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1 Introduction

These notes are intended to guide the student through problem solving using
Laplace and z-transform techniques and is intended to be part of MATH 206
course. These notes are freely composed from the sources given in the bibli-
ography and are being constantly improved. Check the date above to see if
this is a new version.

You are welcome to contact me through e-mail if you have any comments on
these notes such as praise, criticism or suggestions for further improvements.
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2 Laplace Transformation

The main application of Laplace transformation for us will be solving some
differential equations. A differential equation will be transformed by Laplace
transformation into an algebraic equation which will be solvable, and that
solution will be transformed back to give the actual solution of the DE we
started with.

We define the Laplace Transform of a function f : [0,∞) → C as

L(f(t)) =

∫ ∞

0

e−stf(t)dt for s ∈ C

We sometimes use F (s) to denote L(f(t)) if there is no confusion. But beware
of conflicting notation in the literature.

Euler1 was the first one to use this transformation to solve certain differential
equations in 1737. Later Laplace2 independently used it in his book Théorie
Analytique de Probabilités in 1812, [6, p285].

2.1 Existence of Laplace Transformation

It is clear that L(f) does not exist for every function f . For example it

can be easily verified that L(et2) does not exist, i.e. the associated integral
clearly diverges. However L exists for a large class of functions. For example
consider the following class of functions:

A function f : [0,∞) → C is said to be of exponential order a if there are
positive real constants M , T and a such that |f(t)| ≤ Meat for all t ≥ T .

L(f) exists if f is integrable on [0, b] for every b > 0 and f is of exponential
order a for some a > 0. In this case F (s) is defined if and only if Re s > a.
Moreover observe from the definition that lim

Re s→∞
F (s) = 0.

A word of relief: We will basically be using Laplace transform techniques to

1Leonhard Euler 1707-1783.
2Pierre-Simon Laplace 1749-1827.
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solve differential equations. Most differential equations with initial values will
have a unique solution, see for example [7, p498-Thm 10.6 and p501-Thm
10.8]. We therefore formally apply Laplace transform techniques, without
checking for validity, and if in the end the function we find solves the differ-
ential equation then it is the solution. For this reasons most tables of Laplace
transforms do not give the range of validity and are therefore wrong per se
but perfectly acceptable given the overall purpose.

2.2 Elementary Properties of Laplace Transformation

Before we start calculating the Laplace transformation of any function we
can derive some results which reflect our expectations from L(f) using only
the elementary properties of integrals.

Suppose α, β ∈ C and f, g functions for which Laplace transformation exists.
Then:

• L(αf(t) + βg(t)) = αF (s) + βG(s). (Linearity)

• L(eαtf(t)) = F (s− α). (Shift property)

• Suppose f and all its derivatives up to and including order n are con-
tinuous on [0,∞) with f and each derivative having Laplace transfor-
mation. Then

L(f (n)(t)) = snF (s)− sn−1f(0)− · · · − sn−k−1f (k)(0)− · · · − f (n−1)(0).

In particular

L(f ′(t)) = sF (s)− f(0),

L(f ′′(t)) = s2F (s)− sf(0)− f ′(0).

• If f is continuous on (0,∞), then L

(∫ t

0

f(u)du

)
= F (s)/s.

• If f is continuous on (0,∞), then L(tnf(t)) = (−1)nF (n)(s).
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2.3 Transforms of some elementary functions

Before we apply Laplace transformation techniques to differential equations
we need to actually see the transformation of some functions. We generally
need some tables listing the Laplace transforms of some elementary functions.
Then using the properties listed in the previous section we can find the
Laplace transformation of most functions.

We begin by a table where each entry can be found by direct integration,
using the definition of the Laplace transformation.

In the following list, α and β are complex constants and n is a nonnegative
integer.

• L(α) =
α

s
.

• L(t) =
1

s2
.

In general L(tn) =
n!

sn+1
.

