\qquad

Math 206 Complex Calculus - Midterm Exam II

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet. Write your name on the top of every page. A correct answer without proper reasoning may not get any credit.

Q-1) (i) [20 pts.] Determine the Laurent series expansion for

$$
f(z)=\frac{\cosh (z)}{z\left(z^{2}-1\right)}
$$

about $z_{0}=0$ by writing the coefficients $a_{n}, n \geq 0, b_{n}, n \geq 1$ and indicate the region in which the expansion is valid.
(ii) [5 pts.] Find the residue at the origin of $f(z)$.

Solution: (i) Writing the McLaurin expansions for $\cosh (z)$ and $1 /\left(1-z^{2}\right)$, we get
$f(z)=-\frac{1}{z}\left(\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!}\right)\left(\sum_{n=0}^{\infty} z^{2 n}\right)=-\frac{1}{z}\left[\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{(2 k)!}\right) z^{2 n}\right]=-\frac{1}{z}-\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{(2 k)!}\right) z^{2 n+1}$.
Thus

$$
a_{n}=-\sum_{k=0}^{n} \frac{1}{(2 k)!}, n=0,1,2, \ldots ; b_{1}=-0.5, b_{n}=0, n=2,3,4, \ldots
$$

The expansion is valid for $0<|z|<1$.
(ii) The residue is the coefficient b_{1} of $1 / z$, i.e., -0.5 .

Q-2) (i) [15 pts.] Determine and classify (pole?, removable?, essential?, notisolated?) all singularities of

$$
f(z)=\frac{e^{z}}{\sinh (\pi / z)}
$$

(ii) [10 pts.] Determine the residue at each isolated singularity of this $f(z)$.

Solution: (i) Since e^{z} is entire, the singularities are at $z_{0}=0$ and at $z_{n}=$ $1 /(i n), n= \pm 1, \pm 2, \ldots$. All are isolated singularities and simple poles of $f(z)$ except $z_{0}=0$ which is not isolated.
(ii) The residues at $z_{n}, n \neq 0$ are given by $p(z):=e^{z}, q(z):=\sinh (\pi / z)$, and for $n= \pm 1, \pm 2, \ldots$:

$$
\begin{gathered}
\operatorname{Res}_{z_{n}}[f(z)]=\frac{p\left(z_{n}\right)}{q^{\prime}\left(z_{n}\right)}=-\frac{z_{n}^{2}}{\pi} \frac{e^{z_{n}}}{\cosh \left(\pi / z_{n}\right)}=\frac{1}{n^{2} \pi} \frac{\cos (1 / n)-i \sin (1 / n)}{(-1)^{n}} \\
=\frac{(-1)^{n}}{n^{2} \pi}[\cos (1 / n)-i \sin (1 / n)] .
\end{gathered}
$$

Q-3) Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x \sin (3 x)}{x^{4}+16} d x
$$

using complex integration on a suitable contour. Important note: Computation of any limits you may use in your derivation should all be explicitly shown.

Solution: Let $f(z):=\frac{z e^{i 3 z}}{z^{4}+16}$ and consider the simple closed positively oriented contour $C_{1}+C_{R}$ with

$$
C_{1}: z=x,-R \leq x \leq R ; \quad C_{R}: z=R e^{i \theta}, 0 \leq \theta \leq \pi
$$

For $R>2$, the contour contains the two simple poles

$$
c_{0}=2 e^{i \pi / 4}, c_{1}=2 e^{i 3 \pi / 4}
$$

of $f(z)$ and no other singularities. On C_{r},

$$
\left|\frac{z}{z^{4}+16}\right| \leq \frac{R}{R^{4}-16}
$$

which has limit 0 as $R \rightarrow \infty$. By Jordan's Lemma, the integral on C_{R} of $f(z)$ tends to zero as $R \rightarrow \infty$. On C_{1}, the integral gives the improper integral below as $R \rightarrow \infty$ so that, by the Residue Theorem, we have

