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Abstract

Due to the recent explosion of ’identity theft’ cases, the safeguarding of private data has been the focus of many
scientific efforts. Medical data contain a number of sensitive attributes, whose access the rightful owner would ideally
like to disclose only to authorized personnel. One way of providing limited access to sensitive data is through means
of encryption. In this work we follow a different path, by proposing the fusion of the sensitive metadata within the
medical data. Our work is focused on medical time-series signals and in particular on Electrocardiograms (ECG).
We present techniques that allow the embedding and retrieval of sensitive numerical data, such as the patient’s
social security number or birth date, within the medical signal. The proposed technique not only allows the effective
hiding of the sensitive metadata within the signal itself, but it additionally provides a way of authenticating the data
ownership or providing assurances about the origin of the data. Our methodology builds upon watermarking notions,
and presents the following desirable characteristics: (a)it does not distort important ECG characteristics, which are
essential for proper medical diagnosis, (b) it allows not only the embedding but also the efficient retrieval of the
embedded data, (c) it provides resilience and fault tolerance by employing multistage watermarks (both robust and
fragile). Our experiments on real ECG data indicate the viability of the proposed scheme.

I. INTRODUCTION

In the years to come, the Healthcare system is expected to experience a drastic change in its structure and
organization. These changes are partly driven by changes inthe human genographics, and also reinforced by the
recent climatic changes and the various events and disasters throughout the world. This shift is clearly reflected
on recent Healthcare reports. For example, theHealthcare 2015 report1 shows that governments, health regions,
hospitals, and healthcare providers are allotting billions of dollars into multiple medical initiatives.

One very important effort is the creation of electronic health records (EHR’s). As health care (and health care
data) grows more complex, storage and accessibility of medical information is not only invaluable but also necessary.
The long-term goal for electronic health records is to make patient data securely available to health care providers
such as hospitals and emergency personnel, when and where the information is needed. Disasters, such as Hurricane
Katrina, for example, have shown the practical utility of being able to store and retrieve information like prescription
histories and dosages electronically in an emergency.

One of the major technological and ethical issues governingelectronic records is the issue of data privacy.
Protection from unauthorized access on medical history data and personal patient data, is something that can not
only protect a patient’s private data hindering potential identity thefts, but can also safeguard the healthcare and
insurance system from fraudulent claims. With this in mind,this work proposes techniques for hiding sensitive
patient metadata within the actual medical measurements, which are stored into a patient’s medical record. In
specific, we focus on electrocardiograms (ECG’s) and how to embed numerical metadata within the ECG signals.

A prerequisite of this embedding is, of course, not to destroy the data usability. We indeed show that the
usefulness of the data is not affected, because of the imperceptible distortion induced through the fusion of the
metadata within the actual data. For most watermarking applications this requirement can simply be stated as
preserving the visual/audio quality of the signal (i.e., for image and audio processing). When dealing with medical
data this means that our watermarking algorithms should notchange the diagnosis of a physician. For example,

1http://healthnex.typepad.com/web log/2007/02/web seminar rep.html



when dealing with ECG signals, common tasks are the detection of arrhythmia or other heart related illnesses.
Therefore, the diagnosis on the watermarked signal should not deviate from the diagnosis on the original signal.

The privacy of the embedded data is assured because we do not embed directly the private metadata, but instead
we embed a surrogate random sequence, that is generated by a cryptographically safe hash function using the
metadata as the input and a secret key as the seed. Hence, we avoid leaking or revealing any information about the
patient’s sensitive information to the public. Even thoughthe privacy of sensitive data attributes can be addressed
through encryption, such an approach is inherently a blocking factor in data dissemination. Additionally, the use
of encrypted fields in medical records directly suggests theexistence of private data, which may be something that
one would like to avoid in the first place.

The tight coupling of the metadata within the actual medicalmeasurements presents several desirable properties: 1)
Private information is effectively concealed in the signaland therefore can serve as an additional authentication seal
regarding the originality of the data. 2) The fusion of the metadata within the actual data can potentially eliminate
the need for recording the patient metadata separately. This could provide an additional level of security on the
private information of a patient, by thwarting deliberate changes on the medical records, or even by eliminating
accidental errors during a laborious replicating/typing process of a patient’s record fields. 3) Finally, the techniques
that are delineated here could also be applied for establishing the provenance [1] of the data. Therefore, if every
recipient (or processor) of the data embed a different secret watermark, then one can trace the lineage of how the
data was produced, processed and distributed in a transparent fashion.

In the experimental section we also demonstrate that the fusion of the metadata with the data is achieved in such
a way, so that the data usability is not hindered or affected.The upcoming sections, will explicate in more detail
the challenges and also the advantages of the proposed embedding.

II. OVERVIEW

In order to embed metadata within the medical signals, we will utilize notions from data watermarking and
channel coding. The sensitive metadata (social security number (SSN), birth date, and so on) will be embedded as
a hidden watermark within the medical measurements of the patient. In order to provide additional protection and
data resilience we propose to embed two types of watermark onthe medical signal; a robust one for storing the
actual metadata and a fragile one for identifying possible tamperings on the data:

1) The robust watermark will encode an encrypted version of the patient’s metadata,employing additional
data redundancy for aiding data recovery in the case of data corruption by a malicious attacker. We show
that a robust watermark cannot be easily removed without significantly distorting the actual data, i.e., without
obvious attacks, which in any case will render the data useless.

2) The fragile watermark will be used for detecting potential data tampering. As the name suggests, simple
operations can destroy the fragile watermark, but its absence on the received data is an indication that the
data have been compromised or altered.

Here, we introduce novel robust and fragile watermarking approaches and apply them to medical time-series data.
We strongly emphasize on the randomized nature of our algorithms. We use extensive randomization in every step
of our algorithms to alleviate the vulnerability of our algorithms against malicious attackers or common alterations
on the host signal. Although, it is hard or impossible to model every kind of reasonable quality preserving attacks,
the utilization of randomized step significantly reduces the leakage of information to possible attackers. The robust
watermark encoding the actual metadata is embedded in the frequency domain, and the data is masked effectively
in certain frequencies that are selected based on a secret key. This type of embedding makes the embedded data
resilient to transformations such as translations, least significant bit alternations, small noise additions, resampling
and decimation. Furthermore, the regions where the privatemetadata are embedded are selected based on a secret
key. A fraction of the hidden metadata bits will be allocatedfor employing error correction codes, in order to provide
additional resiliency due to malicious attacks, or even dueto transmission errors. In this sense, our watermarking
approach not only uses ideas from spread spectrum based algorithms [2], but also has connections to watermarking
techniques motivated by traditional cryptography [3].

