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Abstract

Due to the recent explosion of ’identity theft’ cases, thiegaarding of private data has been the focus of many
scientific efforts. Medical data contain a number of sewsitittributes, whose access the rightful owner would igteall
like to disclose only to authorized personnel. One way of/jgfiag limited access to sensitive data is through means
of encryption. In this work we follow a different path, by asing the fusion of the sensitive metadata within the
medical data. Our work is focused on medical time-seriesadggand in particular on Electrocardiograms (ECG).
We present techniques that allow the embedding and refradvaensitive numerical data, such as the patient’s
social security number or birth date, within the medicahsig The proposed technique not only allows the effective
hiding of the sensitive metadata within the signal itselft ib additionally provides a way of authenticating the data
ownership or providing assurances about the origin of the.daur methodology builds upon watermarking notions,
and presents the following desirable characteristicsit @)es not distort important ECG characteristics, whioh ar
essential for proper medical diagnosis, (b) it allows ndydhe embedding but also the efficient retrieval of the
embedded data, (c) it provides resilience and fault tolsrdyy employing multistage watermarks (both robust and
fragile). Our experiments on real ECG data indicate theilfgtof the proposed scheme.

. INTRODUCTION

In the years to come, the Healthcare system is expected terierpe a drastic change in its structure and
organization. These changes are partly driven by chang#dsitnuman genographics, and also reinforced by the
recent climatic changes and the various events and disa$ierughout the world. This shift is clearly reflected
on recent Healthcare reports. For example, Healthcare 2015 report shows that governments, health regions,
hospitals, and healthcare providers are allotting biliaf dollars into multiple medical initiatives.

One very important effort is the creation of electronic tieakcords (EHR’s). As health care (and health care
data) grows more complex, storage and accessibility of cag¢diformation is not only invaluable but also necessary.
The long-term goal for electronic health records is to makiept data securely available to health care providers
such as hospitals and emergency personnel, when and wieerddimation is needed. Disasters, such as Hurricane
Katrina, for example, have shown the practical utility ofrtgeable to store and retrieve information like prescriptio
histories and dosages electronically in an emergency.

One of the major technological and ethical issues govereiegtronic records is the issue of data privacy.
Protection from unauthorized access on medical historg datl personal patient data, is something that can not
only protect a patient’'s private data hindering potentlntity thefts, but can also safeguard the healthcare and
insurance system from fraudulent claims. With this in mitlds work proposes techniques for hiding sensitive
patient metadata within the actual medical measuremertigshware stored into a patient's medical record. In
specific, we focus on electrocardiograms (ECG’s) and howmbesl numerical metadata within the ECG signals.

A prerequisite of this embedding is, of course, not to dgstite data usability. We indeed show that the
usefulness of the data is not affected, because of the impite distortion induced through the fusion of the
metadata within the actual data. For most watermarkingiegns this requirement can simply be stated as
preserving the visual/audio quality of the signal (i.er, ifnage and audio processing). When dealing with medical
data this means that our watermarking algorithms shouldchanhge the diagnosis of a physician. For example,
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when dealing with ECG signals, common tasks are the detecficarrhythmia or other heart related illnesses.
Therefore, the diagnosis on the watermarked signal shootidieviate from the diagnosis on the original signal.

The privacy of the embedded data is assured because we dmhetlairectly the private metadata, but instead
we embed a surrogate random sequence, that is generated fiyptagcaphically safe hash function using the
metadata as the input and a secret key as the seed. Hencegidideaking or revealing any information about the
patient’s sensitive information to the public. Even thoubl privacy of sensitive data attributes can be addressed
through encryption, such an approach is inherently a blackactor in data dissemination. Additionally, the use
of encrypted fields in medical records directly suggestsettistence of private data, which may be something that
one would like to avoid in the first place.

The tight coupling of the metadata within the actual medmahsurements presents several desirable properties: 1)
Private information is effectively concealed in the sigaatl therefore can serve as an additional authenticatidn sea
regarding the originality of the data. 2) The fusion of thetadata within the actual data can potentially eliminate
the need for recording the patient metadata separatelg. ddild provide an additional level of security on the
private information of a patient, by thwarting deliberateanges on the medical records, or even by eliminating
accidental errors during a laborious replicating/typimggess of a patient’s record fields. 3) Finally, the techegu
that are delineated here could also be applied for estaiighe provenance [1] of the data. Therefore, if every
recipient (or processor) of the data embed a different s@atermark, then one can trace the lineage of how the
data was produced, processed and distributed in a tramgdashion.

In the experimental section we also demonstrate that therfud the metadata with the data is achieved in such
a way, so that the data usability is not hindered or affectée upcoming sections, will explicate in more detail
the challenges and also the advantages of the proposed émfped

II. OVERVIEW

In order to embed metadata within the medical signals, wé wtilize notions from data watermarking and
channel coding. The sensitive metadata (social securitybeu (SSN), birth date, and so on) will be embedded as
a hidden watermark within the medical measurements of ttiergaln order to provide additional protection and
data resilience we propose to embed two types of watermartk@medical signal; a robust one for storing the
actual metadata and a fragile one for identifying possiafeperings on the data:

1) The robust watermark will encode an encrypted version of the patient's metadaaploying additional
data redundancy for aiding data recovery in the case of datamion by a malicious attacker. We show
that a robust watermark cannot be easily removed withouifgigntly distorting the actual data, i.e., without
obvious attacks, which in any case will render the data gsele

2) The fragile watermark will be used for detecting potential data tampering. As thena suggests, simple
operations can destroy the fragile watermark, but its al=sem the received data is an indication that the
data have been compromised or altered.

