.

To obtain an expression for Q̂𝑡 in terms of w𝑡, we define
the composite error vector b𝑡 for the state update equation so
that

Q̂𝑡 = 𝐸 [b𝑡b𝑇𝑡 | x𝑡−1, x𝑡−2, . . .] (37)

with

b𝑡 ≜ (k𝑡
𝜌𝑡
) + (c𝑡w𝑇𝑡

0
)n𝑡. (38)

After straightforward algebra, we get

Q̂𝑡 = (Q + w𝑇𝑡 Rw𝑡Γ𝑡 0
0 U

) , (39)

where

U = 𝐸 [𝜌𝑡𝜌𝑇𝑡 ] ,
Γ𝑡 ≜ (0 I) p𝑡|𝑡−1 (0I) + c𝑡|𝑡−1c

𝑇
𝑡|𝑡−1. (40)

These updates provide the complete EKF formulation
with feedback. In the sequel, we introduce the complete
estimation framework where we estimate all the parameters
jointly.

Case 2. We can define a superset of parameters

𝜃𝑡 ≜ [G𝑡 (:) ; F𝑡 (:) ; c𝑡] (41)

and formulate an EKF framework for this augmented param-
eter vector with

𝜃𝑡+1 = 𝜃𝑡 + 𝜀𝑡, (42)

which yields

x𝑡 = 𝑓4 (𝜃𝑡, p𝑡) + n𝑡,
(p𝑡+1
𝜃𝑡+1

) = (𝑓5 (𝜃𝑡, p𝑡)
𝜃𝑡

) + (k𝑡
𝜀𝑡
) + (c𝑡w𝑇𝑡

0
)n𝑡, (43)

where

𝑓4 (𝜃𝑡, p𝑡) ≜ F𝑡p𝑡,
𝑓5 (𝜃𝑡, p𝑡) ≜ (G𝑡 − c𝑡w

𝑇F𝑡) (44)

are the corresponding nonlinear equations so that we require
EKF.

After some algebra, we get the complete EKF equations as

(p𝑡|𝑡
𝜃𝑡|𝑡
) = (p𝑡|𝑡−1
𝜃𝑡|𝑡−1

) + L𝑡 (x𝑡 − 𝑓4 (𝜃𝑡|𝑡−1, p𝑡|𝑡−1)) ,
p𝑡+1|𝑡 = 𝑓5 (𝜃𝑡|𝑡, p𝑡|𝑡)

+ S𝑡Ω
−1
𝑡 (x𝑡 − 𝑓4 (𝜃𝑡|𝑡−1, p𝑡|𝑡−1)) ,

𝜃𝑡+1|𝑡 = 𝜃𝑡|𝑡,
L𝑡 = P𝑡|𝑡−1H𝑡Ω

−1
𝑡 ,

S𝑡 = (0 0 I) 𝜃𝑡|𝑡−1w𝑇𝑡 R,
Ω𝑡 = H𝑇𝑡 P𝑡|𝑡−1H𝑡 + R,
P𝑡|𝑡 = P𝑡|𝑡−1 − L𝑡H

𝑇
𝑡 P𝑡|𝑡−1,

P𝑡+1|𝑡 = D𝑡P𝑡|𝑡−1D
𝑇
𝑡 − B𝑡Ω

−1
𝑡 B
𝑇
𝑡 + Q̂𝑡,

B𝑡 = D𝑡P𝑡|𝑡−1H𝑡 + (S𝑡0) ,

(45)

where

H𝑡 = ((∇p𝑡𝑓4 (𝜃𝑡|𝑡−1, p𝑡|𝑡−1))
𝑇

(∇𝜃𝑡𝑓4 (𝜃𝑡|𝑡−1, p𝑡|𝑡−1))𝑇) ,
D𝑡 = (∇p𝑡𝑓5 (𝜃𝑡|𝑡, p𝑡|𝑡) ∇𝜃𝑡𝑓5 (𝜃𝑡|𝑡, p𝑡|𝑡)0 I

) .
(46)