The fragile watermark will be embedded after the robust watermark on the least significant bits at specially
selected positions of the ECG signal. The fragile embeddingwill introduce virtually no distortion. Notice, that even
though the fragile watermark is embedded on top of the robust, it cannot destroy the robust watermark which is



able to withstand such minor (or even more significant) transformations. A overview of this architecture is provided
in Figure 1.

Original ECG

+ +

Key

Metadata

Fragile WatermarkRobust Watermark =

Authentication

Tamper Detection

Metadata Retrieval

Final ECG

Fig. 1. Overview of our approach

Once the metadata are effectively fused within the medical signal, there are three supported modes of operation:
1) Tamper Detection by examining the presence of the fragile watermark.
2) Data Authentication through correlation with the originally embedded metadata. For example, if the SSN

of a patient is embedded in an ECG signal, then using the SSN and a secret key, one can verify that the data
indeed belong to the patient with a specific Social Security Number.

3) Metadata Retrieval. The rightful owner of the data can provide the secret key to someone else, who is now
at a position to retrieve the embedded metadata from the medical signal.

A. Related Work

Watermarking research in multimedia data is a very rich field. Compared to traditional watermarking our work
exhibits various differences, such as the fact that we provide the ability ofretrieving backthe embedded metadata.
For this reason we also augment our watermarking technique with coding redundancy schemes, in order to achieve
better data preservation and provide the ability for error correction. Additionally, because we are dealing specifically
with medical ECG signals, we can exploit their regularity for tailoring more appropriately the metadata encoding
scheme. Previous research work dealing with the watermarking of medical signals have appeared for ECG data [4]
and for electroencephalograms (EEG’s) [5]. However, to ourknowledge, this is first work that considers metadata
fusion within the medical signal, not only for reasons of authentication, but also for providing the ability of
heterochronous metadata retrieval.

Related is also the work of [6] which watermarks numeric streams, by embedding the watermark on easily
identifiable stream positions, such as the local maxima and minima. However, such an approach might not be
ideally suited for ECG signals, where one would like to preserve as well as possible such areas, because of their
significance in medical diagnosis. Therefore we spread the intensity of the robust watermark using a spread spectrum
approach. Additionally, the Least Significant Bit (LSB) alteration that we employ in the fragile watermark is quite
more advanced, in the sense that it can also pinpoint the areaand type of tampering.

Watermarking work has also been used in relational databases either using direct LSB alterations [7], [8] or using
hierarchical Binning approaches [9]. Finally, there is a vast literature on the topic of privacy preserving data-mining
[10]–[12]. Compared to the above areas, our approach is different regarding the goals and the methodological
approach that we follow.

In the upcoming sections we will describe the embedding and the retrieval of the robust and the fragile watermarks.
We will also demonstrate the minimal distortion that is introduced by their embedding and in the experimental
section we will empirically assess the resilience of our scheme.

III. ROBUST WATERMARKING

A. Preliminaries and Notation

Consider an ECG signal as a one dimensional time-series sequence, represented as a vectorx = {x1, . . . , xn},
wherexk ∈ R. In such a signal, we will embed private numeric metadata by adapting onwatermarkingtechniques.



However, we will also show how to retrieve back the hidden information, which is something that traditional
watermarking applications do not consider. Therefore, ourtechnique gracefully fuses watermarking and channel
coding techniques. Thesecret informationthat will be hidden inside each ECG signal itself is encoded as a
watermarkW ∈ {−1, 1, 0}n, which has the same length asx and can take3 distinct values. Later we will show
how we can use the sequenceW to encode numeric metadata consisting ofl-bits.

The embedding of the watermark consists of a composition function that, givenx and W , returns a modified
signal which issimilar to x andenclosesW . The original ECG signal should not be significantly distorted and a
technique to retrieve/detectW in the watermarked signal should be provided.

We call this watermarkrobustbecause it is able to withstand a variety of possible data transformations. We will
not embed the watermark in the originalSpace-Time domainbut into theFrequency domain, which will guarantee
better resilience against malicious attacks.

Every ECG signalx will thus be represented with the set of its Fourier descriptorsX = {X1, . . . ,Xn} wheren
is the number of points ofx as well as the number of its frequency components. The mappings from one domain
to the other are described by the discrete Fourier transformdft(x):

Xj =
1√
n

n∑

k=1

xk exp

(
−i

2π

n
(j − 1)(k − 1)

)

and the inverse discrete Fourier transformidft(X):

xj =
1√
n

n∑

k=1

Xk exp

(
i
2π

n
(j − 1)(k − 1)

)
.

Every coefficientXj can be described in terms of itsmagnitudeρj andphaseφj , that is,Xj = ρje
φji.

We use an additive embedding of the watermark which alters only the magnitudes but retains the original phase:

Definition 1 (Additive Fourier Embedding):For a signalx ∈ R
n and a watermarkW ∈ R

n, theadditive Fourier
embeddinggenerates a watermarked signalx̂ by replacing the magnitudes of each Fourier descriptor ofx with a
watermarked magnitudêρj :

ρ̂j = 〈ρj + pWj〉 def
= max(0, ρj + pWj)

wherepowerp > 0 specifies the intensity of the watermark.
Notice that we use the function〈 · 〉, in order to ensure that we have no resulting negative magnitudes, when

Wj = −1. We will explain later that this may introduce a power loss into the watermarking procedure. Using the
modified magnitudeŝρj and the original phasesφj, we go back from the frequency domain to the time domain
and reconstruct the watermarked sequence using the inversediscrete Fourier transform.

B. Watermark Construction

Let us describe now how the private metadata are embedded into the hidden watermark. First, let’s recall that the
watermarkW will consist of the values +1, -1 and 0. Understandably, onlythoseWj ’s that contain +1 or -1 will
introduce some alteration in the respective signal frequencies. Thus, only thoseWj can encode some information.
Conversely, the zero values ofW determine the descriptors that we do not want to modify.

The choice of which Fourier descriptors (frequencies) are most suitable to be altered, i.e., to be actually used for
the embedding, can affect the goodness of the detection process. Our goal is to build an unbreakable bond between
a signal and a embedded watermark. On the other hand, a potential attack cannot alter the overall shape of the
ECG plot, i.e. damage its usability. Therefore we should tiethe embedded metadataW with the most important
frequencies. It is well established that the first descriptors hold almost all the energy of ECG signals, which means
that they describe very accurately the data.