Here, we introduce novel robust and fragile watermarkingragches and apply them to medical time-series data.
We strongly emphasize on the randomized nature of our #fgos. We use extensive randomization in every step
of our algorithms to alleviate the vulnerability of our atdbms against malicious attackers or common alterations
on the host signal. Although, it is hard or impossible to mMaery kind of reasonable quality preserving attacks,
the utilization of randomized step significantly reduces lgakage of information to possible attackers. The robust
watermark encoding the actual metadata is embedded indlyjgdncy domain, and the data is masked effectively
in certain frequencies that are selected based on a segretlis type of embedding makes the embedded data
resilient to transformations such as translations, leigsificant bit alternations, small noise additions, reskngp
and decimation. Furthermore, the regions where the privetadata are embedded are selected based on a secret
key. A fraction of the hidden metadata bits will be allocaf@demploying error correction codes, in order to provide
additional resiliency due to malicious attacks, or even gugransmission errors. In this sense, our watermarking
approach not only uses ideas from spread spectrum basetttaig®[2], but also has connections to watermarking
techniques motivated by traditional cryptography [3].

The fragile watermark will be embedded after the robust madek on the least significant bits at specially
selected positions of the ECG signal. The fragile embedditigntroduce virtually no distortion. Notice, that even
though the fragile watermark is embedded on top of the rebusannot destroy the robust watermark which is



able to withstand such minor (or even more significant) fiansations. A overview of this architecture is provided
in Figure 1.
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Fig. 1. Overview of our approach

Once the metadata are effectively fused within the medigalas, there are three supported modes of operation:

1) Tamper Detection by examining the presence of the fragile watermark.

2) Data Authentication through correlation with the originally embedded metad&@ example, if the SSN
of a patient is embedded in an ECG signal, then using the S8N @ecret key, one can verify that the data
indeed belong to the patient with a specific Social Securityner.

3) Metadata Retrieval. The rightful owner of the data can provide the secret key toesme else, who is now
at a position to retrieve the embedded metadata from theaalesignal.

A. Related Work

Watermarking research in multimedia data is a very rich fi€ldmpared to traditional watermarking our work
exhibits various differences, such as the fact that we pgeotle ability ofretrieving backthe embedded metadata.
For this reason we also augment our watermarking technigtirecading redundancy schemes, in order to achieve
better data preservation and provide the ability for ermrexction. Additionally, because we are dealing specifical
with medical ECG signals, we can exploit their regularity failoring more appropriately the metadata encoding
scheme. Previous research work dealing with the watermgudd medical signals have appeared for ECG data [4]
and for electroencephalograms (EEG’s) [5]. However, tolmowledge, this is first work that considers metadata
fusion within the medical signal, not only for reasons ofhaurttication, but also for providing the ability of
heterochronous metadata retrieval.

Related is also the work of [6] which watermarks numeric estie, by embedding the watermark on easily
identifiable stream positions, such as the local maxima amidnma. However, such an approach might not be
ideally suited for ECG signals, where one would like to preseas well as possible such areas, because of their
significance in medical diagnosis. Therefore we spreadtiemsity of the robust watermark using a spread spectrum
approach. Additionally, the Least Significant Bit (LSB)eatition that we employ in the fragile watermark is quite
more advanced, in the sense that it can also pinpoint theaar@dype of tampering.

Watermarking work has also been used in relational dataleideer using direct LSB alterations [7], [8] or using
hierarchical Binning approaches [9]. Finally, there is atJuderature on the topic of privacy preserving data-ngnin
[10]-[12]. Compared to the above areas, our approach igerdift regarding the goals and the methodological
approach that we follow.

In the upcoming sections we will describe the embedding bheddtrieval of the robust and the fragile watermarks.
We will also demonstrate the minimal distortion that is aguced by their embedding and in the experimental
section we will empirically assess the resilience of ourescé.

1. RoBUST WATERMARKING
A. Preliminaries and Notation

Consider an ECG signal as a one dimensional time-serieesegurepresented as a vector {z1,...,z,},
wherex; € R. In such a signal, we will embed private humeric metadatadapting onwatermarkingtechniques.



However, we will also show how to retrieve back the hidderoiinfation, which is something that traditional
watermarking applications do not consider. Therefore, technique gracefully fuses watermarking and channel
coding techniques. Theecret informationthat will be hidden inside each ECG signal itself is encodsdaa
watermarki?V € {—1,1,0}", which has the same length asand can take3 distinct values. Later we will show
how we can use the sequenidé to encode numeric metadata consisting-bits.

The embedding of the watermark consists of a compositioctiom that, givenz and W, returns a modified
signal which issimilar to = andenclosedV . The original ECG signal should not be significantly distdrand a
technigue to retrieve/dete@t’ in the watermarked signal should be provided.

We call this watermarkobustbecause it is able to withstand a variety of possible datestoamations. We will
not embed the watermark in the origirgpace-Time domaibut into theFrequency domainwhich will guarantee
better resilience against malicious attacks.

Every ECG signak: will thus be represented with the set of its Fourier desorgpk = {X1,..., X,,} wheren
is the number of points af as well as the number of its frequency components. The mgpgom one domain
to the other are described by the discrete Fourier transfifii):

X, = % éxkexp (—i%r(j (k- 1)>

and the inverse discrete Fourier transfoidfi (X ):

1 < 27
x; = %;Xk exp (ZZ(] —1)(k — 1)> :
Every coefficientX; can be described in terms of isagnitudep; andphase¢;, that is, X; = pje¢-fi.

We use an additive embedding of the watermark which altels tbe magnitudes but retains the original phase:

Definition 1 (Additive Fourier Embedding)ror a signak: € R™ and a watermarkl’ € R", the additive Fourier
embeddinggenerates a watermarked sigaaby replacing the magnitudes of each Fourier descriptar @fith a
watermarked magnitudg;:

=R def
p; = {(pj +pW;) = max(0,p; + pW;)

wherepowerp > 0 specifies the intensity of the watermark.

Notice that we use the functiof- ), in order to ensure that we have no resulting negative madgst, when
W; = —1. We will explain later that this may introduce a power los®ithe watermarking procedure. Using the
modified magnitudeg; and the original phases;, we go back from the frequency domain to the time domain
and reconstruct the watermarked sequence using the indexsete Fourier transform.

B. Watermark Construction

Let us describe now how the private metadata are embeddethmtidden watermark. First, let’s recall that the
watermarkiV will consist of the values +1, -1 and 0. Understandably, dhlyselV;’s that contain +1 or -1 will
introduce some alteration in the respective signal freqiesn Thus, only thos&/’; can encode some information.
Conversely, the zero values Bf determine the descriptors that we do not want to modify.

