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Abstract

We study online parameter estimation over a distributed network, where the nodes

in the network collaboratively estimate a dynamically evolving parameter using

noisy observations. The nodes in the network are equipped with processing and

communication capabilities and can share their observations or local estimates with

their neighbors. The conventional distributed estimation algorithms cannot perform

the team-optimal online estimation in the finite horizon global mean-square error

sense (MSE). To this end, we present a team-optimal distributed estimation algo-

rithm through the disclosure of local estimates for tracking an underlying dynamic

parameter. We first show that the optimal estimation can be achieved through the

diffusion of all the time stamped observations for any arbitrary network and prove

that the team optimality through disclosure of local estimates is only possible for

certain network topologies. We then derive an iterative algorithm to recursively cal-

culate the combination weights of the disclosed information and construct the team-

optimal estimate for each time step. Through series of simulations, we demonstrate

the superior performance of the proposed algorithm with respect to the state-of-the-
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art diffusion distributed estimation algorithms regarding the convergence rate and

the finite horizon MSE levels. We also show that while conventional distributed es-

timation schemes cannot track highly dynamic parameters, through optimal weight

and estimate construction, the proposed algorithm presents a stable MSE perfor-

mance.

Key words: Optimal estimation, distributed network, dynamic parameter, online

estimation

1 Introduction

Recently, due to advancements in information technologies, distributed learn-

ing and estimation techniques have attracted significant attention thanks to

their fast convergence and robustness properties for fast streaming data [1–5].

In a distributed estimation framework, we consider a network of agents ob-

serving a temporal signal about an underlying state, possibly coming from

different spatial sources with different statistics. Each agent in the network

is equipped with communication and processing capabilities. The aim of each

agent is to estimate the underlying parameter of interest, as an example, by

minimizing the expected Euclidean distance between the estimate and the

true value of the state (the minimum mean-square estimation (MMSE)). The

agents in the network are connected to a set of neighboring nodes and can

exchange information, i.e. observations and/or estimates, between them to

improve their learning process. To illustrate, assume a network of emission

sensors distributed over a greenhouse to monitor the CO2 levels for a preci-

sion agriculture application [6]. Since the agents would collect different obser-

vations from different parts of the area, they can cooperate in the network to
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rapidly learn and track the true CO2 levels for an enhanced intervention.

In this regard, the distributed learning and estimation has been extensively

studied in the signal processing and machine learning literatures [7–15]. How-

ever, the classical methods either do not consider the information diffusion

scheme among the agents and/or construction of the optimal combination

methods to obtain the MMSE performance or are not applicable for real-time

applications [11]. To this end, in this paper, we present an approach to ob-

tain a team-optimal distributed online estimation scheme by exploiting the

network structure and the information disclosure and combination when the

underlying state is non-stationary and time varying.

There exists an extensive research on distributed estimation of a time invariant

or a dynamic state parameter, which are mainly studied under centralized and

decentralized distributed learning frameworks [7–14,16,17]. In the centralized

frameworks, all the agents in the network are connected to a fusion center

and each agent transmits its information to the center for the construction

of the final estimate [7, 16, 17]. Since all the information is collected by a sin-

gle node such methods do not require any specific information sharing scheme

and constructing the global optimal estimate is straightforward. However, this

approach has serious disadvantages regarding communication and computa-

tion loads on the network, i.e. transmitting all the peripheral information to

a single node requires a huge communication bandwidth and processing all

the collected information on a single unit requires a significant computational

power [7, 10].

In the alternative decentralized frameworks, each agent in the network has

a different set of neighboring nodes consisting of spatially close ones and

exchange information only with these nodes to overcome the former prob-

lems [18]. In these approaches, agents only disclose their local information on

the underlying parameter and combine the received information to produce
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their final estimates. In this framework, the information efficiently propagates

through the network to improve the overall performance [19].

In the consensus approach of the decentralized frameworks, all the agents in

the network reach to a “consensus” on their estimates after collecting and

processing their information locally [13, 14]. However, this approach either

requires a use of two time scales to reach to the consensus immediately or

decaying learning rate for constructing the consensus among the agents in

time [14,20]. The use of two time scales limits the performance of the network

on real-time applications. On the other hand, the use of decaying learning

rates hinders the ability of the system to adaptively adjust or learn in time

varying environments [11].

In [12–14, 21] and [22], authors present diffusion based approaches for dis-

tributed estimation, where the network is able to respond to the fast-streaming

data in an online manner by using a single time scale. In the diffusion based

strategies, agents process their observations locally and disclose the corre-

sponding estimates to the neighboring nodes and improve their performance

through combining the received estimates. In [11], authors prove that the

diffusion based approaches outperform single time scale consensus strategies

regarding the global MSE performance. However, neither of these methods

consider the network topology or information disclosure procedures to obtain

a globally optimal solution. On the other hand, in [8,10], diffusion incremental

solutions are shown to reach to the optimal estimate by defining a certain path

through the network, which is not practical against the fast streaming data or

the dynamic configurations.