Driven by these considerations, we will focus on embedding the watermark in the lowest frequencies. However,
we will not embed any portion of the watermark on the first Fourier descriptorX1, since the DC component of
the signalx (X1 =

∑
j xj/

√
n) is easily susceptible to attacks. For example, a simple translation will change the



DC level of x (that is,X1) without affecting its shape, but it will erase this part of the watermark. Therefore we
embed the watermark into the2nd and up to the(l + 1)th Fourier descriptor, wherel is the number of non zero
elements ofW . Then, the watermarkW is formally defined as follows:

Wj =






0 if j = 1 (DC component)
{−1, 1} if 2 ≤ j ≤ l + 1

0 if l + 2 ≤ j ≤ n

The metadata that one wishes to embed in an ECG signal will be represented with a sufficiently long bit-string.
In order to provide additional resilience to attacks, we introduce additional pre-processing before materializing the
watermarkW . Let B(I) be the binary representation of the informationI (e.g., metadata), which is randomly
generated using the original information and part of the secret key κ. Details of this pre-processing would be
clear later on. We prefer a randomized representation of themetadata in order to protect the private information of
the patient. We next produce an error correcting code ofH7,4(B(I)) using theHamming(7,4)coding. Introducing
channel coding is mainly used to detect errors during the transmission of bit-streams over a noisy channel. This
process introduces a controlled level of redundancy by mapping an input of4 bits into a code of7 bits. Due to this
added redundancy, the receiver of the message will be able tocorrect1-bit errors anddetect2-bit errors. In the same
way, we will detect malicious attacks that mayflip one or more bits of the embedded watermark. We adopted the
Hamming(7,4) encoding for its simplicity, but more complicated and effective techniques could be utilized as well.
The Reed-Solomon code, for instance, is currently used in CDs and DVDs and it provides augmented correction
capabilities.

Given the above, the embedded watermark that can encode the metadataI is defined as follows:

Wj =






0 if j = 1 (DC component)
1 if (j − 1)-th bit of H7,4(B(I)) = 1

−1 if (j − 1)-th bit of H7,4(B(I)) = 0
0 if l + 2 ≤ j ≤ n

wherel = |B(I)| is the length of the binary representation ofI.
As explicative example, for the rest of the paper we will use the social security number (SSN) as the metadata to

be embedded in a given ECG plot. The SSN in the United States, consists of 8 digits in the form999− 99− 999.
Any number< 108, can be represented with a27-bit long string, which for conciseness let us callbinary(SSN).
This initial representation can be as simple as the binary conversion of the decimal SSN. The binary representation
binary(SSN) is then inputted into a cryptographically secure hashfunction with κ as the secret key to produce the
final randomized 27 bit long stringB(SSN) as seen in Figure 2. This representation is then divided intoseven
chucks of four bits each and then Hamming coding is applied independently to each chuck. The result is al = 49
bits long error correcting code enclosing a given SSN.

SSN

999-99-999

Decimal to

binary

binary(SSN)

27-bit

Hash

function

κ

B(I)

27-bit

Hamming

code(7,4)

Fig. 2. Randomized binary representation of SSN metadata, through hashing and Hamming coding.

Example: Suppose we watermark an ECG signal of a patient with SSN=123456789. When we convert decimal SSN
to a binary number, this yieldsbinary(SSN)=111010110111100110100010101. We next select randomly κ = 9823
as the key to a hash function withbinary(SSN) as the input, resultingB(SSN)=11011010000110100110111110111.
This pseudo-random representation of the original SSN is then divided into chunks of 4 bits (we append the last
chunk with bit 0 since 27 is not divisible by 4) and each 4-bit chuck is used to generate a 7-bit chunk using
Hamming(4,7) resulting a watermark of length 49 bits.



C. Embedding the metadata

After the watermark is created based on the given metadata, we use a spread spectrum approach [13] for
embedding it into the host medical signal. Our technique will embed the same watermark multiple times in a
single time-series sequence. A given ECG signal is partitioned into a set of subsequencesS. Then in each of these
sub-ECGs the watermark is embedded. This distributes the power of the watermark across multiple frequencies of
the signal subsequences, making its removal particularly difficult, while at the same time preserving the important
data characteristics. In other words, we get a stronger watermark with less power, i.e. less noise introduced in the
original ECG by spreading the watermark signal over the whole data.

More specific, given an ECG signalx = {x1, . . . , xn}, we first select a random starting pointtk usingκ as the
seed of a pseudo-random number generator. We then splitx into |S| = ⌊n/m⌋ adjacent subsequences, starting from
tk. However, when we reach to the last point ofx, i.e., xn, we cyclically continue embedding the watermarkW
from x1 until the remainingn − m ∗ s points of x. We ignore these lastn − m ∗ s remaining points beforextk

.
We denote the set of these subsequences withS and from now on we will call themcharacteristic subsequences.
We chose each characteristic subsequence to containm = 3 ∗ l points such that each subsequence is 3 times
longer than the bit-string to be hidden into the data. This simply allocates enough bandwidth in order to embed
the watermark in the lowest frequencies of each subsequence, since the length should be at least 2 times the length
of the watermark due to the conjugate symmetry of Fourier coefficients. The magnitudes of each subsequence are
then updated according to the additive embedding scheme described before.

The embedding process returns the second part of the secret key β to be used during the detection process
described later. The vectorβ is defined as the average values of the variousρj of the subsequences inS, only for
thosej such thatWj 6= 0:

βj(x) =
1

|S|
∑

s∈S

ρj(s)

Note that the vectorβ is calculated on the original ECG, i.e. before the watermarking takes place.
Unlike a non-blind watermarking approach, where in order toretrieve the watermark it is necessary to have

access to the original data, in our case, we will only need thevectorθ = [κ β]. In this sense we avoid revealing
the original data to the users, hence avoiding any obvious security risks.

Resilience of the Embedding: Potential transformations in a medical signal include vertical shifts, re-sampling
(upsampling or downsampling) and cropping. By construction, our technique is resistant to vertical shifts, which
only affect the first frequency component (the DC), where no part of the watermark is embedded. In the experimental
section, we also evaluate the resilience of our scheme to other types of attacks, such as noise addition, upsampling
and decimation.