The choice of which Fourier descriptors (frequencies) aostrsuitable to be altered, i.e., to be actually used for
the embedding, can affect the goodness of the detectioregsoOur goal is to build an unbreakable bond between
a signal and a embedded watermark. On the other hand, a ipbtaitdck cannot alter the overall shape of the
ECG plot, i.e. damage its usability. Therefore we shouldtie embedded metadat® with the most important
frequencies. It is well established that the first descrgptwld almost all the energy of ECG signals, which means
that they describe very accurately the data.

Driven by these considerations, we will focus on embeddmgwatermark in the lowest frequencies. However,
we will not embed any portion of the watermark on the first keudescriptorX;, since the DC component of
the signalz (X; = Zj z;/+/n) is easily susceptible to attacks. For example, a simpleskasion will change the



DC level of z (that is, X;) without affecting its shape, but it will erase this part bétwatermark. Therefore we
embed the watermark into ti&#< and up to the(l + 1) Fourier descriptor, whergis the number of non zero
elements ofi¥’. Then, the watermarkl” is formally defined as follows:

0 if ji=1 (DC component)
W;=¢ {-1,1} if 2<j<i+1
0 if [+2<j<n

The metadata that one wishes to embed in an ECG signal wikjesented with a sufficiently long bit-string.
In order to provide additional resilience to attacks, weadtice additional pre-processing before materializirey th
watermarkW. Let B(I) be the binary representation of the informatidr(e.g., metadata), which is randomly
generated using the original information and part of theretekey . Details of this pre-processing would be
clear later on. We prefer a randomized representation ofmiadata in order to protect the private information of
the patient. We next produce an error correcting codé/pf(B(I)) using theHamming(7,4)coding. Introducing
channel coding is mainly used to detect errors during thestrassion of bit-streams over a noisy channel. This
process introduces a controlled level of redundancy by ingpgn input of4 bits into a code of bits. Due to this
added redundancy, the receiver of the message will be ablertect1-bit errors andletect2-bit errors. In the same
way, we will detect malicious attacks that m#iyp one or more bits of the embedded watermark. We adopted the
Hamming(7,4) encoding for its simplicity, but more complied and effective techniques could be utilized as well.
The Reed-Solomon code, for instance, is currently used is @ DVDs and it provides augmented correction
capabilities.

Given the above, the embedded watermark that can encodedtaelata/ is defined as follows:

0 if j=1 (DC component)
1 if (j—1)-th bit of H74(B(I)) =1

—1 if (j — 1)-th bit of H;4(B(I)) =0
0 if I+2<j<n

W; =

wherel = |B(I)| is the length of the binary representation fof

As explicative example, for the rest of the paper we will use $ocial security number (SSN) as the metadata to
be embedded in a given ECG plot. The SSN in the United Statesists of 8 digits in the forr899 — 99 — 999.
Any number< 10%, can be represented with21-bit long string, which for conciseness let us dailhary(SSN).
This initial representation can be as simple as the binanyasion of the decimal SSN. The binary representation
binary(SSN) is then inputted into a cryptographically secure Haslation with « as the secret key to produce the
final randomized 27 bit long string?(SSN) as seen in Figure 2. This representation is then divided Seten
chucks of four bits each and then Hamming coding is appliedépendently to each chuck. The result i5-a 49
bits long error correcting code enclosing a given SSN.

SSN Decimal to binary(SSN) Hash B Hamming
999-99-999 binary 27-bit function 27-bit code(7,4)
K

Fig. 2. Randomized binary representation of SSN metadataygh hashing and Hamming coding.

Example: Suppose we watermark an ECG signal of a patient with SSN-8&4B. When we convert decimal SSN

to a binary number, this yieldsinary(SSN)=111010110111100110100010101. We next select magdo= 9823

as the key to a hash function witlinary(SSN) as the input, resulting(SSN=11011010000110100110111110111.
This pseudo-random representation of the original SSNés ttivided into chunks of 4 bits (we append the last
chunk with bit O since 27 is not divisible by 4) and each 4-lbituck is used to generate a 7-bit chunk using
Hamming(4,7) resulting a watermark of length 49 bits.



C. Embedding the metadata

After the watermark is created based on the given metadatause a spread spectrum approach [13] for
embedding it into the host medical signal. Our techniqué aihbed the same watermark multiple times in a
single time-series sequence. A given ECG signal is pargtiointo a set of subsequencgsThen in each of these
sub-ECGs the watermark is embedded. This distributes tivempof the watermark across multiple frequencies of
the signal subsequences, making its removal particulaffigult, while at the same time preserving the important
data characteristics. In other words, we get a strongerrmari with less power, i.e. less noise introduced in the
original ECG by spreading the watermark signal over the eluzta.

More specific, given an ECG signal= {z,...,z,}, we first select a random starting poiptusingx as the
seed of a pseudo-random number generator. We therzsiplio |.S| = [n/m | adjacent subsequences, starting from
t,. However, when we reach to the last point«gfi.e., z,,, we cyclically continue embedding the watermatk
from z; until the remainingn — m * s points of x. We ignore these last — m x s remaining points before;, .

We denote the set of these subsequences &itimd from now on we will call thentharacteristic subsequences
We chose each characteristic subsequence to contaia 3 x [ points such that each subsequence is 3 times
longer than the bit-string to be hidden into the data. Thispdy allocates enough bandwidth in order to embed
the watermark in the lowest frequencies of each subsequsimoe the length should be at least 2 times the length
of the watermark due to the conjugate symmetry of Fouriefficients. The magnitudes of each subsequence are
then updated according to the additive embedding schenwilded before.

The embedding process returns the second part of the sexyet ko be used during the detection process
described later. The vectgt is defined as the average values of the varipusf the subsequences ), only for
those; such thatiV; # 0:

8ite) = 5 L aile)
seS

Note that the vectop is calculated on the original ECG, i.e. before the waterinaritakes place.