In [23], authors presented a novel approach to obtain the team-optimal dis-

tributed estimation of a static underlying parameter by exploiting the network

structure, and the optimal information disclosure and combination without

any incremental path requirements. However, in most of the real-life appli-
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cations, the underlying parameter is subject to a change, i.e. it evolves in

time [24]. Although there exists different studies on the distributed estimation

of a dynamic parameter, these algorithms again do not consider the correla-

tion of the disclosed information between the agents in the network due to the

dynamic evolution of the underlying parameter. [2, 24, 25]. Hence, these algo-

rithms cannot achieve the team-optimal estimation and the problem requires

a different approach than the solutions available in the literature.

To this end, we work on the team-optimal estimation of dynamic parameters

over distributed networks. We first use the framework of [26] to establish

the model and the problem. Then, we introduce the efficient and optimal

distributed learning (EODL) algorithm for the online estimation of dynamic

parameters and prove that it is only applicable over certain network topologies.

We also show the superior performance of the proposed method compared to

the state-of-the-art methods through numerical examples.

We organize the paper as follows. In Section 2, we present the team framework

for the dynamic parameter estimation and show that the optimal estimate can

be constructed through diffusion of the time stamped information. Then, in

Section 3, we prove that the team-optimal estimation through disclosure of

local estimates can be achieved only under certain network topologies. Later

in Section 4, we provide an iterative algorithm to construct the optimal com-

bination weights and the estimate over such networks. We demonstrate the

performance of the proposed algorithm through series of simulations in Section

5 and conclude the paper with final remarks in Section 6.

2 Team Framework for Distributed Estimation

We consider a distributed network with m agents equipped with processing

and communication capabilities. We form the network as an undirected graph,
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Fig. 1. First order neighborhood of the agent i over a distributed network. The
agent i only exchanges information with the nodes in this neighborhood.

where vertices and edges represent the agents and the communication links

respectively, as shown in Fig. 1. For each agent i, we denote the set of agents,

whose information is available to the agent i after transmission over k com-

munication links (after k-hops) as N
(k)
i . We define N

(k)
i as

N
(k)
i = {j1, · · · , jπ(k)

i
}, (1)

where π
(k)
i = |N(k)

i | is the cardinality of the set N
(k)
i . We assume that N

(0)
i =

{i} and N
(k)
i = ∅ for k < 0. In Fig.1, we demonstrate the first neighborhood

of the agent i, where Ni = {j1, j2, j3} and πi = 3. We drop the superscript on

the first order neighborhood for notational simplicity.

We choose the random walk for the modeling of the underlying dynamic state

since the random walk model is extensively used to model the behavior of

highly complex structures from biological systems to social networks [2,24,25].

Hence, the underlying state xt ∈ R evolves according to

xt+1 = γxt + wt, (2)

where γ ∈ R is the expected rate of change. The term wt ∈ R is the state noise

and it is an i.i.d. Gaussian random process {Wt} with variance σ2
w. The initial
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state is sampled from a Gaussian random variable such that X0 ∼ N(0, σ2
0) 1 .

Each agent in the network observes a noisy version of an underlying dynamic

state as

yi,t = xt + ni,t (3)

for i = 1, · · · ,m and ni,t ∈ R is a white Gaussian process {Ni,t} with variance

σ2
ni

. We assume that the observation noise is spatially independent and the

variance of the noise signals are known to each agent (if they are not available,

then they can be estimated from the observations [27]). Correspondingly, yi,t

becomes a realization of a random process {Yi,t}, where Yi,t = Xt + Ni,t. At

each instant, an agent receives a local observation and diffused information

from the neighboring agents, while it also diffuses information to its neighbor-

ing agents.

Obviously, each agent can alone track the underlying state in the MMSE sense

under certain regulatory conditions [28]. However, the use of distributed co-

operation can greatly enhance the learning rate and the robustness of the

system [27]. To this end, we aim to find an optimal estimation strategy re-

garding the MSE performance for a team of distributed agents. To provide a

lower bound on the performance of the team, we first consider a case where

the agents in the network disclose the stamped versions, with time and the

agent ID, of their observations and the received information. Thus, each agent

has access to the observations of all the other agents in the network. How-

ever, we note that only the observations from the neighboring agents can be

directly received. The observations from the non-neighboring agents can only

be accessed after going over certain number of communication links, i.e. the

1 In this paper, all random variables are represented as uppercase calligraphic let-
ters, i.e. X , and all the realizations of these variables are presented as their lowercase
characters, i.e. x. All the vectors are column vectors and denoted by boldface low-
ercase letters.
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Fig. 2. Information from the agent in Ni can be directly received by the node i.