• L(eαt) =
1

s− α
, where Re s > Re α.

• L(sin αt) =
α

s2 + α2
, where Re s > −Im α.

• L(cos αt) =
s

s2 + α2
, where Re s > −Im α.

• L(sinh αt) =
α

s2 − α2
.

• L(cosh αt) =
s

s2 − α2
.

The next three formulas follow from the general property L(tnf(t)) = (−1)nF (n)(s).

• L(t sin αt) =
2αs

(s2 + α2)2
.



MATH 206 Complex Calculus and Transform Techniques [11 April 2003] 5

• L(t cos αt) =
s2 − α2

(s2 + α2)2
.

• L(te−αt) =
1

(s + α)2
, where α > 0.

In general L(tne−αt) =
n!

(s + α)n+1
, where α > 0.

The next formulas follow from the shift property L(eαtf(t)) = F (s− α).

• L(e−αt sin βt) =
β

(s + α)2 + β2
, where α > 0.

• L(e−αt sinh βt) =
β

(s + α)2 − β2
, where α > 0.

• L(e−αt cos βt) =
s + α

(s + α)2 + β2
, where α > 0.

• L(e−αt cosh βt) =
s + α

(s + α)2 − β2
, where α > 0.

2.4 Inverse Laplace Transformation

If L(f(t)) = F (s), then f(t) is called the inverse Laplace transform of F (s)
and is denoted by L−1(F (s)) = f(t).

If we assume that the functions whose Laplace transforms exist are going to
be taken as continuous then no two different functions can have the same
Laplace transform. Functions that differ only at isolated points can have the
same Laplace transform. Such uniqueness theorems allow us to find inverse
Laplace transform by looking at Laplace transform tables.

Example:-2.1 Find the function f(t) for which L(f(t)) =
2s + 3

s2 + 4s + 13
.

Solution: By completing the denominator to a square and playing with
the numerator we write L(f(t)) as

2s + 3

s2 + 4s + 13
=

2(s + 2)

(s + 2)2 + 9
− 1

(s + 2)2 + 9
.
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Here we try to recognize each part on the right as Laplace transform of
some function, using a table of Laplace transforms. For example we note
that L(e−2t cos(3t)) = s+2

(s+2)2+9
and L(e−2t sin(3t)) = 3

(s+2)2+9
. Using this

information together with the fact that Laplace transform is a linear operator
we find that

L−1

{
2s + 3

s2 + 4s + 13

}
= L−1

{
2(s + 2)

(s + 2)2 + 9

}
− L−1

{
1

(s + 2)2 + 9

}

= 2e−2t cos(3t)− 1

3
e−2t sin(3t)

= f(t).

Note: Inverse Laplace of a function can also be found using integrals and
residues. This is given in your textbook [3, sections 66-67].

2.5 Convolution

When f(t) and g(t) are defined for t > 0, and are piecewise continuous, then
their convolution, denoted by f ∗ g, is defined as

(f ∗ g)(t) =

∫ t

0

f(t− u)g(u)du, for 0 ≤ t < ∞.

Convolution has some immediate properties following from the above defini-
tion:
1. f ∗ g = g ∗ f .
2. f ∗ (cg) = (cf) ∗ g = c(f ∗ g), where c is a constant.
3. f ∗ (g + h) = f ∗ g + f ∗ h.
4. f ∗ (g ∗ h) = (f ∗ g) ∗ h.

In particular the following property is useful:

L−1 {F (s)G(s)} = f ∗ g where L(f) = F and L(g) = G.

In other words;
L((f ∗ g)(t)) = F (s)G(s).
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Example:-2.2 An equation of the form

x(t) = f(t) +

∫ t

0

h(t− u)x(u)du

where f and h are known functions and x is the unknown function is called
Volterra3 integral equation. Note that the given integral is a convolution
integral. Letting capital letters denote the Laplace transform of the corre-
sponding function we apply Laplace operator to each side of the Volterra
equation to obtain

X(s) = F (s) + H(s)X(s).