D. Error introduced by the watermark.

We measure the amount of noise introduced in a watermarked signal x̂ as the relative errorǫ, w.r.t the original
x:

ǫ(x, x̂) =
‖x − x̂‖
‖x‖

where,‖ · ‖ signifies theL2 norm of a vector.
If we consider a single subsequences of x, then due to Parseval’s theorem [14], and after some algebraic

manipulations, it is easy to see that:

‖s − ŝ‖2 = ‖S − Ŝ‖2 = . . . =

= ‖ρ − ρ̂‖2 + 2
∑

j

ρj ρ̂j[1 − cos(φj − φ̂j)]

= ‖ρ − ρ̂‖2 (since φj = φ̂j )

= ‖ρ − 〈ρ + pW 〉‖2

≤ ‖pW‖2 = l p2



The above gives an upper bound to the error introduced in a single subsequence, assuming that〈ρ + pW 〉 =
(ρ + pW ). It also shows that an additive watermarking introduces an error which is proportional to the square root
of key length and to the watermarking power. To get an upper bound on the error,ǫp, for the whole signalx, we
apply the previous result for each segment, yielding

ǫp =
1

‖x‖

√∑

s∈S

lp2 = p

√
|S|l

‖x‖ .

Additionally, we define theequivalent embedding power, corresponding to a given maximum errorǫp, denoted
by pǫ:

pǫ =
ǫp√
|S|l

‖x‖

Given this direct relationship betweenp and ǫ, we will use them interchangeably to address the power used in
the embedding. We will usepǫ to indicate the powerp equivalent to a given errorǫ and (similarly forǫp vise-versa).

If ρj + pWj < 0 for somej, it means thatWj < 0 and that the value ofp is too large since it will produce a
negative magnitude. In this case, using〈ρj + pWj〉 is actually equivalent to using a smaller amount of power for
the frequencyj. We refer to this implicit power reduction phenomenon as thepower loss, denoted withLossq.
This fact suggests that arbitrary increasing the watermarkembedding powerp may not necessarily better resilience
of the watermark, since not all the bits of the encoded information will be embedded with increased intensity.

E. Metadata retrieval

In order to retrieve the embedded metadata, we essentially need to retrieve the enclosed robust watermark, based
on the knowledge of the secret keyθ = [κ β]. The process is illustrated in Figure 3. We want to allow onlythe
owners of this secret key to retrieve the sensitive metadatapresent in the data. Note that the first part of key vector
κ is randomly selected from the key space and the second part ofkey vectorβ depends only on the data and
does not have any correlation with the watermark. By disclosing the secret keyθ, not the watermarked data, no
information can be inferred about the secret metadata.

WM

Encoder

x

W

θ

x̂ Channel
WM

Decoder

Ŵ

watermarked?

θ

y

WM embedding WM retrieval/detection

Fig. 3. Illustration of the watermark embedding and detection/retrieval process.

For retrieving the private metadata, we reverse the watermarking process by comparing the value ofβ that we
have from the original ECG and the new valueβy that we calculate from the received ECG signaly. The received
signaly is equal to the watermarked datâx if there is no distortion (attack) on the signal.

Given a received (watermarked) signaly, we splity into a new set of characteristic subsequencesSy, exactly as
done during the watermark embedding process. The metadata are retrieved as follows:

Definition 2 (Metadata Retrieval):Let x̂ andy be watermarked and received signals, respectively. The charac-
teristic subsequencesSy is the set derived from the received signaly, which is equal toŜ if there is no distortion



on the watermarked signal̂x. Let the calculated statistics from the received signaly be βy, then we define the
binary vectorZ as

Zi =

{
1 if βy

i − βi ≥ τ
0 if βy

i − βi < τ

where the threshold is selected to control the trade-off between false alarm (FA) and false rejection (FR) rate. Then,
the receivedB(SSN) is given by

R = H−1
7,4 〈Z〉.

whereR is equal toB(SSN) if there is no error in retrieval.

If βy
j − βj ≥ τ we have a hint that thej-th element of the embedded watermark is equal to0 (Wj = 0), and

symmetrically equal to1 if βy
j − βj < τ . In order to get the actual data, we must apply the Hamming decoder

H−1
7,4 . Using decoder we retrieve two pieces of information. Firstwe infer whether there has been some error in

the retrieval ofR, and secondly we can try to remove such an error.

Example: Suppose that we are embedding an 8 digit SSN of a patient as thesecret metadata. We first convert 8
digit SSN into a 27-bit long binary stream. This conversion can be as simple as using the binary representation of
each digit. We next input this binary representation to a cryptographically safe hash function (withκ as the secret
key) to get, again, 27-bit long random sequence. Applying Hamming(7,4) for each 4-bit blocks of this data would
yield a watermark signal of 49-bit long, i.e.,⌈27/4⌉ ∗ 7 = 49 where ⌈⌉̇ represents rounding towards the upper
integer. Given an ECG signalx, this W would be embedded for each segment of size3 × 49. After decoding the
watermarked signal, we getZ. If there is no attack onx, than it is easy to see thatZ should be equal toW , since
βy − β = β̂ − β = pW . In the presence of an attack one can measure the goodness of the watermarking as:

Goodness= 1 −
∑

Z XOR W

49
i.e. the percentage of bits correctly retrieved.

F. Watermark Detection

Given the secret keyθ, one can also simply detect the presence of the watermark without retrieving back the
embedded metadata. This is achieved using a generalized correlation detector which is given in the following
definition:

Definition 3 (Watermark Detection):Let x, x̂ andy be the original, watermarked and received signals, respec-
tively. The characteristic subsequencesSy is the set derived from the received signaly and equal toŜ if there is
no distortion on the watermarked signalx̂. Let the calculated statistics from the received signaly be βy, then we
define the generalized correlation detector as

〈
βy − β, β̂ − β

〉

‖β̂ − β‖2

> τ watermarked
≤ τ not-watermarked

(1)

where the thresholdτ is selected based on the desired false acceptance and false rejection rate, and〈x, y〉 =
∑

i xiyi.

The above correlation detector is decision-theoretic optimal when the disturbance on̂x is white Gaussian noise
[15]. However, in case of non-Gaussian disturbances, we also introduce following updated correlation detectors
which work directly on the received bits instead ofβ values:

〈Z,W 〉
‖W‖2

> τ watermarked
≤ τ not-watermarked

(2)

and
〈R,B(SSN)〉
‖B(SSN)‖2

> τ watermarked
≤ τ not-watermarked

(3)

In the experimental section, we include detailed experiments regarding the performance of the above three
watermark detectors.