Information coming from the agents in N
(2)
i and N

(3)
i can be accessed with a certain

delay.

information of the agent j ∈ N
(2)
i can be accessed by the agent i after being

transmitted over 2 communications links. We illustrate this behavior of the

distributed networks in Fig.2, where we show Ni, N
(2)
i and N

(3)
i for the node

i. Only the information from Ni can be directly received by node i, otherwise

the information have to follow the described neighborhood path to reach the

node i.

We define the team cost of the network for a time horizon T , when each agent

i makes the estimate x̂i,t as

T∑
t=1

m∑
i=1

E ||Xt − x̂i,t||2 .

We also emphasize that due to the connected structure of the network, each

agent will have access to all the observations in the network, although with

certain delay. Therefore, we denote the information aggregated at the agent i

at time t as

Di,t =

{
{yi,τ}τ≤t, {yj,τ}τ≤t−1j∈Ni

, {yj,τ}τ≤t−2
j∈N(2)

i

, · · · , {yj,τ}j∈N(κi)
i

}
, (4)
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where κi denotes the communication link delay for the furthest node from the

ith node. Note that {yj,τ}τ≤t−tij∈N(ti)
is the set of observations received from ti hop

away neighborhood of the agent i, which is explicitly defined as

{yj,τ}τ≤t−tij∈N(ti)
, {yj1,t−ti , . . . , yj1,0, · · · , yj

π
(ti)
i

,t−ti , . . . , yj
π
(ti)
i

,0}. (5)

With this aggregated information, we construct the team optimization prob-

lem as

min
x

T∑
t=1

m∑
i=1

E

[
||Xt − x||2

∣∣∣∣∣{Yi,τ = yi,τ}τ≤t,

{Yj,τ = yj,τ}τ≤t−1j∈Ni
, · · · , {Yj,τ = yj,τ}τ≤t−κi

j∈N(κi)
i

]
, (6)

which corresponds, for each agent, to solving

min
x

T∑
t=1

E

[
||Xt − x||2

∣∣∣∣∣{Yi,τ = yi,τ}τ≤t,

{Yj,τ = yj,τ}τ≤t−1j∈Ni
, · · · , {Yj,τ = yj,τ}τ≤t−κi

j∈N(κi)
i

]
. (7)

The solution to the optimization problem in (7) at each time step t gives the

MMSE estimate for the agent i such that

x̂i,t = E

[
Xt
∣∣∣∣∣{Yi,τ = yi,τ}τ≤t, {Yj,τ = yj,τ}τ≤t−1j∈Ni

, · · · , {Yj,τ = yj,τ}τ≤t−κi
j∈N(κi)

i

]
. (8)

Therefore, the estimate in (8) produces the team-optimal solution in an MSE

sense and creates the lower bound for the team-framework.

Remark 2.1 The presented case provides a lower bound on the error perfor-

mance of the team in an MSE sense through the disclosure of the time stamped

observations. This scheme requires excessive amount of storage on the nodes

and the communication load for the network, especially for larger networks.

Note that the reduced storage and the communication load are essential for the
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applicability of the distributed networks to real life problems [29,30]. Therefore,

we develop team-optimal estimation strategies for the distributed networks that

achieves the error performance lower bound of (8), albeit the nodes only store

and diffuse their current local estimates. However, in the next section, we show

that such an error performance with the disclosure of local estimates can only

be achieved over certain network topologies.

3 Optimal Estimation with the Disclosure of Local Estimates

In this section, we show that the team optimal estimation lower bound for

dynamic parameters can be achieved over tree-networks through disclosure of

local estimates and such performance cannot be achieved over cyclic networks

[26].

We define the tree-networks as graph structures, where the vertices are con-

nected with undirected edges without any cycles as shown in Fig.3. We also

note that for any arbitrary network topology, a minimum spanning tree of the

network can be constructed by eliminating the cycles [31–34].

Using the tree structure of the network, we partition the set of information

coming from a particular neighborhood. For the tree networks, a neighboring

set for the agent i can be expressed as

N
(k)
i =

⋃
j∈Ni

(N
(k)
i ∩N

(k−1)
j )

and again due to the network structure, the intersecting sets are disjoint such

that

(N
(k)
i ∩N

(k−1)
j1 )

⋂
(N

(k)
i ∩N

(k−1)
j2 ) = ∅

for all j1, j2 ∈ Ni and j1 6= j2. Therefore, we partition the information received
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𝑁𝑖
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Fig. 3. Structure of a depth-4 tree network with the corresponding neighborhoods
of the agent i. Note that we eliminated the cyclic connections from Fig.2 to avoid
multipath information diffusion and obtain team-optimal estimation.

at the agent i after k-hops as

{yj,τ}τ≤t−k
j∈N(k)

i

= {{yj,τ}τ≤k−1
j∈N(k)

i ∩N
(t−k)
j1

, · · · , {yj,τ}τ≤t−k
j∈N(k)

i ∩N
(k−1)
jπi

}.