To obtain an expression for Q̂𝑡 in terms of w𝑡, we define
the composite error vector b𝑡 for the state update equation so
that

Q̂𝑡 = 𝐸 [b𝑡b𝑇𝑡 | x𝑡−1, x𝑡−2, . . .] (47)

with

b𝑡 ≜ (k𝑡
𝜀𝑡
) + (c𝑡w𝑇𝑡

0
)n𝑡. (48)
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After straightforward algebra, we get

Q̂𝑡 = (Q + w𝑇𝑡 Rw𝑡Γ𝑡 0
0 U𝑡

) , (49)

where

Q = 𝐸 [^𝑡^𝑇𝑡 ] ,
U = 𝐸 [𝜀𝑡𝜀𝑇𝑡 ] ,
R = 𝐸 [n𝑡n𝑇𝑡 ] ,
Γ𝑡 ≜ (0 I) p𝑡|𝑡−1 (0I)

+ (0 I) 𝜃𝑡|𝑡−1 (0 0
0 I

) 𝜃𝑇𝑡|𝑡−1 (0I) .

(50)

Given that the system parameters are estimated through the
EKF formulation, we next introduce learning algorithms on
w𝑡 in order to change the behavior of the users in a desired
manner.

4. Designing a Causal Inference System to
Tune User Preferences

After the parameters are estimated through methods
described in the previous sections, the complete system
framework is given by

x𝑡 = F𝑡p𝑡 + n𝑡,
p𝑡+1 = (G𝑡 + c𝑡w

𝑇
𝑡 F𝑡) p𝑡 + k𝑡 + c𝑡w

𝑇
𝑡 n𝑡, (51)

with the estimated

{F𝑡 = F̃𝑡,G𝑡 = G̃𝑡, c̃𝑡 = c𝑡} . (52)

Our goal in this section is to design w𝑡 such that the
sequence of preferences p𝑡 are tuned towards a desired
sequence of preferences q𝑡; for example, one can desire to
sway the preferences of a user to a certain product.

In order to tune the user preferences, we designw𝑡 so that
the difference between the preferences p𝑡 and the desired q𝑡 is
minimized. We define this difference as the loss between the
preferences and desired vectors as

𝑡∑
𝑘=1

𝑙 (p𝑘, q𝑘) , (53)

where 𝑙(⋅) is any differentiable loss function. As an example,
for the square error loss, this yields

𝑡∑
𝑘=1

p𝑘 − q𝑘
2 . (54)

Tominimize the difference between these two sequences,
we introduce a stochastic gradient approach where w𝑡 is

learned in a sequential manner. In the stochastic gradient
approach, we have

w𝑡+1 = w𝑡 − 𝜇∇w𝑙 (p𝑘, q𝑘) , (55)

where 𝜇 > 0 is an appropriate learning rate coefficient. The
learning rate coefficient is usually selected as time varying
with two conditions:𝜇𝑡 → 0 as 𝑡 → ∞,

𝑡∑
𝑘=1

𝜇𝑘 → ∞ as 𝑡 → ∞; (56)

for example, 𝜇𝑡 = 1/𝑡.
If these two conditions are met, then the estimated

parameters w𝑡 through the gradient approach will converge
to the optimal w (provided that such an optimal point exists)
[21]. To facilitate the analysis, we set

𝑙 (p𝑘, q𝑘) = p𝑘 − q𝑘
2 (57)

and get

w𝑡+1 = w𝑡 − 𝜇∇w𝑡 p𝑘 − q𝑘
2

= w𝑡 − 2𝜇 (∇w𝑡p𝑡) (p𝑡 − q𝑡) . (58)

In (58), since p𝑡 is unknown, we use p𝑡|𝑡−1 from the causal
loop case, that is, with feedback, and get

w𝑡+1 = w𝑡 − 2𝜇 (∇w𝑡p𝑡|𝑡−1) (p𝑡|𝑡−1 − q𝑡) . (59)

To get

∇w𝑡p𝑡|𝑡−1, (60)

we use the EKF recursion as

p𝑡|𝑡−1 = (G𝑡 + c𝑡w
𝑇
𝑡 F𝑡)