IV. FRAGILE WATERMARK

After the robust watermark which encloses the private metadata is embedded in the ECG signal, a fragile
watermark will be added on top of the resulting signal. The fragile watermark can be used to efficiently detect
subsequent alterations to a marked data. Although, the robust watermark is designed to be resilient against most of
the benign signal processing operations (such as compression, cropping, decimation) and/or against malicious attacks
that intentionally attempt to remove the underlying watermark, fragile watermarks are designed to detect (with high
probability) even the slightest changes on the underlying watermarked data. By definition, the fragile watermark
should easily reveal that the data is modified or tampered. Although conceptually different, the embedding and
detection of fragile watermarks is similar to that of robustwatermarking framework. Given a key, i.e., SSN of
a patient for our application, a fragile watermark will be generated and then embedded to the underlying ECG
signal. Upon reception of the watermarked ECG signal, the recipient subsequently uses a detector to authenticate
the underlying signal. This detector may use the underlyingkey and a side-information generated from the original
data (whose generation mechanism would be clear later on) inorder to determine the authenticity of the received
signal. We refrain from revealing the original signal to theusers and restrict their access to only side-information due
to obvious security considerations. The side-informationis generated using randomization in order to leak limited
information about the original data to the users. We stress on the randomized aspect of our algorithms, since a
randomization approach will protect the watermark againstmost of the intentional attackers trying to estimate the
watermark.

A. Fragile Watermark Embedding

For our particular application, we desire our fragile watermarking to have the following properties:
1) The embedded watermark should not interfere with the underlying usage of the signal. This requirement

reduces the candidate algorithms that one can use on the fragile watermark, in order to induce only minimal
effects on the underlying ECG signal.

2) The fragile watermarking should be able to detect the presence of tampering on the medical signal.
3) The fragile watermarking should give localized information about tampering. To satisfy this, the fragile

watermark needs to be localized. The candidate fragile watermark should also be able to quantify the nature
of the underlying alterations or attacks on the corresponding signal. For some applications this property is
essential, since most of benign signal processing operations such as compression or change of axis by DC
addition/subtraction will destroy the fragile watermark,however, the underlying signal is still useful for all
practical purposes. Hence, the fragile watermark should quantify the underlying cause of the alteration as
much as possible in order to make the final judgment on the usability of the tampered signal.

Since our first motivation is to detect any alteration on the underlying ECG signal and we desire to have minimal
effect on the underlying signal, we embed the watermark in the spatial domain on theleast-significant-bits(LSB’s)
of the ECG signal. This type of algorithms that alter the LSB’s are extremely effective for detection of random
perturbations, but in their most basic form [7] are very susceptible to malicious attacks. One can easily change the
underlying watermarked signal (in the extreme case completely replace with another signal) without touching the
LSB’s. In the literature, there are many different variations of the basic approach to reduce this kind of vulnerability
to malicious attacks by including context information intothe watermark [16]–[18] . In this paper, we require, the
embedded watermark signal to be both context and data dependent in a randomized manner in order to avoid any
possibility of an attacker to either replace the watermark partially or completely, or alter the watermarked signal.
The fragile watermark embedded in the LSB’s depends on randomly generated semi-global data statistics, which
we believe would capture the essential features of the underlying signal [19]. We extensively use randomization
in order to eliminate the possibility for an attacker to retrieve any information about the original key. Since, an
attacker which has access to the original key could use this key for watermarking arbitrary data.

Next, we provide the basic fragile watermarking algorithm and the motivation of each step. The complete
description of the embedding and detecting of the algorithmare given in Figure 5 and in Figure 7, respectively.

Embedding Algorithm: Given an ECG signalx = {x1, . . . xn}, we first separate the underlying signal into
separate blocks based on heart-beats, i.e., we use each heart-beat duration as a segment, wherexi is the portion of
the ECG signal corresponding to theith heart beat. To achieve a beat to beat signal separation we utilize an energy



based filter, since the ECG signal should exhibit higher energy at the frequency indicated by the heart beat. Note,
that the heart beat separation does not have to be exact, since this block processing is merely a way of providing
broad localization information upon the fragile watermark. Given the fact the we work on ECG, we can exploit
their inherent pattern regularity in establishing

Subsequently, we remove the LSB from eachxi
k to get x̃i

k, i.e., x̃ is the ECG signal where all LSB’s are set to
zero. We useκ as the seed for a pseudo random number generator to generatep randomly located intervals with
lengthw, where{ti1, . . . , tip} are the randomly selected starting points for each interval, in Figure 4.

ECG portion corresponding to a heart beat

i
t1 11 wt

i

i

pt 1wt
i

p

i
t2 12 wt

i

Fig. 4. Localization of the fragile watermark is achieved through data ’blocking’ into heart-beats. Subsequent selection of randomly
generated windows within the heart-beat for embedding the fragile watermark.

Naturally eachtij is selected to avoid any interference with the next segment,i.e., tij + w− 1 should be less than
the starting point of the next segment. The length of these windowsw is a design parameter. Obviously, there is a
trade off in selectingw, since a largew would capture the essential (or global) characteristics ofthe signal better,
but a smallw would capture the local characteristics of the signal better [20]. Given a randomly selected location
and a window of lengthw, we generate semi-global statistics from this portion of the data. These statistics can also
have random components in their generation, however in thiswork we do not use any randomization, except their
locations. Our algorithms are generic such that this kind ofalterations can readily be incorporated. The windows
can be overlapping so that we avoid constraining the selection of locations to reveal limited information to an
attacker. These local and randomly generated features are essential and would be calledhash values. We use these
hash values (after appropriate quantization) and the patient metadata, as the seed of a random number generator to
generate the final fragile watermark which is comprised of zeros and ones of length equal to heart-beat duration.
The resulting fragile watermark is embedded to the LSB’s of the corresponding heart-beat. We repeat the same
process for each heart-beat to create the watermarked ECG signal.