Using this partitioning method, we define the set of new measurements coming

from agent j to i at time t = 2 as

zj→i,2 ,

{
{yk,τ}k∈Ni∩N

(0)
j
, {yk,τ}k∈N(2)

i ∩N
(1)
j

}
. (9)

Note that the expression in (9) can also be written as

zj→i,2 = Dj,2/{yj,1, yi,1}, (10)

where yj,1 = Dj,1 and yi,1 = Di,1 = zi→j,1. Thus we can generalize the new

information expression for any time t as

zj→i,t = Dj,t/{Dj,t−1 ∪ zi→j,t−1}, (11)
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Using (11), we write all the information aggregated at the agent i as

Di,t = {yi,t, zj1→i,t−1, · · · , zjπi→i,t−1, Di,t−1}, (12)

where zj→i,t is constructible from Di,τ and Dj,τ for τ ≤ t as we show using

(10) and (11). Therefore, using (12), we construct the optimal estimate again

with an abuse of notation as

x̂i,t = E

[
Xt
∣∣∣∣∣yi,t, zj1→i,t−1, · · · , zjπi→i,t−1, Di,t−1

]
. (13)

Considering zj→i,t is constructible from Di,τ and Dj,τ for τ ≤ t, we write the

optimal estimate in (13) as

x̂i,t = E

[
Xt
∣∣∣∣∣{yi, τ}τ≤t, {Dj,τ}τ≤t−1j∈Ni

]

= E

[
Xt
∣∣∣∣∣yi,t, Di,t−1, {Dj,t−1}j∈Ni

]

and since x̂j,t−1 = E[Xt−1|Dj,t−1], we obtain

x̂i,t = E

[
Xt
∣∣∣∣∣yi,t,E[X|Di,t−1], {E[X|Dj,t−1]}j∈Ni

]

= E

[
Xt
∣∣∣∣∣yi,t, x̂i,t−1, {x̂j,t−1}j∈Ni

]
.

(14)

Hence, we conclude that we can construct the optimal estimate through dis-

closure of local estimates over the tree-networks.

In the following, we introduce the efficient and the optimal distributed online

learning algorithm for dynamic state estimation. We propose a method that

iteratively constructs the team-optimal estimate in (14) for dynamic parame-

ters and achieves the error lower bound in (6).
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4 Efficient and Optimal Distributed Online Learning

In Section 3, we show that over a tree network, the team-optimal estimate can

be constructed using the disclosure of local estimates as

x̂i,t = E

[
Xt
∣∣∣∣∣yi,t, x̂i,t−1, {x̂j,t−1}j∈Ni

]
.

Each local estimate x̂i,t is linear in previous estimates x̂i,t−1 and {x̂j,t−1}j∈Ni
.

Therefore, instead of disclosing the local estimates, we constrain each agent

to disclose the information that was not included in the old estimates. Then

each agent extracts only the innovation terms, i.e. the new information in the

disclosed data that the agent has not received before. Although this opera-

tion imposes more computational load on the agents, it significantly reduces

the communication load on the network, which is more essential for highly-

connected larger networks that require more power for the transmission of

information [29].

We denote the innovation term extracted at the agent i from the data disclosed

by the agent j at time t as zj→i,t−1. With this definition, we define the random

vector collecting the previous estimate and the aggregated information on the

agent i at time t as

di,t =

[
Yi,t X̂i,t−1 Zj1→i,t−1 · · · Zjπi→i,t−1

]T
, (15)

so that we find the optimal estimate of the state with realizations of the

elements in di,t as

x̂i,t = E

[
Xt
∣∣∣∣∣Yi,t = yi,t, X̂i,t−1 = x̂i,t−1, {Zj→i,t−1 = zj→i,t−1}j∈Ni

]
.

Due to the state-space model defined in (2) and (3), all the parameters in (15)

are jointly Gaussian. Hence, for the estimation of the next state at the agent
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i, we have

x̂i,t = αi,tx̂i,t−1 + βi,tyi,t +
∑
j∈Ni

c
(j)
i,j zj→i,t−1. (16)

Using the estimation equation in (16), the information disclosed by the agent

j at time t is given by

zj,t = x̂j,t − αj,tx̂j,t−1

= βj,tyj,t +
∑
k∈Nj

c
(k)
j,t zk→j,t−1.