Unlike a non-blind watermarking approach, where in orderdwoieve the watermark it is necessary to have
access to the original data, in our case, we will only needvatord = [« 3]. In this sense we avoid revealing
the original data to the users, hence avoiding any obvioogrig risks.

Resilience of the Embedding: Potential transformations in a medical signal include igaltshifts, re-sampling
(upsampling or downsampling) and cropping. By construtmur technique is resistant to vertical shifts, which
only affect the first frequency component (the DC), where aud pf the watermark is embedded. In the experimental
section, we also evaluate the resilience of our scheme &r dfpes of attacks, such as noise addition, upsampling
and decimation.

D. Error introduced by the watermark.

We measure the amount of noise introduced in a watermarkgalsi as the relative errog, w.r.t the original
x: [l — |

e(z,7) =

where, || - || signifies theL, norm of a vector.
If we consider a single subsequenceof z, then due to Parseval’s theorem [14], and after some aligebra
manipulations, it is easy to see that:
ls=3l1> = S=8|°=...=
= llo=pI*+2)_ pip;[1 — cos(¢j — ¢;)]
J
lp — 511 (since ¢ = ¢; )
= o= (p+pW)|?
W = 1 p?

IA



The above gives an upper bound to the error introduced in glessubsequence, assuming that+ pWW) =
(p+pW). It also shows that an additive watermarking introducesraor evhich is proportional to the square root
of key length and to the watermarking power. To get an uppentan the errorg,, for the whole signak:, we
apply the previous result for each segment, yielding

1
€ = 17 p*=p
N PIRTP ]

Additionally, we define theequivalent embedding powerorresponding to a given maximum errgy;, denoted
by pe:

Given this direct relationship betweenande, we will use them interchangeably to address the power used i
the embedding. We will usg. to indicate the powep equivalent to a given errarand (similarly fore, vise-versa).

If p; +pW; < 0 for somey, it means thatl; < 0 and that the value of is too large since it will produce a
negative magnitude. In this case, usifpg + pWW;) is actually equivalent to using a smaller amount of power for
the frequencyj. We refer to this implicit power reduction phenomenon as gbeer loss denoted withLossg.
This fact suggests that arbitrary increasing the waterrearkedding powep may not necessarily better resilience
of the watermark, since not all the bits of the encoded infdrom will be embedded with increased intensity.

E. Metadata retrieval

In order to retrieve the embedded metadata, we essentiadigl to retrieve the enclosed robust watermark, based
on the knowledge of the secret kéy= [« [3]. The process is illustrated in Figure 3. We want to allow othlg
owners of this secret key to retrieve the sensitive metaolatsent in the data. Note that the first part of key vector
k is randomly selected from the key space and the second pa&eyofrector3 depends only on the data and
does not have any correlation with the watermark. By disctpshe secret key, not the watermarked data, no
information can be inferred about the secret metadata.

WM embedding WM retrieval/detection

w
: W,
2 WM X Channel y WM ,
Encoder Decoder watermarked?

0 i 0 i

Fig. 3. lllustration of the watermark embedding and detectetrieval process.

For retrieving the private metadata, we reverse the watdingprocess by comparing the value @fthat we
have from the original ECG and the new valdgé that we calculate from the received ECG sigpallhe received
signaly is equal to the watermarked dataif there is no distortion (attack) on the signal.

Given a received (watermarked) signalwe splity into a new set of characteristic subsequenggsexactly as
done during the watermark embedding process. The metadatataeved as follows:

Definition 2 (Metadata Retrieval)Let z andy be watermarked and received signals, respectively. Theacha
teristic subsequences, is the set derived from the received sigpalwhich is equal taS if there is no distortion



on the watermarked signal. Let the calculated statistics from the received signdle 5Y, then we define the
binary vectorZ as

Z‘—{ 1 if g/ —pi>7

vt 0 if ﬂly —gi<T
where the threshold is selected to control the trade-offiben false alarm (FA) and false rejection (FR) rate. Then,
the receivedB(SSN is given by
R=H:(Z).

where R is equal toB(SSN if there is no error in retrieval.

If ﬂjy — B; > 7 we have a hint that thg-th element of the embedded watermark is equad (@V; = 0), and
symmetrically equal td if ﬁ;’ — Bj < 7. In order to get the actual data, we must apply the Hammingatsc
H ;. Using decoder we retrieve two pieces of information. Fivet infer whether there has been some error in
the retrieval ofR, and secondly we can try to remove such an error.

Example: Suppose that we are embedding an 8 digit SSN of a patient asetitret metadata. We first convert 8
digit SSN into a 27-bit long binary stream. This conversiam e as simple as using the binary representation of
each digit. We next input this binary representation to gtographically safe hash function (withas the secret
key) to get, again, 27-bit long random sequence. Applyinghhiéng(7,4) for each 4-bit blocks of this data would
yield a watermark signal of 49-bit long, i.€[27/4] « 7 = 49 where [] represents rounding towards the upper
integer. Given an ECG signal, this W would be embedded for each segment of Size49. After decoding the
watermarked signal, we get. If there is no attack om, than it is easy to see that should be equal téV, since

8Y — B =p—06=pW.In the presence of an attack one can measure the goodndss whtermarking as:

S>Z XOR W

Goodness=1 —
49

i.e. the percentage of bits correctly retrieved.

F. Watermark Detection

Given the secret key, one can also simply detect the presence of the watermaHowtitretrieving back the
embedded metadata. This is achieved using a generalizeelatmn detector which is given in the following
definition:

Definition 3 (Watermark Detection)Let z, z andy be the original, watermarked and received signals, respec-
tively. The characteristic subsequendgsis the set derived from the received siggaand equal taS if there is
no distortion on the watermarked sigral Let the calculated statistics from the received signake 57, then we
define the generalized correlation detector as

(B —-8,8-8)

>
18- =
where the threshold is selected based on the desired false acceptance andef@ston rate, andz, y) = >, x;y;.

watermarked
not-watermarked

(1)

T
T

The above correlation detector is decision-theoreticnagtiwhen the disturbance an is white Gaussian noise
[15]. However, in case of non-Gaussian disturbances, we iatsoduce following updated correlation detectors
which work directly on the received bits instead @®ivalues:

(Z,W) > r  watermarked @
W2 < 7 not-watermarked
and
(R,B(SSN) > 7  watermarked @)
IB(SSN||2 < 7 not-watermarked
In the experimental section, we include detailed experimeagarding the performance of the above three
watermark detectors.