We generate several different statistics (or hash values) per window to capture different features of the data in
that window. Per window, we generate three different hash valuesgi

1,j , g
i
2,j , g

i
3,j , j = {1, . . . , p}, by calculating: the

power of the corresponding signal filtered by a low pass filter, a band pass filter and a high pass filter as seen in
Figure 6. Hence for each heart-beat segment

gi
1,j = T1({x̃i

tj
, . . . , x̃i

tj+w−1}), j ∈ {1, . . . , p}
gi
2,j = T2({x̃i

tj
, . . . , x̃i

tj+w−1}), j ∈ {1, . . . , p}
gi
3,j = T3({x̃i

tj
, . . . , x̃i

tj+w−1}), j ∈ {1, . . . , p}

whereT1(x) (T2(x),T3(x)) represents the composite operation of first lowpassing (bandpassing, highpassing) the
signalx and then calculating the power of lowpass ((bandpass, highpass) filtered signal. We collect all hash values
corresponding to all segments and windows ing = {gi

l,j}. Apparently, these three different hash values would
capture the different features of the data. For example a local shift of the heart-beat data, i.e., a DC addition
or subtraction, will not effect the hash values generated bythe high pass or band-pass filters, hence revealing
and localizing the corresponding tampering. The amount of tampering could also be determined as the amount



Embedding:

Step 1: Let x ∈ R
n be an ECG signal of sizen × 1.

Step 2: For each sample ofx, remove the LSB to get̃x.
Step 3: Split x̃ into disjoint segments̃xi where each̃xi corresponds to a single heart-beat
and x̃ is the union ofx̃i i =∈ {1, . . . , N}
Step 4: For eachi = {1, . . . , N}
Step 4.1: Given x̃i, generatep possibly overlapping intervals (each with sizew × 1) with time stamps{ti1, . . . , tip},
Step 4.2: For each interval generate three semi-global features:g1,i = T1({x̃i

tj
, . . . , x̃i

tj+w−1}),
g2,i = T2({x̃i

tj
, . . . , x̃i

tj+w−1}) andg3,i = T3({x̃i
tj

, . . . , x̃i
tj+w−1}) where

T1(.) is the power of low-passed filtered{x̃i
tj

, . . . , x̃i
tj+w−1} with pass band[0, π/3],

T2(.) is the power of band-passed filtered{x̃i
tj

, . . . , x̃i
tj+w−1} with pass band[π/3, 2π/3],

T3(.) is the power of high-passed filtered{x̃i
tj

, . . . , x̃i
tj+w−1} with pass band[2π/3, π]

Step 4.3: Constructκi by appendingκ with appropriately quantized version ofgi
l,j ,

κi = CONCAT(κ {gi
l,j}).

Step 4.4: Generate a random vector of the same size ofxi comprised of zeros and ones,W i
fra

usingκi as the seed of a random number generator.
Step 4.5: Replace LSB’s of̃xi with this random vector.

Fig. 5. Embedding of fragile watermark.

of change in the corresponding hash values. Even a local tempering could be pinpointed since we use several
overlapping windows for each heart-beat segment. Althoughwe use simple outputs of straightforward DSP filters,
more sophisticated filters or algorithms that are tuned for aparticular application or a signal database can be easily
introduced in the algorithm. Each new addition will introduce further localization or capture different features of
the data. After collecting the hash values for each intervalfor each segment of a heart-beat, we append the patient
metadata with appropriately quantized values of these hashvalues as the seed of a random number generator:

κi = CONCAT(κ {gi
l,j})

to generate the fragile watermark for this segmentW i
fra. The fragile watermark,W i

fra, is the same length as theith
segment and comprised solely of zeros and ones. This randomly generated WM will be the LSB’s of this particular
segment. We replicate this procedure for each heart-beat segment to get the final fragile watermarked signal.
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Fig. 6. Filters used for extracting the various window statistics

B. Fragile Watermark Detection

For detecting of the fragile watermark, we follow similar steps as the embedding. Given a watermarked ECG
signal x̂ and hash valuesg of the original data as the side information, we first remove and store the LSB’s for
eachx̂k. The hash values are generated for each heart-beat segment using the same random number generator with



κ as the seed. After getting the time stamps,{ti1, . . . , tip}, we calculate the following hash values,

ĝi
1,j = T1({x̂i

tj
, . . . , x̂i

tj+w−1}), j ∈ {1, . . . , p}
ĝi
2,j = T2({x̂i

tj
, . . . , x̂i

tj+w−1}), j ∈ {1, . . . , p}
ĝi
3,j = T3({x̂i

tj
, . . . , x̂i

tj+w−1}), j ∈ {1, . . . , p}

where with an abuse of notation we usedx̂ to represent the watermarked signal with LSB’s removed. We then
generate the final random signal using concatenatedκ and the quantized hash values as the seed of a random
number generator,

κ̂i = CONCAT(κ {ĝi
l,j}).

We next compare this random sequenceŴ i
fra with the stored LSB’s to reveal any alteration. If these two sequences

differ, than we announce a possible tampering. One can checkto see whether this tampering can be localized
through the use of the hash values by calculating

Tampering(i, l, j) =
|ĝi

l,j − gi
l,j|

|gi
l,j |

, j = {1, . . . , p}, l = {1, 2, 3}

for each segmenti. The absolute relative change in the hash values would reveal the possible tampering in the
respective region. Although most of the tampering should belocalized by the hash values, small changes on the
data (intentional or not intentional) may not be caught by the hash values (although they will be caught by our
fragile watermarking).

Detection:

Step 1: Let x̂ ∈ R
n be a watermarked ECG signal of sizen × 1

andg ∈ Rm be a vector of side informations.
Step 2: For each sample of̂x, remove the LSB and store it.
Step 3: Generate the side information sequenceĝ following the exact same lines of WM embedding
Step 4: Generate fragile WM usinĝg and SSN and compare it with the stored LSB’s
Step 5: If they are different than the signal is tampered
Step 6: If tampering is present, check Tampering(i, l, j).

Fig. 7. Detection of fragile watermark

V. EXPERIMENTS

We evaluate empirically the robustness of the proposed metadata embedding technique. We demonstrate that the
methods introduce only imperceptible variations that do not distort important ECG features and, as as sequence
do not alter the diagnosis of a cardiologist or physician. Additionally, we show that the embedding techniques
are able to withstand various attacks. We utilize ECG signals extracted from the MIT arrhythmia database [21]
which include normal signals as well as arrhythmic signals annotated as malignant ventricular or supra ventricular
arrhythmias. The datasets used are available by emailing the contact author.