(17)

Hence, we extract the innovation from the disclosed information on the agent

i as

zj→i,t = zj,t − c(i)j,tzi→j,t−1

= zj,t − c(i)j,tzi,t−1 + c
(i)
j,tc

(j)
i,t−1zj→i,t−2.

(18)

Remark 4.1 Some of the previously diffused information are received after

certain delays over the network due to multi-hops. Therefore, some of the

received information will be the noisy versions of the previous instances of the

underlying state. Due to the random walk model in (2), the state noise on these

previous instances will become correlated with the more recent observations.

Hence, this situation requires a significantly more detailed approach than the

existing methods [23].

In order to calculate the parameters in the estimation recursion (16), we first

need to calculate the auto-correlation matrix of di,t and the cross-correlation

vector with the underlying state Xt, where we define them as Σddi,t and Σxdi,t

respectively. We first calculate the terms of Σxdi,t starting with

E[XtYi,t] = E[Xt(Xt +Ni,t)] = E[X 2
t ]

= γ2E[X 2
t−1] + σ2

w.
(19)
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Then, we calculate

E[XtX̂i,t−1] = E[Xt(αi,t−1X̂i,t−2 + βi,t−1Yi,t−1 +
∑
j∈Ni

c
(j)
i,t−1Zj→i,t−2)]

= αi,t−1E[XtX̂i,t−2 + βi,t−1E[XtYi,t−1]] +
∑
j∈Ni

c
(j)
i,t−1E[XtZj→i,t−2)]

= γ2αi,t−1E[Xt−2X̂i,t−2] + γβi,t−1E[X 2
t−1] +

∑
j∈Ni

c
(j)
i,t−1E[XtZj→i,t−2].

(20)

In order to calculate (20), we also need to calculate E[XtZj→i,t−2]. For that,

we first introduce

hi,0 = γ



βj1,0

...

βjπi ,0


E[X 2

0 ].

Then, with this initialization, for any time t, we find

hi,t = γ



βj1,tE[X 2
t ] + cTj1,thj1,t−1

...

βjπi ,tE[X 2
t ] + cTjπi ,thjπi ,t−1


− γ



c
(i)
j1,t

...

c
(i)
jπi ,t


�



h
(i)
j1,t−1

...

h
(i)
jπi,t−1


,

where cj1,t =
[
c
(k1)
j1,1 . . . c

(kπj1
)

j1,1

]T
, k ∈ Nj1 . Note that hi,t can also be expressed

as

hi,t−1 =



E[Zj1→i,t−1Xt]

...

E[Zjπi→i,t−1Xt]


.
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Using this notation, we obtain

E[XtZj→i,t−2] = γE[Xt−1Zj→i,t−2]

= γh
(j)
i,t−1.

Therefore, we can finalize the calculation of E[XtX̂t−1] as

E[XtX̂t−1] = γ2αi,t−1E[Xt−2X̂t−2] + γβi,t−1E[X 2
t−1] + γcTi,t−1hi,t−1.

Additionally, we define the cross correlation term between the state and the

estimate as

σ̃2
i,t , E[XtX̂i,t]

= γαi,tσ̃
2
i,t−1 + βi,tE[X 2

t ] + cTi,thi,t

and the variance for the underlying state as

σ2
t , E[X 2

t ]

= γ2σ2
t−1 + σ2

w,

which concludes our calculation for the terms in Σxdi,t such that

Σxdi,t =

[
E[XtYi,t] E[XtX̂i,t−1]E[XtZj1→i,t−1] · · ·E[XtZjπi→i,t−1]

]T

=

[
γ2σ2

t−1 + σ2
w γσ̃2

i,t−1 hTi,t−1

]T
.

Next, we calculate the terms of Σddi,t. First, we have

E[Y2
i,t] = E[(Xt +Ni,t)2]

= σ2
t + σ2

ni
.

(21)
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Then, for the term E[X̂i,t−1Yi,t] we get

E[X̂i,t−1Yi,t] = E[X̂i,t−1Xt]

= γσ̃2
i,t−1

(22)

and note that we already found that E[Yi,tZj→i,t−1] = h
(j)
i,t−1. We then calculate

the terms that include the random variable corresponding to the estimate of

the previous state. We begin with defining

σ̂2
i,t−1 , E[X̂ 2

i,t−1]

= E

[(
αi,t−X̂i,t−2 + βi,t−2Yi,t−1 +

∑
j∈Ni

c
(j)
i,t−1Zj→i,t−2

)2
]