IV. FRAGILE WATERMARK

After the robust watermark which encloses the private nstads embedded in the ECG signal, a fragile
watermark will be added on top of the resulting signal. Tragile watermark can be used to efficiently detect
subsequent alterations to a marked data. Although, thestatatermark is designed to be resilient against most of
the benign signal processing operations (such as compressopping, decimation) and/or against malicious agack
that intentionally attempt to remove the underlying watarkn fragile watermarks are designed to detect (with high
probability) even the slightest changes on the underlyiageywnarked data. By definition, the fragile watermark
should easily reveal that the data is modified or tamperethoigh conceptually different, the embedding and
detection of fragile watermarks is similar to that of robusitermarking framework. Given a key, i.e., SSN of
a patient for our application, a fragile watermark will bengeated and then embedded to the underlying ECG
signal. Upon reception of the watermarked ECG signal, th@ient subsequently uses a detector to authenticate
the underlying signal. This detector may use the underli@gand a side-information generated from the original
data (whose generation mechanism would be clear later oojdier to determine the authenticity of the received
signal. We refrain from revealing the original signal to theers and restrict their access to only side-informatian du
to obvious security considerations. The side-informat®ogenerated using randomization in order to leak limited
information about the original data to the users. We stresshe randomized aspect of our algorithms, since a
randomization approach will protect the watermark agaimsst of the intentional attackers trying to estimate the
watermark.

A. Fragile Watermark Embedding

For our particular application, we desire our fragile watarking to have the following properties:

1) The embedded watermark should not interfere with the tyidg usage of the signal. This requirement
reduces the candidate algorithms that one can use on thke freafermark, in order to induce only minimal
effects on the underlying ECG signal.

2) The fragile watermarking should be able to detect thegmes of tampering on the medical signal.

3) The fragile watermarking should give localized inforiroat about tampering. To satisfy this, the fragile
watermark needs to be localized. The candidate fragile itk should also be able to quantify the nature
of the underlying alterations or attacks on the correspundignal. For some applications this property is
essential, since most of benign signal processing opessach as compression or change of axis by DC
addition/subtraction will destroy the fragile watermahiowever, the underlying signal is still useful for all
practical purposes. Hence, the fragile watermark shoulthtiiy the underlying cause of the alteration as
much as possible in order to make the final judgment on theilitgadf the tampered signal.

Since our first motivation is to detect any alteration on thdarlying ECG signal and we desire to have minimal
effect on the underlying signal, we embed the watermark énsipatial domain on thieast-significant-bit§LSB’s)
of the ECG signal. This type of algorithms that alter the LSBire extremely effective for detection of random
perturbations, but in their most basic form [7] are very sgible to malicious attacks. One can easily change the
underlying watermarked signal (in the extreme case comlgleeplace with another signal) without touching the
LSB’s. In the literature, there are many different varini®f the basic approach to reduce this kind of vulnerability
to malicious attacks by including context information irtke watermark [16]-[18] . In this paper, we require, the
embedded watermark signal to be both context and data depemda randomized manner in order to avoid any
possibility of an attacker to either replace the watermaaRially or completely, or alter the watermarked signal.
The fragile watermark embedded in the LSB’s depends on ralydgenerated semi-global data statistics, which
we believe would capture the essential features of the lyidgrsignal [19]. We extensively use randomization
in order to eliminate the possibility for an attacker to imte any information about the original key. Since, an
attacker which has access to the original key could use thsfde watermarking arbitrary data.

Next, we provide the basic fragile watermarking algorithmd ahe motivation of each step. The complete
description of the embedding and detecting of the algorigiengiven in Figure 5 and in Figure 7, respectively.

Embedding Algorithm: Given an ECG signakt = {z1,...z,}, we first separate the underlying signal into
separate blocks based on heart-beats, i.e., we use eattbbabduration as a segment, whetes the portion of
the ECG signal corresponding to titb heart beat. To achieve a beat to beat signal separatiortiize an energy



based filter, since the ECG signal should exhibit higher ggnat the frequency indicated by the heart beat. Note,
that the heart beat separation does not have to be exaat, thilscblock processing is merely a way of providing
broad localization information upon the fragile watermaBiven the fact the we work on ECG, we can exploit
their inherent pattern regularity in establishing

Subsequently, we remove the LSB from eaf;;hto geta}};, i.e., Z is the ECG signal where all LSB’s are set to
zero. We uses as the seed for a pseudo random number generator to geparateomly located intervals with

lengthw, where{t}, ... ,t;} are the randomly selected starting points for each intemmdrigure 4.
I I
- | [ |
| — ] A 1~ ] [
v — 7 f
I t+w-1
—

ECG portion corresponding to a heart beat

Fig. 4. Localization of the fragile watermark is achievedotigh data 'blocking’ into heart-beats. Subsequent seleaf randomly
generated windows within the heart-beat for embedding rthgilé watermark.

Naturally eacht§- is selected to avoid any interference with the next segrril.en,tté- +w — 1 should be less than
the starting point of the next segment. The length of theselowsw is a design parameter. Obviously, there is a
trade off in selectingu, since a largev would capture the essential (or global) characteristichefsignal better,
but a smalkw would capture the local characteristics of the signal bg&@]. Given a randomly selected location
and a window of lengthw, we generate semi-global statistics from this portion efdlata. These statistics can also
have random components in their generation, however invibrk we do not use any randomization, except their
locations. Our algorithms are generic such that this kin@lt@rations can readily be incorporated. The windows
can be overlapping so that we avoid constraining the seleaif locations to reveal limited information to an
attacker. These local and randomly generated featuressaemttal and would be calldthsh valuesWe use these
hash values (after appropriate quantization) and the mtatietadata, as the seed of a random number generator to
generate the final fragile watermark which is comprised obzeand ones of length equal to heart-beat duration.
The resulting fragile watermark is embedded to the LSB’shef torresponding heart-beat. We repeat the same
process for each heart-beat to create the watermarked Efe/@l.si