A. Determining the embedding power

In order to determine the proper embedding power of the metadata, we solicited the expertise of co-author Helga
van Herle, who is a cardiologist. She examined a random subset of over 100 normal and abnormal ECG’s, on which
various random SSN’s were embedded using increasing embedding powers on the robust watermark. A subset of
such ECG’s is demonstrated in Fig. 8. The result of this user study with a topic expert, indicated that for SNR=20
the diagnosis might change for certain ECG’s, because of various distortions that were introduced near the P-wave
region. However, for SNR’s of30 or 40 the diagnosis would not be affected for any of the examined ECG’s.
Therefore, for our experiments we use embedding powersp that would lead toSNR > 30 for each ECG signal.



Normal ECG 1 SNR=40, power=0.007 SNR=30, power=0.0215 SNR=20, power=0.0755

Normal ECG 2 SNR=40, power=0.005 SNR=30, power=0.0155 SNR=20, power=0.0495

Fig. 8. Distortion of ECGs for various embedding powers and the resulting signal-to-noise ratio

B. Class-Label Preservation

One the major features that a cardiologist examines on ECG data is the presence of arrhythmias which can be an
indication of various heart pathologies. Atrial fibrillation is the most common cardiac arrhythmia [22] which can be
a strong indication for the possibility of a stroke. Spectral [23] and bispectral [24] techniques have reported success
in detecting arrhythmias in medical data. Here, we utilize the spectral distance measure of [23] for quantifying the
similarity between 10 normal and 10 arrhythmic ECG’s into which we have embedded random SSN’s. After the
pairwise distances between the 20 ECG’s are evaluated we create the resulting dendrogram, which is illustrated
in Fig. 9. With the darker color are shown the abnormal ones and with lighter color the normal ECG’s. One can
observe that even on the ECG’s with the embedded metadata there is a clear separation between the two classes
of data. Similar results we obtain for the remaining portionof ECG datasets. This example, serves as a simple
demonstration that the metadata embedding does not distortsignificant ECG features, which are important for a
proper medical diagnosis.
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Fig. 9. Dendrogram of ECG’s with embedded metadata. We observe that class labels are not distorted. One can still discriminate clearly
between arrhythmic (dark color) and normal (light color) ECGs.

C. Resilience Under Attacks for Robust Watermarking

We test the efficacy of metadata retrieval and watermark detection under various data transformations (or potential
attacks). In this section we quantify the performance of therobust watermark that carries the metadata, but both
robust and fragile watermarks are embedded on the ECG’s. Thefragile watermark can detect the presence and



location of the transformation, and its efficiency we quantify in the upcoming section. For the robust watermark,
we examine effect of the following transformations:
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Fig. 10. (a) Noise addition in space domain, (b) Noise addition in Frequency Domain (c) ECG downsampling (d) ECG cropping

Noise addition in the space domain: This is a critical attack because it can potentially destroythe embedded
metadata. We first test metadata retrieval when we translaterandomly the baseline of the ECG signal (which doesn’t
destroy the ECG usability) and we add up to 20% relative noiseon the original ECG signal. In Figure V-C(a) we
plot metadata retrieval (as the percentage of correctly recovered bits) versus noise level. From the figure, we observe
that up to 14% of distortion (which would anyway destroy the ECG usability) one can retrieve the whole amount
of the embedded metadata. This is possible due to the redundancy schemes that we employ in the encoding of the
hidden metadata.

Noise addition in the frequency domain: An adversary may also add Gaussian noise in the frequency domain,
which is where the metadata are embedded. The results for this attack are depicted in Fig. V-C(b). We observe
similar results for this attack as well, which again validate the robustness of our approach.

Decimation: On this attack an ECG is represented by smaller set of points that best approximate the original
ECG signal. A shorter sequence is obtained by sampling equidistant points from the spline associated with the
original ECG sequence. Decimation is a significant attack, because even though it does not change significantly
the shape of the ECG signal, it allows the adversary to generate a new sequence which has no points in common
to the original sequence. In our tests (see Figure V-C(c)), even when the ECG signals are represented using only
70% of the original number of points, all of the metadata bitsare retrieved correctly.

Cropping: This is another severe attack on ECG signals. In cropping attack, the ECG signal is shortened by a
fixed amount by eliminating a part of the ECG signal. Since, the size of the cropped ECG signal is shorter than the
expected length, we perform a local search based on the correlation between the recievedβy and originalβ over a
window. The point where this correlation is maximized is used for watermark retrieval and detection. As seen in



Figure V-C(d), we plot the watermark retrieval with respectto amount of cropping performed on the ECG signal.
We observe that the retrieval performance gracefully degrades as the cropping amount increases. We observe no
distortion up to 5% percent and minimal distortion up to 20% croppings.

Therefore, the above experiments have shown that the effective coding scheme which also carries redundancy,
can effectively retrieve the embedded metadata even under the presence of significant transformations. Additionally,
a malicious adversary would have to destroy the usability ofthe signal (distort the shape significantly) in an effort
to erase the hidden data.

D. Robust Watermark Detection

In addition to retrieving the metadata, one can also simply detect the presence of the watermark using one of the
three watermark detectors presented in section III-F. We evaluate the performance of these detectors under the same
data transformations as in the previous experiments, usingfalse acceptance/false rejection curves (FA-FR curves).

Noise addition in the space domain: Here, the ECG signals are normalized to have maximum amplitude equal
to 1 with zero DC and the average power of an ECG signal is 0.05.The attack consists of additive Gaussian noise
with standard deviations:σ = 0.001, σ = 0.01, σ = 0.05, σ = 0.1. Hence some of these attacks can be considered
as severe. In Figure V-D(a), we plot the FA-FR curves for fourdifferent noise powers for the correlation detector
introduced in Equation (1). As seen, for noise powers0.001 and0.01 the FA-FR curves are on the x-y axes, i.e., the
algorithm perfectly separates detection regions (hence there are no errors in detection). As expected, the detection
performance gracefully degrades as the noise power increases. Similar performance results are observed in the other
algorithms introduced in Equation (2) and (3), respectively. To compare the performance of these three different
detectors, we also plot corresponding FA-FR curves forσ = 0.05. We observe that for additive Gaussian noise
(even though the additive noise is in space domain) the first watermark detection algorithm based on correlation of
β’s outperforms the other two.

Noise addition in the frequency domain: The FA-FR curves for frequency domain attacks are presentedin
Figure V-D, using the same four additive noise levels as before. The results directly follows the results of noise
addition in space domain. These results further corroborate the robustness of our watermarking algorithm.