= α2
i,t−1E[X̂ 2

i,t−2]︸ ︷︷ ︸
σ̂2
i,t−2

+2αi,t−1βi,t−2E[X̂i,t−2yi,t−1]︸ ︷︷ ︸
γσ̃2
i,t−2

+ 2αi,t−1
∑
j∈Ni

c
(j)
i,t−1E[X̂i,t−2Zj→i,t−2] + β2

i,t−2E[Y2
i,t−1]︸ ︷︷ ︸

σ2
t−1+σ

2
ni

+ 2βi,t−2
∑
j∈Ni

c
(j)
i,t−1E[Yi,t−1Zj→i,t−2]︸ ︷︷ ︸
γcTi,t−1hi,t−2

+E

[( ∑
j∈Ni

c
(j)
i,t−1Zj→i,t−2

)2
]

(23)

and σ̂2
i,0 = β2

i,0(σ
2
0 + σ2

ni
). We need to calculate E[X̂i,t−2Zj→i,t−2] in order to

complete the calculation of (23). For that, we introduce a more compact form
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of the term Zj→i,t as

Zj→i,t =βj,tYj,t +
∑

k∈Nj ,k 6=i
c
(k)
j,t

(
βk,t−1Yk,t−1 +

∑
l∈Nk,l 6=j

c
(l)
k,t−1

(
βl,t−2Yl,t−2 +

∑
· · ·

))

=


g
(j)
i,t︷ ︸︸ ︷

βj,t +
1

γ

∑
k∈Nj ,k 6=i

c
(k)
j,t

(
βk,t−1 +

1

γ

∑
l∈Nk,l 6=j

c
(l)
k,t−1

(
βl,t−2 +

1

γ

∑
· · ·

))Xt
−

1

γ

∑
k∈Nj ,k 6=i

c
(k)
j,t

(
βk,t−1 +

1

γ

∑
l∈Nk,l 6=j

c
(l)
k,t−1

(
βl,t−2 +

1

γ

∑
· · ·

))Wt−1

−

1

γ

∑
k∈Nj ,k 6=i

∑
l∈Nk,l 6=j

c
(k)
j,t c

(l)
k,t−1

(
βl,t−2 +

1

γ

∑
· · ·

)Wt−2 − · · · −
[
· · ·

]
Wt−κi+1 + (i.n.t.),

(24)

where κi is the number of hops from the furthest agent and (i.n.t.) is the

abbreviation of independent noise terms. We point out that the term g
(j)
i,t can

be calculated in a recursive form as in (24). Hence, using (24), we write the

term Zj→i,t as

Zj→i,t = g
(j)
i,t Xt − (g

(j)
i,t − βj,t)Wt−1 − γ

(
g
(j)
i,t − βj,t −

1

γ

∑
k∈Nj ,k 6=i

c
(k)
j,t βk,t−1

)
Wt−2

− · · · −
(
· · ·

)
Wt−κi+1 + (i.n.t.)

(25)

and we obtain

E[X̂i,tZj→i,t] = g
(j)
i,t E[X̂i,tXt]− (g

(j)
i,t − βj,t)E[X̂i,tWt−1]− · · · −

(
· · ·

)
E[X̂i,tWt−κi+1].

The state noise Wt is independent from previous states and we express the
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term Xi,t as

X̂i,t = βi,tWt−1 +
(
αi,tβi,t−1 +

∑
j∈Ni

c
(j)
i,t βj,t−1

)
Wt−2

+
(
αi,tαi,t−1βi,t−2 + αi,t

∑
j∈Ni

c
(j)
i,t βj,t−2 +

∑
j∈Ni

∑
k∈Nj ,k 6=i

c
(j)
i,t c

(k)
j,t−1βk,t−2

)
Wt−3

+ · · ·+
(
· · ·

)
Wt−κi+1 + i.n.t..

(26)

Therefore, we conclude that

E[X̂i,tZj→i,t] = g
(j)
i,t E[X̂i,tXt] + Aσ2

w,

where A is calculated according to the recursions in (25) and (26).

Finally, we calculate the remaining terms of Σddi,t as

E

[(
Zj→i,t−1

)2
]

= (g
(j)2

i,t−1)σ
2
t−1

+

[(
(g

(j)
i,t−1 − βj,t−1)2 −

(
g
(j)
i,t−1 − βj,t−1 −

1

γ

∑
k∈Nj ,k 6=i

c
(k)
j,t−1βk,t−2

))2

−B2
j,4 −B2

j,5 · · · −B2
j,κi

]
σ2
w

+ (βj,t−1)
2σnj +

∑
k∈Nj ,k 6=i

(c
(k)
j,t−1βk,t−2)σ

2
nk

+
∑

k∈Nj ,k 6=i

∑
l∈Nk,l 6=j

(c
(k)
j,t−1c

(l)
k,t−2βk,t−2βl,t−3)