Solving for X(s) we get

X(s) =
F (s)

1−H(s)
,

which can theoretically be inverted by Laplace transformation to give the
required x(t).

Example:-2.3 Solve the Volterra equation

x(t) = e−t − 4

∫ t

0

cos 2(t− u)x(u)du.

Solution: Applying Laplace operator to each side we get

X(s) =
1

s + 1
− 4X(s)

s

s2 + 4
.

Solving for X(s) we get

X(s) =
s2 + 4

(s + 1)(s + 2)2

=
5

s + 1
− 4

s + 2
+

8

(s + 2)2
.

Applying Laplace inverse transformation to both sides of this equation we
finally get

x(s) = 5e−t − 4e−2t − 8te−2t.

3Vito Volterra 1860-1940.
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2.6 Heaviside unit function

The Heaviside unit function is denoted and defined
as

H(t) =

{
0, if t < 0;
1, if t ≥ 0.

0

1

t

By directly integrating the Heaviside4 function we find that

L(H(t− a)) =
e−sa

s
for a > 0.

In particular

L(H(t)) =
1

s
.

Compare this to the case where we apply Laplace operator to f(t) = 1 for
t > 0.

Again by direct integration we find the important shift property

L(H(t− a)f(t− a)) = e−asL(f(t)), for a > 0.

Example:-2.4

L(H(t− 2) cos(t− 2)) =
se−2s

s2 + 1
.

Example:-2.5

L(H(t− 2) sin(t− 2)) =
e−2s

s2 + 1
.

Example:-2.6

L(H(t− 2) cos(t)) = L(H(t− 2) cos ((t− 2) + 2))

= L(H(t− 2) (cos(t− 2) cos(2)− sin(t− 2) sin(2)))

= cos(2)L(H(t− 2) cos(t− 2))− sin(2)L(H(t− 2) sin(t− 2))

=

(
s cos(2)

(s2 + 1)
− sin(2)

(s2 + 1)

)
e−2s.

4Oliver Heaviside 1850-1925.
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2.7 The square wave function

The square wave function, for some a > 0, is defined as

f(t) =

{
1, for 2na ≤ t < (2n + 1)a, n ∈ N;

−1, for (2n + 1)a ≤ t < (2n + 2)a, n ∈ N.

0 2
t

It follows that f(t) = H(t) + 2
∞∑

n=1

(−1)nH(t− na) and consequently

L(f(t)) =
1

s
(1 + 2

∞∑
n=1

(−1)ne−nas)

=
1

s

(
1− 2e−as

1 + e−as

)
=

1

s

(
1− e−as

1 + e−as

)

=
1

s
tanh

(as

2

)
.

2.8 Impulse function

Define a function fk(t) for some positive number k
as follows:

fk(t) =

{
1
k
, for 0 ≤ t ≤ k;

0, for t > k.
0

1

0.25 t

Note that the area under the graph of fk is 1. If we take the limit of fk as
k goes to zero, we end up with a function which is zero when t 6= 0 and has
infinite height at 0, but still with total area 1 under the graph, since it is the
limiting position of graphs with area 1. We denote this new function by δ(t)
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and call it the impulse function or Dirac5 delta function.

To find the Laplace transform of the impulse function we start with the
Laplace of fk:

L(fk(t)) =

∫ ∞

0

fk(t)e
−stdt

=

∫ k

0

1

k
e−stdt =

[
−e−st

sk

]k

0

= − 1

sk
(e−sk − 1) = 1− sk

2!
+

(sk)2

3!
+ · · · .

Taking the limit as k → 0 we find

L(δ(t)) = 1.

An impulse of size a is represented by aδ(t) and an impulse which is delayed
by time T is denoted by δ(t− T ). Recalling the shift property, i.e. L(H(t−
T )f(t−T )) = e−sT L(f(t)), we can immediately write the Laplace of a delayed
impulse function of a certain size:

L(aδ(t− T )) = aL(H(t− T )δ(t− T )) = ae−sT .