Decimation attack: We next present the FA-FR curves for decimation attack in Figure V-D, for decimation
up to 80%. We observe that our watermark detection algorithmis effective up to 75% decimation, which is a
quite severe distortion. We attribute this robustness due to using lower part of the frequency spectrum for mark
embedding, since in decimation type of attacks, the higher frequencies are more effected due to lowpass filtering
to avoid aliasing.

Cropping attack: We finally present the FA-FR curves for cropping attacks in Figure V-D. We try several
different amount of croppings from 10% up to 50%. We observe the same robustness properties for this attack also.

E. Fragile Watermarking

This section studies the performance of the fragile watermark and in specific the behavior of hash values under
several different attacks on the ECG signals. For fragile watermarking, we choose a window size of50 samples and
for each region we collect hash values from 4 different subintervals. We observe that the hash values are not that
sensitive to window length but50 samples provide a fair trade-off between localized information and capturing of
semi-global robust statistics [20]. For generation of hashvalues, we use 8th order low pass, band pass and high pass
filters where each filter is designed using a Butterworth algorithm. We choose an 8th order filter to decrease the
effect of initial transients due to the use50 sample sub-intervals. We observe that the effect of this initial transients
are unavoidable but acceptable.

As the first attack, we try a DC shift on the ECG signals. Naturally, a DC shift does not alter the usability of
ECG signal, unless there is also additional clipping involved. In Figure 15, we plot the histogram of percentage
change in three different hash values for a DC shift of 1. These are hash values corresponding to low pass filter,
high pass filter and bandpass filter outputs. Naturally for a DC shift in space domain, high pass and low pass
features are not effected. The obvious change in hash valuescorresponding to low pass filter is due to the impulse
like change in frequency domain at frequency 0 due to DC addition. We clearly distinguish the particular change
in DC value due to hash values generated by low pass filter which is the main motivation for hash usage.
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Fig. 11. FA-FR curves for three different watermark detectors for four different noise levels added in space domain. (a)Watermark detector
from Equation (1) (b) Watermark detector from Equation (2) (c) Watermark detector from Equation (3) (d) FA-FR for all watermark detection
algorithms together forσ = 0.05..

We next try additive Gaussian noise (as done in the robust watermarking experiments) since this kind of attack
(or disturbance) is common due to both intentional or unintentional changes, e.g., data compression. In Figure 16,
we plot histogram of percentage changes in hash values for two different noise levels:σn = 0.1 representing a
severe attack andσn = 0.001 reprenting a less-severe attack. We observe that the hash values corresponding to
all three filters are effected by this attack. The changes in hash values reflect the degree of the attack since the
percentage change in the severe attack is an order of magnitude larger than the less-severe case. A change in all
hash values shows a broadband attack on ECG signals since allthe frequency components are effected.

As the next set of experiments, we repeat the previous attackin the frequency domain with the same noise levels
and plot the results in Figure 17. We observe the same kind of behavior illustrating the effectiveness of hash values
to assess the severity of attacks on ECG signals.

For decimation attacks we plot histogram of percentage changes in hash values corresponding to decimation
amounts 50% and 75%, in Figure 18. Naturally, since the decimation of a signal effects mainly the higher frequencies
due to lowpass filtering to avoid aliasing (and if lowpass filtering is not present, due to aliasing), we observe large
changes in hash values generated from bandpass and highpassfilters. The hash values generated from lowpass
filters are relatively unchanged.

We next present the results for cropping experiments and plot the changes in hash values in Figure 19 for cropping
amounts 20% and 40% providing the sensitivity of hash valuesunder cropping.

We point out that in all cases, the fragile watermarking is destroyed, hence showing presence of an alteration on
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Fig. 12. FA-FR curves for three different watermark detectors for four different noise levels added in frequency domain. (a) Watermark
detector from Equation (1) (b) Watermark detector from Equation (2) (c) Watermark detector from Equation (3) (d) FA-FR for all watermark
detection algorithms together forσ = 0.05.

ECG signals. In all cases the hash values give relavant information about the nature of the underlying attack.

VI. CONCLUSION

In this paper we introduced the topic metadata fusion withinmedical time-series data. To our knowledge, this
is the first work that examined this problem. We show that thisembedding does not distort the visual appearance
of the medical signal and it also does not induce any changes in the diagnosis. On a technical level we offer the
following contributions:

• We effectively combine watermarking and channel coding schemes for providing the sufficient resilience on
the metadata retrieval

• We augment the above robust technique with localized fragile watermarks that can pinpoint the type and
location of a potential tampering

• Finally, we evaluate the robustness of the proposed schemesunder various transformations and attacks using
publicly available ECG datasets.

Even though we presented our techniques on statically stored ECG signals, due to the inherent windowing
of our technique, our method is very easily extendible on streaming medical data. Such types of data, are even
more prevalent nowadays, with the advent of economic sensordevices that can transmit various measurements of
interest. Streaming medical measurements are, for example, transmitted during aeronautical exercises for measuring
the stress level of a pilot or an astronaut. Also, telemedical applications are not uncommon for patients that need
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Fig. 13. FA-FR curves for three different watermark detectors for four different decimation amounts: 50%, 66%, 75% and 80%. (a)
Watermark detector from Equation (1) (b) Watermark detector from Equation (2) (c) Watermark detector from Equation (3)(d) FA-FR for
all watermark detection algorithms together for 50% decimation.

continual monitoring but are not required to reside in a hospital. The various methodologies proposed in this work,
can function as an additional authentication step, regarding the originality of the transmitted streaming medical
measurements.
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Fig. 14. FA-FR curves for three different watermark detectors for four different cropping amounts: 10%, 20%, 30% and 40%(a) Watermark
detector from Equation (1) (b) Watermark detector from Equation (2) (c) Watermark detector from Equation (3) (d) FA-FR for all watermark
detection algorithms together for 30% cropping.
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Fig. 15. Fragile watermarking. Percentage change in hash values. DC shift of 1.
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Fig. 16. Fragile watermarking. Percentage change in hash values. Additive noise in space domain. (a) Noise standard deviation σ = 0.001.
(b) Noise standard deviationσ = 0.1.
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Fig. 17. Fragile watermarking. Percentage change in hash values. Additive noise in frequency domain. (a) Noise standard deviation
σ = 0.001. (b) Noise standard deviationσ = 0.1.
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Fig. 18. Fragile watermarking. Percentage change in hash values. Decimation attack. (a) 50% decimation. (b) 75% decimation.
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Fig. 19. Fragile watermarking. Percentage change in hash values. Cropping attack. (a) 20% cropping. (b) 40% cropping.
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