2σ2
nl

+ · · ·

+
∑

k∈Nj ,k 6=i

∑
l∈Nk,l 6=j

· · ·
∑

r∈N
(κi−3)

i

∑
s∈N

(κi−2)

i

∑
m∈N(κi−1)

i ,m 6=r

(c
(k)
j,t−1c

(l)
k,t−2 · · · c

(m)
s,t−κiβk,t−2βl,t−3 · · · βm,t−κi)

2σ2
m

(27)

and

E

[
Zjo→i,t−1Zjp→i,t−1

]
= gjoi,t−1g

jp
i,t−1σ

2
t−1 +

[
(g

(jo)
i,t−1 − βjo,t−1)(g

(jp)
i,t−1 − βjp,t−1)

−
(
g
(jo)
i,t−1 − βjo,t−1 −

1

γ

∑
k∈Njo ,k 6=i

c
(k)
jo,t−1βk,t−2

)(
g
(jp)
i,t−1 − βjp,t−1 −

1

γ

∑
k∈Njp ,k 6=i

c
(k)
jp,t−1βk,t−2

)

−Bjo,4Bjp,4 − · · · −Bjo,κiBjp,κi

]
σ2
w,

(28)
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where o, p ∈ {1, . . . , πi}, o 6= p and Bj,t for t = 4, . . . , κ − i represents the

remaining recursive terms derived in (25).

Next, we recursively calculate the parameters in (16). We define the vector

containing the parameters as

P ,
[
α̃i,t βi,t c

(j1)
i,t · · · c

(jπi )
i,t

]T
.

In (13), all the conditioned parameters are jointly Gaussian with the state.

Therefore, we calculate the parameter vector as P = Σ−1ddi,tΣxdi,t. The estima-

tion and the variance recursions are given by

x̂i,t = γx̂i,t−1 + βi,t
(
yi,t − γx̂i,t−1

)
+
∑
j∈Ni

c
(j)
i,t

(
zj→i,t−1 − g(j)i,t x̂i,t−1

)
,

σ̂2
i,t = γ2σ̂2

i,t−1 + σ2
w −ΣT

xdi,t
Σ−1ddi,tΣxdi,t.

Hence, for the parameter αi,t in (16), we have

αi,t = γ − γβi,t −
∑
j∈Ni

c
(j)
i,t g

(j)
i,t ,

which finalizes the efficient and optimal distributed online learning algorithm.

We give the detailed pseudo-code of the overall algorithm in Algorithm 1.

In the following, we provide numerical examples to evaluate the performance

of our algorithm against several other distributed estimation algorithms under

different scenarios.

5 Simulations

In this section, we study the performance of the proposed algorithm under

different scenarios. For the network structure, we consider a depth 2 tree-

network. Each agent i observes a noise corrupted version yt ∈ R of an under-
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Algorithm 1 The Efficient and Optimal Distributed Online Learning Algo-
rithm (EODL)

1: for i = 1 to m do
2: x̂i,0 = x̄
3: σ̂2

i,0 = σ2
0

4: end for
5: for t ≥ 1 do
6: for i = 1 to m do
7: Receive {zj,t−1}j∈Ni

8: Extract Innovation
9: zj→i,t−1 = zj,t−1 − c(i)j,t−1 + c

(i)
j,t−1c

(j)
i,t−2zj→i,t−3

10: Calculate Σxdi,t,Σddi,t

11: Find Parameters:
12: P , [α̃i,t βi,t c

(j1)
i,t · · · c

(jπi )
i,t ]T

13: P ← Σ−1ddi,tΣxdi,t

14: αi,t = γ − γβi,t −
∑
j∈Ni c

(j)
i,t g

(j)
i,t

15: Update:
16: x̂i,t = αi,tx̂i,t−1 + βi,tyi,t
17: +

∑
j∈Ni c

(j)
i,t zj→i,t−1

18: σ̂2
i,t = γ2σ̂2

i,t−1 + σ2
w −ΣT

xdi,t
Σ−1ddi,tΣxdi,t

19: end for
20: end for

lying state xt ∈ R, where it evolves according to the random walk model in

(2) with γ = 0.98. The state noise wt is driven by a Gaussian process, with

zero mean and variance σ2
w = 0.025. The observation noise is also zero-mean

white Gaussian random process.

We use the terminal cost function for measuring the team performance of

different algorithms. The terminal cost is a function of the time horizon T and

defined as [26]

J(T ) =
m∑
i=1

E ||XT − x̂i,T ||2 , (29)

which represents the impact of the final estimate on the horizon. We use en-

semble average over 200 experiments in order to approximate the cost measure

in (29).

