Date.	OCTODET 51, 2000, Iuesuay	
Time	: 17:40-19:10	

STUDENT NO:

Math 206 Complex Calculus – Midterm Exam I

PLEASE READ:

This is a closed-book exam. Check that there are 4 questions on your exam booklet. No correct answer without a satisfying reasoning is accepted. Show your work in detail. Write your name on the top of every page.

Q-1) Show that $\lim_{z\to 0} \left(\frac{z}{\bar{z}}\right)^2$ does not exist. If we approach the origin along the *x*-axis, i.e., if we restrict z = x, then we get

$$\lim_{z \to 0} \left(\frac{z}{\bar{z}}\right)^2 = \lim_{y=0, x \to 0} \left(\frac{x^2 - y^2 + i2xy}{x^2 + y^2}\right)^2 = 1.$$

whereas, if we approach the origin along the line x = y, then we get

$$\lim_{z \to 0} \left(\frac{z}{\bar{z}}\right)^2 = \lim_{x=y, x \to 0} \left(\frac{x^2 - y^2 + i2xy}{x^2 + y^2}\right)^2 = i^2 = -1.$$

Since the two limits differ, and since whenever limit exists, it is unique, we conclude that $\lim_{z\to 0} \left(\frac{z}{\overline{z}}\right)^2$ does not exist.

Q-2) (i) Show that u(x, y) = sinh(x) sin(y) is harmonic in the entire plane and (ii) find all harmonic conjugates v(x, y) of u(x, y).

(i) The function u has continuous partial derivatives of all orders in the entire plane because sinh(x) and sin(y) each have. We also note

$$u_x = \cosh(x) \sin(y), \ u_{xx} = \sinh(x) \sin(y),$$
$$u_y = \sinh(x) \cos(y), \ u_{yy} = -\sinh(x) \sin(y),$$

in the entire plane, which shows that Laplace's equation holds. Therefore u is harmonic in the whole complex plane. (ii) By Cauchy-Riemann equations $v_y = u_x = \cosh(x) \sin(y)$ so that $v(x, y) = -\cosh(x) \cos(y) + \phi(y)$ for some function ϕ that depends only on the variable y. Also by C-R equations, $v_x = -\sinh(x)\cos(y) + \phi'(y) = -u_y = -\cosh(x)\sin(y)$. This gives that $\phi'(y) = 0$, or that $\phi(y) = c$ for some real constant c. Therefore, necessarily $v(x, y) = -\cosh(x)\cos(y) + c$ for some arbitrary c. It is now easy to check that each v(x, y) in this form satisfies C-R equations and hence all harmonic conjugates are in this form.

Q-3) Find all z = x + iy satisfying the equality

$$\cos(z) + i = 0.$$

Note: Give your answers in terms of ln (the real natural logarithmic function)!

By the identity cos(z) = cos(x)cosh(y) - isin(x)sinh(y), the equality holds if and only if cos(x)cosh(y) = 0 and sin(x)sinh(y = 1, simultaneously. Since $cosh(y) \neq 0$ for every real y, the first equality holds if and only if $x = (2k+1)\pi/2$ for some integer k. Then, for any such x, $sin(x) \neq 0$ and the second equality holds if and only if $sinh(y) = (e^y - e^{-y})/2 = \pm 1$, or equivalently, $e^{2y} - 2e^y - \pm 1 =$ 0, where the sign is positive if $x = (4n+1)\pi/2$ and negative if $x = (4n+3)\pi/2$. Solving this equation for both signs, $e^y = \pm 1 \pm \sqrt{2}$. Since e^y must be positive, we get $e^y = 1 + \sqrt{2}$, or $e^y = -1 + \sqrt{2}$ which give $y = \pm ln((1 + \sqrt{2}))$. Therefore, combining the two cases, all solutions are

$$z = x + iy = \frac{(2n+1)\pi}{2} + i(-1)^n \ln(1+\sqrt{2}), n \text{ integer.}$$

Q-4) Show that

$$\lim_{R \to \infty} \int_{C_R} \frac{\log z}{z^2} \, dz = 0$$

when C_R is the positively oriented semi-circular contour in the upper plane, i.e.,

$$C_R: z = R e^{i\theta}, \ -\pi \le \theta \le \pi.$$

We use the inequality

$$|\int_C f(z) \, dz| \le M \, L,$$

where M is such that $|f(z)| \leq M$ at every $z \in C$ and L is the length of C. Now, for each $z = Re^{i\theta} \in C_R$, we have

$$|\frac{\log z}{z^2}| = |\frac{\ln R + i\theta}{R^2 e^{i2\theta}}| = \frac{|\ln R + i\theta|}{R^2} \le \frac{\sqrt{(\ln R)^2 + \pi^2}}{R^2} \le \frac{\ln R + \pi}{R^2} =: M$$

so that, since C_R has length πR , we obtain

$$|\int_C f(z) \, dz| \le \pi \frac{\ln R + \pi}{R}.$$

The right hand side, by L'Hopital's rule, tends to zero as R tends to infinity. Therefore, the left hand side, and hence what is inside the modulus, have also limits zero as R tends to infinity.