\qquad

Math 206 Complex Calculus - Final Exam

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet.
No correct answer without a satisfying reasoning is accepted. Show your work in detail.
Write your name on the top of every page.
Q-1) Determine the solution $y(n)$ of the difference equation

$$
y(n+2)-6 y(n+1)+9 y(n)=3^{n} ; y(0)=1, y(1)=6,
$$

for the given initial conditions. Note: Use the method of residues for computing the inverse Z-transform.
Solution: Taking the Z-transform with nonzero initial conditions and solving for $Y(z)$, we get

$$
Y(z)=\frac{z\left(z^{2}-3 z+1\right)}{(z-3)^{3}}
$$

so that

$$
y(n)=\operatorname{Res}_{z=3}\left[\frac{z^{n}\left(z^{2}-3 z+1\right)}{(z-3)^{3}}\right] .
$$

Since $z=3$ is a pole of order $3, y(n)=\frac{1}{2} \phi^{\prime \prime}(3)$, where $\phi(z)=z^{n}\left(z^{2}-3 z+1\right)$. Taking the derivative twice, we get

$$
\phi^{\prime \prime}(z)=\left(z^{2}-3 z+1\right) n(n-1) z^{n-2}+2(2 z-3) n z^{n-1}+2 z^{n}
$$

so that, substituting $z=3$, dividing by 2 , and organizing, we find

$$
y(n)=\frac{1}{2}\left[\left(n^{2}+17 n+18\right) 3^{n-2}\right], \quad n \geq 0
$$

Q-2) Solve the initial condition problem

$$
\frac{d^{3} f}{d t^{3}}-3 \frac{d^{2} f}{d t^{2}}+3 \frac{d f}{d t}-f(t)=H(t-\tau) ; \quad f^{\prime \prime}(0)=1, f^{\prime}(0)=0, f(0)=0
$$

where $H(t-\tau)$ is the unit-step function delayed by $\tau>0$ units of time.
Solution: Taking the Laplace transform of each term with nonzero initial conditions and solving for $F(s)$, we have

$$
F(s)=\frac{1}{(s-1)^{3}}+\frac{e^{-s \tau}}{s(s-1)^{3}} .
$$

Using the method of partial fraction expansion, we can write

$$
F(s)=\frac{1}{(s-1)^{3}}-\frac{e^{-s \tau}}{(s-1)^{3}}+\frac{e^{-s \tau}}{(s-1)^{2}}-\frac{e^{-s \tau}}{s-1}+\frac{e^{-s \tau}}{s} .
$$

Taking the inverse Laplace transform of each term, we find
$f(t)=\frac{1}{2} t^{2} e^{t} H(t)-\frac{1}{2}(t-\tau)^{2} e^{t-\tau} H(t-\tau)-(t-\tau) e^{t-\tau} H(t-\tau)-e^{t-\tau} H(t-\tau)+H(t-\tau)$.

Q-3) Determine the image in the w plane of the triangular region bounded by the lines $y= \pm x$ and $x=1$ in the z-plane under the mapping $w=z^{2}$, by (i) indicating the corresponding image of each side and of each vertex of the triangle and (ii) showing clearly that each point in your image is indeed an image.
Solution: The vertices are at $A=(0,0), B=(1,1)$, and $C=(1,-1)$ and are mapped by

$$
u=x^{2}-y^{2}, \quad v=2 x y
$$

onto $A^{\prime}=(0,0), B^{\prime}=(0,2)$, and $C^{\prime}=(0,-2)$, respectively. The sides on $y=x$ and $y=-x$ are clearly mapped onto $u=0,0 \leq v \leq 2$ and $u=0,-2 \leq v \leq 0$, respectively. The third side $x=1,-1 \leq v \leq 1$ is mapped onto the part of the parabola

$$
\begin{equation*}
u=1-\frac{v^{2}}{4} \tag{1}
\end{equation*}
$$

in the right half w-plane. A line $L: x=x_{0},-x_{0} \leq y \leq x_{0}$ in the triangular region has the image $L^{\prime}: u=x_{0}^{2}-\frac{v^{2}}{4 x_{0}^{2}}$ so that the region between the line $u=0,-2 \leq v \leq 2$ and the parabola (??) is filled in a one-to-one manner as x_{0} varies between 0 and 1 .

Q-4) Find the temperature $T(x, y)$ in the thin metal plate between two circles

$$
C_{1}:\left(x-\frac{1}{4}\right)^{2}+y^{2}=\frac{1}{16}, \quad C_{2}:\left(x-\frac{1}{2}\right)^{2}+y^{2}=\frac{1}{4},
$$

if C_{1} is maintained at one hundred degree Celcius and C_{2} is maintained at zero degree Celcius.
HINT: Use the linear fractional transformation which maps $x=0,1 / 2,1$ on the real line in z-plane onto $u=\infty, 1,0$ on the real line in w-plane, respectively.
Solution: The transformation $w=\frac{1-z}{z}$ is the requires LFT and is such that

$$
u=\frac{x-x^{2}-y^{2}}{x^{2}+y^{2}}, \quad v=\frac{-y}{x^{2}+y^{2}} .
$$

Thus, it maps $C_{1}\left(y^{2}=-x^{2}+0.5 x^{2}\right)$ onto the line $u=1,-\infty<v<\infty$ and $C_{2}\left(y^{2}=\right.$ $-x^{2}+x$) onto the line $u=0,-\infty<v<\infty$. Also the region between C_{1} and C_{2} is mapped onto the infinite strip between the lines. The temperature function $T(u, v)=100 u$ is bounded harmonic in this strip and satisfies the boundary conditions on the vertical lines. Therefore, the required temperature function in the z-plane is

$$
T(x, y)=100 \frac{x-x^{2}-y^{2}}{x^{2}+y^{2}}
$$