Example:-2.7 Solve the initial value problem

x′′(t) + 3x′(t) + 2x(t) = 5δ(t− 2)

where x(0) = 4 and x′(0) = 0.

Solution: Transforming by Laplace we get
(s2 + 3s + 2)X(s)− 4s− 12 = 5e−2s. Solving for X(s) we find

X(s) =
5e−2s + 4s + 12

(s + 1)(s + 2)
.

Here we observe that

1

(s + 1)(s + 2)
=

1

s + 1
− 1

s + 2
,

s

(s + 1)(s + 2)
=

−1

s + 1
+

2

s + 2

5Paul Adrien Maurice Dirac 1902-1984.
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and recall the formulas

L(e−at) =
1

s + a
, and

L(H(t− k)f(t− k)) = e−ksL(f(t)).

Applying inverse Laplace transformation with these formulas in mind we get

x(t) = 5(e−(t−2) − e−2(t−2))H(t− 2) + 4(2e−2t − e−t) + 12(e−t − e−2t)

= 5(e−(t−2) − e−2(t−2))H(t− 2)− 4e−2t + 8e−t.

2.9 Unsorted solved problems

Problem:-1 Find L(g(t)), where

g(t) =

{
0 for 0 < t < 1

3t for 1 ≤ t
0

5

1.5
t

Solution: First recall that L(H(t− a)f(t− a)) = e−asF (s). We therefore
write 3t in shifted form: 3t = 3(t−1)+3. Let f(t) = 3t+3. Then f(t−1) = 3t
and H(t− 1)f(t− 1) = g(t), for t > 0. Hence

L(g(t)) = L(H(t− 1)f(t− 1)) = e−sL(f(t))

= e−sL(3t + 3)

= e−s

(
3

s2
+

3

s

)
.

Problem:-2 Find L(g(t)), where

g(t) =

{
0 for 0 < t < π

cos t for π ≤ t

0 3.5
t
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Solution: Observe that cos t = − cos(t − π). Setting f(t) = − cos t, we
note that g(t) = H(t− π)f(t− π). So

L(g(t)) = L(H(t− π)f(t− π)

= e−πsL(f(t))

= e−πs −s

s2 + 1
.

Problem:-3 Find the inverse Laplace transform of F (s) =
1

s3 − s2 + s− 1
.

Solution:

F (s) =
1

(s− 1)(s2 + 1)

=
1

2

(
1

s− 1
− s

s2 + 1
− 1

s2 + 1

)
.

Hence

L−1(F (s)) =
1

2

(
L−1(

1

s− 1
)− L−1(

s

s2 + 1
)− L−1(

1

s2 + 1
)

)

=
1

2

(
et − cos t− sin t

)
.

Problem:-4 Find the inverse Laplace transform of F (s) =
2

s
+

e−3s

s2
.

Solution:

L−1(F (s)) = L−1(
2

s
) + L−1(

e−3s

s2
)

= 2 + H(t− 3)(t− 3).

Problem:-5 Solve f ′′(t) + f(t) = t, where f(0) = 1, f ′(0) = −2.
Solution:

L(f ′′(t)) + L(f(t)) = L(t)
(
s2F (s)− sf(0)− f ′(0)

)
+ F (s) =

1

s2
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s2F (s)− s + 2 + F (s) =
1

s2
.

Solving for F (s);

F (s) =
1

s2
+

s

s2 + 1
− 3

s2 + 1
,

and applying inverse Laplace transform

L−1

(
1

s2
+

s

s2 + 1
− 3

s2 + 1

)
= t + cos t− 3 sin t = f(t).

Problem:-6 Solve the initial value problem y′′(t) + y(t) = f(t), y(0) =
y′(0) = 0, where f(t) = n + 1 for nπ ≤ t < (n + 1)π, n ∈ N, i.e.
f(t) =

∑∞
k=0 H(t− kπ).