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{x e^{i 3 x}}{x^{4}+16} d x=2 i \pi\left(\operatorname{Res}_{c_{0}}[f(z)]+\operatorname{Res}_{c_{1}}[f(z)]\right) \\
=2 i \pi\left(\frac{e^{i 3 \sqrt{2}} e^{-3 \sqrt{2}}}{16 i}+\frac{e^{-i 3 \sqrt{2}} e^{-3 \sqrt{2}}}{-16 i}\right) \\
=i \frac{\pi}{4} e^{-3 \sqrt{2}} \sin (3 \sqrt{2})
\end{gathered}
$$

Taking the imaginary part of both sides, we get

$$
\int_{-\infty}^{\infty} \frac{x \sin (3 x)}{x^{4}+16} d x=\frac{\pi}{4} e^{-3 \sqrt{2}} \sin (3 \sqrt{2}) .
$$

Q-4) Evaluate the integral

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{x^{2}+1} d x
$$

using complex integration on a suitable contour. Important note: Computation of any limits you may use in your derivation should all be explicitly shown.
HINT: You can use the fact that

$$
\int_{0}^{\infty} \frac{1}{r^{2}+1} d r=\frac{\pi}{2}
$$

Solution: Let $f(z)=\frac{\log z)^{2}}{z^{2}+1}$, where $\log z$ is such that $-\pi / 2<\arg z<3 \pi / 2$, and consider the simple positively oriented closed contour $L_{1}+C_{\rho}+L_{2}+C_{R}$ with parametrizations

$$
\begin{gathered}
-L_{1}: z=r e^{i \pi}, \rho \leq r \leq R ; \quad C_{R}: z=R e^{i \theta}, 0 \leq \theta \leq \pi \\
L_{2}: z=r, \rho \leq r \leq R ;-C_{\rho}: z=\rho e^{i \theta}, 0 \leq \theta \leq \pi
\end{gathered}
$$

The function $f(z)$ has the pole i inside the contour for $\rho<1, R>1$. It is easy to see that

$$
\int_{L_{1}} f(z) d z=\int_{\rho}^{R} \frac{(\ln r+i \pi)^{2}}{r^{2}+1} d r, \quad \int_{L_{2}} f(z) d z=\int_{\rho}^{R} \frac{(\ln r)^{2}}{r^{2}+1} d r
$$

Also

$$
\left|\int_{C_{\rho}} f(z) d z\right|=\left|\int_{0}^{\pi} \frac{(\ln \rho+i \theta)^{2}}{\rho^{2} e^{i 2 \theta}+1} i \rho e^{i \theta} d \theta\right| \leq \frac{(\pi-\ln \rho)^{2}}{1-\rho^{2}} \pi \rho
$$

for $\rho<1$, where the right hand side goes to zero as $\rho \rightarrow 0$ (as can be shown using L'Hopital's rule) and

$$
\left|\int_{C_{R}} f(z) d z\right|=\left|\int_{0}^{\pi} \frac{(\ln R+i \theta)^{2}}{R^{2} e^{i 2 \theta}+1} i R e^{i \theta} d \theta\right| \leq \frac{(\pi+\ln R)^{2}}{R^{2}-1} \pi R
$$

for $R>1$, which goes to zero as $R \rightarrow \infty$, again by L'Hopital's rule. Putting these together and taking limits as $\rho \rightarrow 0$ and as $R \rightarrow \infty$, we obtain
$2 \int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r+\int_{0}^{\infty} \frac{-\pi^{2}}{r^{2}+1} d r+\int_{0}^{\infty} \frac{2 i \pi \ln r}{r^{2}+1} d r=2 i \pi \operatorname{Res}_{z=i}[f(z)]=-\frac{\pi^{3}}{4}$.
Using the HINT and taking the real part of both sides, we finally get

$$
\int_{0}^{\infty} \frac{(\ln r)^{2}}{r^{2}+1} d r=\frac{\pi^{3}}{8}
$$