We generate several different statistics (or hash valuesindow to capture different features of the data in
that window. Per window, we generate three different hashesa! ;, g5 ;, 95 ;, 7 = {1,...,p}, by calculating: the
power of the corresponding signal filtered by a low pass fikeband pass filter and a high pass filter as seen in
Figure 6. Hence for each heart-beat segment

gi,j = Tl({jijv' - 7jij+wfl})7 Jje{l,....p}
92,5 = Ta({Tt;5 -, Ty pp-1t)s G € {10}
935 = 3Tt Ty pp-1t), G € {10}

whereT;(x) (T>(z),T5(x)) represents the composite operation of first lowpassingdpassing, highpassing) the
signalx and then calculating the power of lowpass ((bandpass, hgg)diltered signal. We collect all hash values
corresponding to all segments and windowsgin= {gij}. Apparently, these three different hash values would
capture the different features of the data. For example al Iskift of the heart-beat data, i.e., a DC addition
or subtraction, will not effect the hash values generatedhey high pass or band-pass filters, hence revealing
and localizing the corresponding tampering. The amountaofpiering could also be determined as the amount



Embedding:

Step 1: Let x € R™ be an ECG signal of size x 1.
Step 2: For each sample of, remove the LSB to get.
Step 3: Split  into disjoint segmentg® where eacht; corresponds to a single heart-beat

andz is the union ofz’ i =€ {1,..., N}

Step 4: For eachi = {1,..., N}

Step 4.1: Given i, generatep possibly overlapping intervals (each with sizex 1) with time stamps{¢i, ... ,t;},
Step 4.2: For each interval generate three semi-global features= Tl({:zii, - jiiﬂ,_l}),

g2,i = TQ({i‘%j7 ceey i‘%j+w—l}) and g3, = Tg({i‘ij, R ,i‘iﬁ_w_l}) where

T:(.) is the power of low-passed filterefd; , ..., %} ,,,_,} with pass bando, /3],

Ty(.) is the power of band-passed filteréd; ,...,7; ., _,} with pass bandr/3,27/3],

Ts(.) is the power of high-passed filterdd; ,...,#; ., } with pass band2/3, |

Step 4.3 Construct@ by appending: with appropriately quantized version of ;,

ri = CONCAT(x {g; ;})- 4 4
Step 4.4: Generate a random vector of the same size‘ofomprised of zeros and onés[;, ,
using x; as the seed of a random number generator.

Step 4.5: Replace LSB's ofi? with this random vector.

Fig. 5. Embedding of fragile watermark.

of change in the corresponding hash values. Even a localeengpcould be pinpointed since we use several
overlapping windows for each heart-beat segment. Althaugluse simple outputs of straightforward DSP filters,
more sophisticated filters or algorithms that are tuned fparicular application or a signal database can be easily
introduced in the algorithm. Each new addition will intregdufurther localization or capture different features of
the data. After collecting the hash values for each intefwakach segment of a heart-beat, we append the patient
metadata with appropriately quantized values of these halstes as the seed of a random number generator:

k; = CONCAT(x {gfj})

to generate the fragile watermark for this segniéfj;a. The fragile Watermarld(V}m, is the same length as thih
segment and comprised solely of zeros and ones. This ragdgmerated WM will be the LSB’s of this particular
segment. We replicate this procedure for each heart-bgatesd to get the final fragile watermarked signal.

H(0) H(0) H(0)

A

0o = T o T 2z
3 3 3 3
Fig. 6. Filters used for extracting the various window stits

B. Fragile Watermark Detection

For detecting of the fragile watermark, we follow similaegs as the embedding. Given a watermarked ECG
signalz and hash valueg of the original data as the side information, we first remownd atore the LSB’s for
eachz,. The hash values are generated for each heart-beat segsmanthe same random number generator with



x as the seed. After getting the time stamfs, . .. ,t;}, we calculate the following hash values,

915 =TT, B ) G {1}
Gy = To({EL, B i}) G €L, p)
/g\é,j = T3({53\f€j>-"?fc\7ztj+w—l})> jefl,....n}

where with an abuse of notation we usedo represent the watermarked signal with LSB’s removed. kén t
generate the final random signal using concatenateohd the quantized hash values as the seed of a random
number generator,

Ri = CONCAT(x {g; ;})-

We next compare this random seque@fém with the stored LSB’s to reveal any alteration. If these twqiences
differ, than we announce a possible tampering. One can ctiedee whether this tampering can be localized
through the use of the hash values by calculating

|/93i,j - gli,j‘
|gll,j|

for each segment. The absolute relative change in the hash values would Ir¢hregpossible tampering in the

respective region. Although most of the tampering shouldogalized by the hash values, small changes on the

data (intentional or not intentional) may not be caught by ttash values (although they will be caught by our
fragile watermarking).

Tamperingi, L, j) = g={L....p}l={1,23}

Detection:

Step 1: Let ¥ € R™ be a watermarked ECG signal of sizex 1

andg € R™ be a vector of side informations.

Step 2: For each sample of, remove the LSB and store it.

Step 3: Generate the side information sequefcmllowing the exact same lines of WM embedding
Step 4: Generate fragile WM using and SSN and compare it with the stored LSB’s

Step 5: If they are different than the signal is tampered

Step 6: If tampering is present, check Tamperind, j).

Fig. 7. Detection of fragile watermark

V. EXPERIMENTS

We evaluate empirically the robustness of the proposeddatteembedding technique. We demonstrate that the
methods introduce only imperceptible variations that do distort important ECG features and, as as sequence
do not alter the diagnosis of a cardiologist or physiciandifidnally, we show that the embedding techniques
are able to withstand various attacks. We utilize ECG smmatracted from the MIT arrhythmia database [21]
which include normal signals as well as arrhythmic signalsagated as malignant ventricular or supra ventricular
arrhythmias. The datasets used are available by emailmgdhtact author.