Solution: We plan to take the Laplace transform of both sides of the
differential equation. For this observe that

L(y′′(t)) = s2Y (s)− sy(0)− y′(0) = s2Y (s)

L(y(t)) = Y (s)

L(f(t)) = L

( ∞∑

k=0

H(t− kπ)

)

=
∞∑

k=0

L(H(t− kπ)) =
∞∑

k=0

e−kπs

s
.

Putting these together, the differential equation becomes

s2Y (s) + Y (s) =
1

s

∞∑

k=0

e−kπs

and solving for Y (s)

Y (s) =

(
1

s(s2 + 1)

) ∞∑

k=0

e−kπs

=
1

s

∞∑

k=0

e−kπs − s

s2 + 1

∞∑

k=0

e−kπs.

Before applying the inverse Laplace transform to both sides recall that
L(H(t− a) cos(t− a)) = ( s

s2+1
)e−as.
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Define a new function

g(t) =
∞∑

k=0

H(t− kπ) cos(t− kπ).

We can finally apply the inverse Laplace transform to Y (s) to find

L−1(Y (s)) = L−1(
1

s

∞∑

k=0

e−kπs)− L−1(
s

s2 + 1

∞∑

k=0

e−kπs)

y(t) = f(t)− g(t).

Problem:-7 Solve the initial value problem y′′(t)+y(t) = 3 sin 2t, t ∈ [0,∞],
y(0) = 1, y′(0) = −2.

Solution: Letting Y (s) = L(y(t)), note that

L(y′′(t)) = s2Y (s)− sy(0)− y′(0)

= s2Y (s)− s + 2,

L(sin 2t) =
2

s2 + 4
.

Taking the inverse Laplace of both sides of the differential equation we get

s2Y (s)− s + 2 + Y (s) =
6

s2 + 4
.

Solving for Y (s) we get

Y (s) =
s

s2 + 1
− 2

s2 + 4
.

Taking the inverse Laplace transform gives

y(t) = cos t− sin 2t.
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Problem:-8 Define a function f(t) as

f(t) =





0 if t < 1
1 if 1 ≤ t < 2
2 if 2 ≤ t < 3
1 if 3 ≤ t < 4
0 if 4 ≤ t

0

2

5t

Note that f(t) = H(t− 1) + H(t− 2)−H(t− 3)−H(t− 4).
Solve the initial value problem y′′ − 3y′ + 2y = f(t), y(0) = y′(0) = 0.

Solution: Taking the Laplace transform of both sides gives

s2Y − 3sY + 2Y =
1

s
(e−s + e−2s − e−3s − e−4s).

Set A = (e−s + e−2s − e−3s − e−4s). Then solving for Y gives

Y =
A

s(s− 1)(s− 2)

=
1

2

A

s
− A

s− 1
+

1

2

A

s− 2
.

Recall that

L(H(t− a)eb(t−a)) =
eas

s− b
.

Taking the inverse Laplace transform of Y gives

y(t) =
2∑

k=1

(
1

2
− et−k +

1

2
e2(t−k)

)
H(t− k)

−
4∑

k=3

(
1

2
− et−k +

1

2
e2(t−k)

)
H(t− k)



MATH 206 Complex Calculus and Transform Techniques [11 April 2003] 16

Problem:-9 Find the solution of the system

dx

dt
− 6x + 3y = 8et

dy

dt
− 2x− y = 4et

with initial conditions x(0) = −1, y(0) = 0.

Solution: Taking the Laplace transform of the system and simplifying we
find

(s− 6)X + 3Y =
−s + 9

s− 1

−2X + (s− 1)Y =
4

s− 1

Solving for X and Y we find

X =
−s + 7

(s− 1)(s− 4)
=

−2

s− 1
+

1

s− 4

Y =
2

(s− 1)(s− 4)
=
−2/3

s− 1
+

2/3

s− 4
.