⋅ (p𝑡−1|𝑡−2 + L𝑡−1 [x𝑡−1 −H𝑡−1p𝑡−1|𝑡−2]) ,
p𝑡|𝑡−1 = K𝑡p𝑡|𝑡−1 +M𝑡,

(61)

where

K𝑡 = (G𝑡 + c𝑡w
𝑇
𝑡 F𝑡) (I − L𝑡−1H𝑡−1) ,

M𝑡 = (G𝑡 + c𝑡w
𝑇
𝑡 F𝑡) L𝑡𝑥𝑡−1. (62)

Using (61), we get a recursive update on the gradient as

∇w𝑡p𝑡|𝑡−1 = ∇w𝑡K𝑡p𝑡|𝑡−1 + K𝑡∇w𝑡p𝑡|𝑡−1∇w𝑡M𝑡, (63)

From (59), (61), and (63), we get the complete recursive
update as

w𝑡+1 = w𝑡 − 2𝜇 (∇w𝑡p𝑡|𝑡−1) (p𝑡|𝑡−1 − q𝑡)
p𝑡|𝑡−1 = K𝑡p𝑡|𝑡−1 +M𝑡∇w𝑡p𝑡|𝑡−1 = ∇w𝑡K𝑡p𝑡|𝑡−1 + K𝑡∇w𝑡p𝑡|𝑡−1∇w𝑡M𝑡

. (64)

This completes the derivation of the stochastic gradient
update for online learning of the tuning regression vector.
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5. Experiments

In this section, we share our simulation results to show
that estimated parameters of the system converge to the
real values, proving that a system can be designed with
the right parameters which allows a sequence of actions or
interventions to tune the preferences of a user in a desired
manner. Since our goal is mainly to establish a pathway
to the possibility of designing a system that can steer user
preferences in a desired manner, we consider our basic
simulation set to be sufficient based on the mathematical
proof we provided in the form of EKF formulations. The
true parameters of the system are known to us since we
are running our experiments in the form of simulations.
Specifically, the preferences of the user, which are not directly
observable in real life, are known in case of simulations.
We run simulations for the EKF formulations we derived
in the previous sections to show that our estimation of
the preferences converges to the real preference values. We
illustrate the convergence of our algorithms under different
scenarios.

In the first scenario, we have the case where the corre-
sponding system has no feedback. As the true system, we
choose a second-order linear state-space model, where G =0.95I and F = I with Q = 3 × 10−3I and R = 3 × 10−3I. For
the EKF formulation, we choose two different variances for𝜀𝑡, for example, 10−3 and 10−4, to demonstrate the effect of this
design parameter on the system. We emphasize that neither
F or G are known; hence, as long as the system is observable,
particular choices of F and G only change the convergence
speed and the final MSE. However, we choose F to make the
system stable.

In Figure 4, we plot the square error difference between
the estimated preferences and the real preferences

tr𝐸 [p𝑡 − p𝑡|𝑡−1
2] (65)

with respect to the number of iterations, where we produce
the MSE curves after averaging over 100 independent trials.
We also plot the cumulative MSE normalized with respect to
time, that is,

∑𝑡𝑘=1 tr𝐸 [p𝑡 − p𝑡|𝑡−1
2]𝑡 , (66)

to show that as the iteration count increases, the averaged
MSE steadily converges. The plot includes both the aver-
age MSE and the cumulative MSE normalized in time for
estimation of F and G. We observe that the estimation of
F and G is more prone to errors due to the multiplicative
uncertainty, single observation, and state update equations.
However, both the estimated preferences vectors as well as the
system parameters converge.

In the second set of experiments, we have feedback
present; that is, w ̸= 0. For this case, we now have similar
parameters as in the first set of experiments, except G = 0.9I
to give more decay due to presence of feedback. For this case,
we choose two different scenarios, wherew𝑡 and c𝑡 are fixed or
randomly chosen provided that the overall system stays stable
after the feedback; that is, (G+c w𝑇 F) corresponds to a stable
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Figure 4: Estimation of the underlying preferences vector when
there is no feedback. The results are averaged over 100 independent
trials. Here, we have no feedback and parameters of both the state
equation and the observation equation are unknown.The results are
shown for two different noise variances for the EKF formulation.