A. Determining the embedding power

In order to determine the proper embedding power of the nagdaave solicited the expertise of co-author Helga
van Herle, who is a cardiologist. She examined a random sobseer 100 normal and abnormal ECG’s, on which
various random SSN'’s were embedded using increasing erimgegddwers on the robust watermark. A subset of
such ECG’s is demonstrated in Fig. 8. The result of this usetyswith a topic expert, indicated that for SNR=20
the diagnosis might change for certain ECG’s, because adusdistortions that were introduced near the P-wave
region. However, for SNR’s 080 or 40 the diagnosis would not be affected for any of the examine®GEC
Therefore, for our experiments we use embedding powelst would lead taSN R > 30 for each ECG signal.



Normal ECG 1 SNR=40, power=0.007 SNR=30, power=0.0215 SNR=20, power=0.0755

A 4 W

Normal ECG 2 SNR=40, power=0.005 SNR=30, power=0.0155 SNR=20, power=0.0495

a i

Fig. 8. Distortion of ECGs for various embedding powers amel resulting signal-to-noise ratio

B. Class-Label Preservation

One the major features that a cardiologist examines on EG&isléhe presence of arrhythmias which can be an
indication of various heart pathologies. Atrial fibrillati is the most common cardiac arrhythmia [22] which can be
a strong indication for the possibility of a stroke. Spedi28] and bispectral [24] techniques have reported success
in detecting arrhythmias in medical data. Here, we utillze $pectral distance measure of [23] for quantifying the
similarity between 10 normal and 10 arrhythmic ECG’s intoichhwe have embedded random SSN's. After the
pairwise distances between the 20 ECG’s are evaluated vegectiee resulting dendrogram, which is illustrated
in Fig. 9. With the darker color are shown the abnormal oneswith lighter color the normal ECG’s. One can
observe that even on the ECG’s with the embedded metadat itha clear separation between the two classes
of data. Similar results we obtain for the remaining port@fnECG datasets. This example, serves as a simple
demonstration that the metadata embedding does not disgmificant ECG features, which are important for a
proper medical diagnosis.

I R N R N N R

Fig. 9. Dendrogram of ECG’s with embedded metadata. We wbghat class labels are not distorted. One can still disnete clearly
between arrhythmic (dark color) and normal (light color) &C

C. Resilience Under Attacks for Robust Watermarking

We test the efficacy of metadata retrieval and watermarkctieteunder various data transformations (or potential
attacks). In this section we quantify the performance ofrifaust watermark that carries the metadata, but both
robust and fragile watermarks are embedded on the ECG’s.frilgde watermark can detect the presence and



location of the transformation, and its efficiency we quignitn the upcoming section. For the robust watermark,
we examine effect of the following transformations:

Retrieval quality with increasing error Retrieval quality with increasing error
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Fig. 10. (a) Noise addition in space domain, (b) Noise additn Frequency Domain (c) ECG downsampling (d) ECG cropping

m Noise addition in the space domain: This is a critical attack because it can potentially destheyembedded
metadata. We first test metadata retrieval when we translatomly the baseline of the ECG signal (which doesn’t
destroy the ECG usability) and we add up to 20% relative nois¢he original ECG signal. In Figure V-C(a) we
plot metadata retrieval (as the percentage of correctiguered bits) versus noise level. From the figure, we observe
that up to 14% of distortion (which would anyway destroy theG usability) one can retrieve the whole amount
of the embedded metadata. This is possible due to the redopdahemes that we employ in the encoding of the
hidden metadata.

m Noise addition in the frequency domain: An adversary may also add Gaussian noise in the frequencgidpm
which is where the metadata are embedded. The results ®rattack are depicted in Fig. V-C(b). We observe
similar results for this attack as well, which again vala#te robustness of our approach.

m Decimation: On this attack an ECG is represented by smaller set of pdiatsbiest approximate the original
ECG signal. A shorter sequence is obtained by sampling efgard points from the spline associated with the
original ECG sequence. Decimation is a significant attagcanse even though it does not change significantly
the shape of the ECG signal, it allows the adversary to gémeraew sequence which has no points in common
to the original sequence. In our tests (see Figure V-C(¢pnavhen the ECG signals are represented using only
70% of the original number of points, all of the metadata bits retrieved correctly.

m Cropping: This is another severe attack on ECG signals. In croppiraglatthe ECG signal is shortened by a
fixed amount by eliminating a part of the ECG signal. Since,dize of the cropped ECG signal is shorter than the
expected length, we perform a local search based on thelatwrebetween the recieve® and originals over a
window. The point where this correlation is maximized isdiser watermark retrieval and detection. As seen in



Figure V-C(d), we plot the watermark retrieval with respctamount of cropping performed on the ECG signal.
We observe that the retrieval performance gracefully dimgaas the cropping amount increases. We observe no
distortion up to 5% percent and minimal distortion up to 208éppings.

Therefore, the above experiments have shown that the igemdding scheme which also carries redundancy,
can effectively retrieve the embedded metadata even uhd@resence of significant transformations. Additionally,
a malicious adversary would have to destroy the usabilitthefsignal (distort the shape significantly) in an effort
to erase the hidden data.

D. Robust Watermark Detection

In addition to retrieving the metadata, one can also simplgct the presence of the watermark using one of the
three watermark detectors presented in section llI-F. Vééuewe the performance of these detectors under the same
data transformations as in the previous experiments, aisg acceptance/false rejection curves (FA-FR curves).

m Noise addition in the space domain: Here, the ECG signals are normalized to have maximum arndgligqual

to 1 with zero DC and the average power of an ECG signal is 0B8.attack consists of additive Gaussian noise
with standard deviationgt = 0.001, o = 0.01, o = 0.05, o = 0.1. Hence some of these attacks can be considered
as severe. In Figure V-D(a), we plot the FA-FR curves for fdifferent noise powers for the correlation detector
introduced in Equation (1). As seen, for noise powetd1 and0.01 the FA-FR curves are on the x-y axes, i.e., the
algorithm perfectly separates detection regions (heneeethre no errors in detection). As expected, the detection
performance gracefully degrades as the noise power irese&amilar performance results are observed in the other
algorithms introduced in Equation (2) and (3), respecyivéb compare the performance of these three different
detectors, we also plot corresponding FA-FR curvesdfoe 0.05. We observe that for additive Gaussian noise
(even though the additive noise is in space domain) the fiasemnark detection algorithm based on correlation of
06's outperforms the other two.