We compare the performance of the proposed algorithm with the diffusion
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least mean squares (D-LMS), the diffusion recursive least squares (D-RLS)

algorithm and the diffusion implementation of the Kalman filtering algorithm

(D-Kalman) under different settings [10, 12, 22]. We also use a distributed

consensus algorithm in our comparison framework [35]. We implement the

diffusion based distributed algorithms with the adapt-then-combine (ATC)

technique, where each agent first makes an estimate based on its local obser-

vation and discloses its estimate [35]. Then, the agents decide on their final

estimate by combining the local and the received estimates. For the combina-

tion step, we use the Metropolis rule, where the combination weight λi,j for

the estimate coming to the agent i from the agent j is calculated as

λi,j =



1
max(Ni,Nj)

if i 6= j are linked,

0 for i and j not linked,

1−∑j∈Ni\i λi,j for i = j.

We set the learning rates of the diffusion LMS and the consensus algorithm

to µ = 0.2. We select this learning rate so that these algorithms do not follow

the observation noise and capture the underlying parameter. Also, we set the

memory parameter of the diffusion RLS algorithm to η = 0.3. Note that we set

the memory parameter of RLS algorithm to a relatively small value in order

to put more emphasis on the recent observations and estimates. We choose

this parameter so that the diffusion RLS algorithm converges fast, but still be

able to track the underlying dynamic parameter.

In Fig.4, we compare the algorithms under a space-invariant noise over the

network, where each agent experiences the same level of disturbance. We se-

lect the random walk and observation model parameter so that each agent

experiences 0.5dB signal-to-noise ratio (SNR). We observe that the proposed

algorithm (EODL) achieves a superior performance regarding the global finite

horizon MSE measure and the convergence rate compared to the other dis-
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Fig. 4. Comparison of the global MSE of the algorithms under space-invariant noise
with γ = 0.98.

tributed estimation algorithms. The consensus algorithm performs the worst

since it has a decaying learning rate as the nodes reach to a consensus in time

and the network loses its adaptation capabilities against a dynamic parameter.

In another scenario, we evaluate the performance of the algorithms under a

space-variant noise statistics over the network. For this case, we randomly

sample the standard deviation of the observation noise of the each agent from

a folded Gaussian distribution so that signal-to-noise ratio of the network will

be around 0.5dB. In this case randomness is involved and some of the agents

will experience higher(lower) SNR levels. In Fig.5, we compare the algorithms

for the space-variant noise case. Note that the algorithms perform better than

the space-invariant noise statistics case. This is because, in this case, some of

the agents experience smaller noise levels while some others experience higher,

but through the communication between the agents, they all benefit from the

estimates of the agents having better observation channels. We also emphasize

that the EODL algorithm even performs better in this case since it utilizes the

optimal information disclosure and the estimate construction. Furthermore,

we observe a similar performance between the compared algorithms, where

the EODL algorithm achieves a superior performance regarding the global
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Fig. 5. Comparison of the global MSE of the algorithms under space-variant noise
with γ = 0.98.

MSE measure and the convergence rate compared to the other distributed

estimation schemes.

We also investigate the effect of the random walk parameter γ with a sim-

ulation under the space-variant noise framework, thus we select γ = 1 for

another set of simulations. We emphasize that in this case the random walk

model diverges, however, as we will observe, our algorithm provides a bounded

estimation MSE. In Fig.6, we present the results for the case of no coopera-

tion between the nodes and for the case the cooperation occurs. We observe

that the D-LMS, D-RLS and the consensus networks become unstable, even if

individual nodes are stable and able to track the underlying parameter. Only

the D-Kalman and the EODL networks are able to achieve the convergence

for γ = 1 case. We also emphasize that, with the EODL algorithm, we pro-

duce the optimal parameters and the combination weights for the network in

contrast to the D-LMS, D-RLS and consensus algorithms, where we need to

select their parameters beforehand. Therefore, the proposed algorithm over-

comes the issue of parameter selection and provides more stable solution for

this scenario.
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6 Conclusion

In this paper, we introduce a novel approach for the distributed estimation

of dynamically changing parameters. We first construct a framework for the

estimation of dynamic parameters by a team of distributed agents. Here, we

provide a lower bound on the estimation error of the team of agents in the

MSE sense. We prove that the lower bound can be achieved for any arbitrary

network when the agents disclose the stamped observations. We also show

that this method imposes huge communication loads and requires excessive

storage on the agents. Therefore, we introduced an efficient method where the

agents only disclose the “new information” they have collected. We prove that

the error lower bound in this case can only be achieved over certain network

topologies. We introduce an algorithm to recursively extract the innovations

from the disclosed information and construct the optimal estimates. Through

series of simulations over different scenarios, we illustrate the significant per-

formance improvements introduced by our algorithm with respect to the state

of the art methods.
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