Average MSE for unknown state variables

M
SE

Average MSE for unknown feedback variables

Fixed Random

FixedRandom
10−1

10−3

10−2

M
SE

100 150 200 250 30050
Data length

100 150 200 25050
Data length

Figure 5: Estimation of the underlying vector of preferences and
the feedback parameters when there is feedback. The results are
averaged over 100 independent trials. Two different configurations
are simulated for the feedback as well as for the linear control
parameters, for example, the fixed and random initial cases. For both
scenarios, our estimation process converges to the true underlying
processes.

system. Note that this can be always forced by choosing an
appropriatew. However, we choose randomly initializedw to
avoid any bias in our experiments. Here, althoughw is known
to us, the feedback amount c and the hidden preferences
are unknown. In Figure 5, we plot the MSE between the
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estimated preference vectors and the true ones. We observe
from these simulations that although the feedback produces
a multiplicative uncertainty in the state equation and greatly
enhances the nonlinearity in the update equation, we are able
to recover the true values through the EKF formulation. We
observe that although due to feedback we have more colored
noise in the state equation, we recover true values due to the
whitening effects of the EKF. The MSE errors between the
estimated feedback and the true one are plotted, where the
MSE curves are produced after 100 independent realizations.

6. Conclusions

In this paper, we model the effects of the machine learn-
ing algorithms such as recommendation engines on users
through a causal feedback loop. To this end, we introduce
a complete state-space formulation modeling: (1) evolution
of preference vectors, (2) observations generated by users,
and (3) the causal feedback effects of the actions of machine
learning algorithms on the system. All these parameters
are jointly optimized through an Extended Kalman Filter-
ing framework. We introduce algorithms to estimate the
unknown system parameters with and without feedback.
In both cases, all the parameters are estimated jointly. We
emphasize that we provide a complete set of equations
covering all the possible scenarios. To tune the preferences
of users towards a desired sequence, we also introduce a
linear feedback and introduce an optimization framework
using stochastic gradient descent algorithm. Unlike previous
works that only use the observations to predict certain desired
quantities, we specifically design outputs to “update” the
internal state of the system in a desiredmanner.Through a set
of experiments, we demonstrate the convergence behavior of
our proposed algorithms in different scenarios.

We consider our work as a significant theoretical first step
in designing a system with the right parameters which allows
a sequence of actions or interventions to tune the preferences
of a user in a desired manner. We emphasize that the main
goal of our study is to establish a pathway to designing such a
system.We achieve this by first providingmathematical proof
and then through a basic set of simulations.

A next step in future studies can be to make the system
more stable and also to make the design process easy and
practical for system designers. Further analysis on the con-
vergence of the system and more simulations, experiments,
and numerical analyses are needed to take our results to the
next level. A direct comparison to previous studies is not
possible for this first step of our study since, to the best of
our knowledge, this is the first time a task of this nature is
being undertaken. Our main success criterion is the fact that
estimated parameters converge to the real parameter values.
However, as our framework evolves, we will be able to track
its relative performance.

Another area of focus for future studies is the optimal
selection of action sequences. This can be particularly chal-
lenging since user preferences can change over time due to
the abundance of new products and services. Algorithms
to optimally select actions may require online learning and
decision making in real time to accommodate these changes.
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[9] Y. C. Sübakan, B. Kurt, A. T. Cemgil, and B. Sankur, “Probabilis-
tic sequence clustering with spectral learning,” Digital Signal
Processing: a Review Journal, vol. 29, no. 1, pp. 1–19, 2014.

[10] Y. Achbany, I. J. Jureta, S. Faulkner, and F. Fouss, “Continually
learning optimal allocations of services to tasks,” IEEE Transac-
tions on Services Computing, vol. 1, no. 3, pp. 141–154, 2008.
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