Applying inverse Laplace transform to these equations gives

x(t) = −2et + e4t

y(t) = −2

3
et +

2

3
e4t.
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Problem:-10 Find that solution of
ux(x, t) = 2ut(x, t) + u(x, t), u(x, 0) = 6e−3x, which is bounded for x > 0,
t > 0.
Solution: First note that

L(ux(x, t)) =

∫ ∞

0

e−st ∂u(x, t)

∂x
dt

=
d

dx

∫ ∞

0

e−stu(x, t)dt

=
d

dx
U(x, s).

It follows from general properties of Laplace transform that

L(ut(x, t)) = sU(x, s)− u(x, 0).

Putting these together, the given PDE transforms to

d

dx
U − (2s + 1)U = −12e−3x.

Multiplying both sides by the integration factor e−(2s+1)x gives

d

dx
(Ue−(2s+1)x) = −12e−(2s+4)x.

Integrating this gives

Ue−(2s+1)x =
6

s + 2
e−(2s+4)x + c,

or

U =
6

s + 2
e−3x + ce(2s+1)x.

Since u(x, t) must stay bounded as x → ∞, likewise U(x, s) must stay
bounded when x →∞. So we must choose c = 0, and then we have

U(x, s) =
6

s + 2
e−3x,

and hence

u(x, t) = 6e−2t−3x.
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2.10 Unsorted Exercises

These exercises are taken from [5, 7, 8].

Exercise:-1 Find L(5t− 2).

Ans:
5

s2
− 2

s
.

Exercise:-2 Find L(t3 + 8e−t + 1).

Ans:
6

s4
+

8

s + 1
+

1

s
.

Exercise:-3 Find L(a sin(at) + b sin(bt)).

Ans:
a2

s2 + a2
+

b2

s2 + b2
.

Exercise:-4 Find L(cos(at− α)).

Ans:
s cos α + a sin α

s2 + a2
.

Exercise:-5 Find L−1(
1

s4
).

Ans: t3/6.

Exercise:-6 Find L−1(
s + 1

s3
).

Ans: t + t2/2.

Exercise:-7 Find L−1(
2s− 5

s2 + 9
).

Ans: 2 cos(3t)− (5/3) sin(3t).

Exercise:-8 Find L−1(
7!

(s− 3)8
).

Ans: t7e3t.

Exercise:-9 Solve y′′ + 5y′ + 6y = 3, with y(0) = 2, y′(0) = 0.
Ans: y = (1/2) + (9/2)e−2t − 3e−3t.

Exercise:-10 Solve y′′ + 2y′ + y = sin t, with y(0) = 3, y′(0) = 1.
Ans: y = (9/2)te−t + (7/2)e−t − (1/2) cos t.



MATH 206 Complex Calculus and Transform Techniques [11 April 2003] 19

Exercise:-11 ([5, p50]) Solve the differential equation
d2x

dt2
+ 3

dx

dt
+ 2x = 5δ(t− 2), with x(0) = 4, x′(0) = 0.

Ans: 5(e−(t−2) − e−2(t−2))H(t− 2) + 8e−t − 4e−2t.

Exercise:-12 [7, p456] Solve the following linear system using Laplace
transform technique:

dx

dt
+ y = 3e2t

dy

dt
+ x = 0

x(0) = 2 y(0) = 0.

Ans: x = −et

2
+

e−t

2
+ 2e2t, y =

et

2
+

e−t

2
− e2t.

Exercise:-13 [7, p457] Solve the following linear system using Laplace
transform technique:

2
dx

dt
+

dy

dt
− x− y = e−t

dx

dt
+

dy

dt
+ 2x + y = et

x(0) = 2 y(0) = 1.