m Noise addition in the frequency domain: The FA-FR curves for frequency domain attacks are presented
Figure V-D, using the same four additive noise levels as figefdhe results directly follows the results of noise
addition in space domain. These results further corrobdfs robustness of our watermarking algorithm.

m Decimation attack: We next present the FA-FR curves for decimation attack iruiféigv-D, for decimation
up to 80%. We observe that our watermark detection algorithraffective up to 75% decimation, which is a
quite severe distortion. We attribute this robustness duesing lower part of the frequency spectrum for mark
embedding, since in decimation type of attacks, the higregyulencies are more effected due to lowpass filtering
to avoid aliasing.

m Cropping attack: We finally present the FA-FR curves for cropping attacks igure V-D. We try several
different amount of croppings from 10% up to 50%. We obselngesame robustness properties for this attack also.

E. Fragile Watermarking

This section studies the performance of the fragile watekraad in specific the behavior of hash values under
several different attacks on the ECG signals. For fragileewaarking, we choose a window sizef samples and
for each region we collect hash values from 4 different sigpurals. We observe that the hash values are not that
sensitive to window length bui0 samples provide a fair trade-off between localized infdromand capturing of
semi-global robust statistics [20]. For generation of haahies, we use 8th order low pass, band pass and high pass
filters where each filter is designed using a Butterworth rilgm. We choose an 8th order filter to decrease the
effect of initial transients due to the usé sample sub-intervals. We observe that the effect of thiglrransients
are unavoidable but acceptable.

As the first attack, we try a DC shift on the ECG signals. Ndlyra DC shift does not alter the usability of
ECG signal, unless there is also additional clipping inedlvin Figure 15, we plot the histogram of percentage
change in three different hash values for a DC shift of 1. €ha® hash values corresponding to low pass filter,
high pass filter and bandpass filter outputs. Naturally for@ $hift in space domain, high pass and low pass
features are not effected. The obvious change in hash vatressponding to low pass filter is due to the impulse
like change in frequency domain at frequency 0 due to DC madisVe clearly distinguish the particular change
in DC value due to hash values generated by low pass filterhwiithe main motivation for hash usage.
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Fig. 11. FA-FR curves for three different watermark detecfor four different noise levels added in space domainWa)ermark detector
from Equation (1) (b) Watermark detector from Equation @)Watermark detector from Equation (3) (d) FA-FR for all emark detection
algorithms together fos = 0.05..

We next try additive Gaussian noise (as done in the robustrarking experiments) since this kind of attack
(or disturbance) is common due to both intentional or umtid@al changes, e.g., data compression. In Figure 16,
we plot histogram of percentage changes in hash values fordifierent noise levelsz,, = 0.1 representing a
severe attack and, = 0.001 reprenting a less-severe attack. We observe that the hdsbsveorresponding to
all three filters are effected by this attack. The changesashhvalues reflect the degree of the attack since the
percentage change in the severe attack is an order of mdgrager than the less-severe case. A change in all
hash values shows a broadband attack on ECG signals sinttee dtequency components are effected.

As the next set of experiments, we repeat the previous aitaitle frequency domain with the same noise levels
and plot the results in Figure 17. We observe the same kineélo&lor illustrating the effectiveness of hash values
to assess the severity of attacks on ECG signals.

For decimation attacks we plot histogram of percentage gdsiin hash values corresponding to decimation
amounts 50% and 75%, in Figure 18. Naturally, since the datoom of a signal effects mainly the higher frequencies
due to lowpass filtering to avoid aliasing (and if lowpas®filtig is not present, due to aliasing), we observe large
changes in hash values generated from bandpass and hidilfmss The hash values generated from lowpass
filters are relatively unchanged.

We next present the results for cropping experiments aridipdochanges in hash values in Figure 19 for cropping
amounts 20% and 40% providing the sensitivity of hash valueter cropping.

We point out that in all cases, the fragile watermarking istas/ed, hence showing presence of an alteration on
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Fig. 12. FA-FR curves for three different watermark detector four different noise levels added in frequency domé&&) Watermark
detector from Equation (1) (b) Watermark detector from Higua(2) (c) Watermark detector from Equation (3) (d) FA-F&R &ll watermark
detection algorithms together for = 0.05.

ECG signals. In all cases the hash values give relavantnrgftion about the nature of the underlying attack.

V1. CONCLUSION

In this paper we introduced the topic metadata fusion withedical time-series data. To our knowledge, this
is the first work that examined this problem. We show that ém#dedding does not distort the visual appearance
of the medical signal and it also does not induce any chamg#sei diagnosis. On a technical level we offer the
following contributions:

« We effectively combine watermarking and channel codingesats for providing the sufficient resilience on

the metadata retrieval

« We augment the above robust technique with localized ®agihtermarks that can pinpoint the type and

location of a potential tampering

« Finally, we evaluate the robustness of the proposed schanmuer various transformations and attacks using

publicly available ECG datasets.

Even though we presented our techniques on statically tB@eG signals, due to the inherent windowing
of our technique, our method is very easily extendible orastring medical data. Such types of data, are even
more prevalent nowadays, with the advent of economic seteaces that can transmit various measurements of
interest. Streaming medical measurements are, for exatnghsmitted during aeronautical exercises for measuring
the stress level of a pilot or an astronaut. Also, telemédipalications are not uncommon for patients that need
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Fig. 13. FA-FR curves for three different watermark detectfor four different decimation amounts: 50%, 66%, 75% af&68 (a)
Watermark detector from Equation (1) (b) Watermark detefitam Equation (2) (c) Watermark detector from Equation (@) FA-FR for
all watermark detection algorithms together for 50% detioma

continual monitoring but are not required to reside in a itakprhe various methodologies proposed in this work,
can function as an additional authentication step, reggrthie originality of the transmitted streaming medical
measurements.
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