Ans: x = 8 sin t + 2 cos t, y = −13 sin t + cos t +
et

2
− e−t

2
.
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Exercise:-14 [7, p457] Solve the following linear system using Laplace
transform technique:

d2x

dt2
− 3

dx

dt
+

dy

dt
+ 2x− y = 0

dx

dt
+

dy

dt
− 2x + y = 0

x(0) = 0 x′(0) = 0 y(0) = −1.

Ans: x = −1 + 2et − e2t, y = −2 + et.

Exercise:-15 [8, p484] Solve the following differential equation using
Laplace transform technique:

f ′′(t)− f ′(t)− 2f(t) = e−t sin 2t, with f(0) = 0 and f ′(0) = 2.

Ans: f(t) =
28

39
e2t − 5

6
e−t − 1

13
e−t sin 2t +

3

26
e−t cos 2t.



MATH 206 Complex Calculus and Transform Techniques [11 April 2003] 21

3 The z-transform

Suppose f(t) is a continuous function and we sample this function at time
intervals of T , thus obtaining the data

f(0), f(T ), f(2T ), . . . , f(nT ), . . .

Recall that the impulse function at t = T is denoted by δ(t−T ). If we denote
by f ∗(t) the sampled function we can write

f ∗(t) = f(0)δ(t) + f(T )δ(t− T ) + f(2T )δ(t− 2T ) + · · ·

=
∞∑

n=0

f(nT )δ(t− nT )

The Laplace transform of this function then becomes

F ∗(s) = L(f ∗(t))

=
∞∑

n=0

f(nT )L(δ(t− nT ))

=
∞∑

n=0

f(nT )e−nTs

If we now set

z = esT or equivalently s =
1

T
log(z)

then we can define

F (z) =
∞∑

n=0

f(nT )z−n

This function F (z) is called the z-transform of the discrete time signal
function f(nT ),

F (z) = Z(f(t)).

In other words

Z(f(t)) = F (z)

= F ∗(s) = F ∗(
1

T
log(z))

=

[
L

( ∞∑
n=0

f(nT )(δ(n− nT ))

)]

s= 1
T

log(z)

.

Sometimes, as a suggestive notation, we write Z(f(nT )) instead of Z(f(t)).
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Example:-3.8 Find Z(H(nT )). Here we are sampling the function f(t) =
H(t), the unit step function, or the Heaviside function, and obtaining the
sample f(n) = 1 for all n ≥ 0.

Solution:

F (z) =
∞∑

n=0

1 z−n = 1 + z−1 + z−2 + · · ·

=
1

1− z−1
=

z

z − 1
.

Hence we find that

Z(H(nT )) =
z

z − 1
for |z| > 1.

Example:-3.9 Find the z-transform of the sampled function f(nT ) for f(t) =
t, (the ramp function).

Solution: We find that f(nT ) = nT . Hence

F (z) = Tz−1 + 2Tz−2 + 3Tz−3 + · · ·
=

T

z(1− z−1)2

=
Tz

(z − 1)2
.

Hence

Z(nT ) =
Tz

(z − 1)2
, for |z| > 1.

3.1 Elementary properties of z-transform

In this section we list some elementary properties of z-transform which follow
from the basic definitions. Here α, β ∈ C and n,m ∈ N.
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• Z(αf1(n)± βf2(n)) = αZ(f1(n))± βZ(f2(n)).

• Z(f(n−m)H(n−m)) = z−mZ(f(n)).

• Z(f(n + m)) = zm
(
Z(f(n))−∑m−1

k=0 f(k)zm−k
)
. In particular

Z(f(n + 1)) = zF (z)− zf(0),
Z(f(n + 2)) = z2F (z)− z2f(0)− zf(1), and
Z(f(n + 3)) = z3F (z)− z3f(0)− z2f(1)− zf(2).

• limt→0 f ∗(t) = limz→∞ F (z).

• limt→∞ f ∗(t) = limz→1
z−1

z
F (z).

• If f(n) = f(n−N), i.e. the sampled data is periodic with period N , then

Z(f(n)) =

∑N−1
k=0 f(k)z−k

1− z−N
.

3.2 A table of z-transforms

In the following list we describe F (z) =
∑∞

n=0 f(n)z−n, where f(n) is the
given function. Here again α ∈ C and n,m ∈ N.

• If f(m) = α and f(n) = 0 for n 6= m, then F (z) = αz−m.

• Z(1) =
z

z − 1
.

• Z(n) =
z

(z − 1)2
.
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• Z(n2) =
z(z + 1)

(z − 1)3
.

• Z(eαn) =
z

z − eα
.

• Z(neαn) =
zeα

(z − eα)2
.

• Z(sin αn) =
z sin α

z2 + 1− 2z cos α
.

• Z(cos αn) =
z(z − cos α)

z2 + 1− 2z cos α
.

• Z(αn) =
z

z − α
.

• Z(nαn) =
αz

(z − α)2
.

• Z(
αn

n!
) = eα/z.

• Z(αnf(n)) = F (z/α).

• Z(
n∑

k=0

f(k)) =
zF (z)

z − 1
.

• Z(
n∑

k=0

f1(k)f2(n− k)) = F1(z)F2(z).

3.3 The inverse z-transform

The z-transform of a given sequence is unique. To find the function f(n)
when F (z) is given we can employ one of the following three methods:

Power series method
Using the description for F (z) we try to write it in the form

F (z) =
∞∑

n=0

anz−n.

Then
f(n) = an.

It is in general difficult to find a closed formula for the Laurent series expan-
sion of F (z), but when it is possible to do so this method works well.
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Example:-3.10 If F (z) = z/(z − α), find f(n).

Solution:

F (z) =
z

z − α
=

1

1− α/z

= 1 +
α

z
+

α2

z2
+

α3

z3
+ · · ·

=
∞∑

n=0

αnz−n,

and hence f(n) = αn.

Partial fractions method
This method works when F (z) is a rational function of z. You convert F (z)
to a partial fraction form and then recognize the parts from a z-transform
table.

Observe that most forms of rational F (z) has the same degree in the numer-
ator as the denominator. In such cases you should start with F (z)/z, obtain
its partial fraction form, and multiply both sides by z to obtain the required
form for F (z).

Example:-3.11 Find f(n) when F (z) =
z2

(z + 1)(z − 2)
.

Solution:
F (z)

z
=

z

(z + 1)(z − 2)

=
1

3

1

z + 1
+

2

3

1

z − 2
.

F (z) =
1

3

z

z + 1
+

2

3

z

z − 2

=
1

3
Z((−1)n) +

2

3
Z(2n)

= Z(
(−1)n + 2n+1

3
), and

f(n) =
(−1)n + 2n+1

3
.

The residue method
This method is summarized in your text book, [2, Exercise 9, page 157]. As
a result it can be shown that if F (z) is the z-transform of f(n), then
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f(n) =
1

2πi

∫

C

zn−1F (z)dz

where C is a closed contour including the disk |z| ≤ R in its interior, where
|z| > R is the region of convergence, or the region of analyticity, for the
function F (z). This integral is then evaluated using residue theory. i.e.

f(n) =
∑

Res(zn−1F (z)).

Example:-3.12 Find f(n) if its z-transform is F (z) = 4z/(3z2 − 2z − 1).

Solution: Res
z=1

(zn−1F (z)) = 1, Res
z=-1/3

(zn−1F (z)) = (−1/3)n−1. Sum of the

residues is 1 + (−1/3)n−1, which is the expression for f(n).

3.4 Solving difference equations

A difference equations is an equation of the form

a0f(n) + a1f(n + 1) + · · ·+ akf(n + k) = g(n, k)

where the ai’s are constants, g(n, k) is a given function, and we try to find
f . These equations are also known as recurrence equations. Note that in the
above set up you must specify f(0), ..., f(k − 1) to find f .

To solve such an equation using z-transform, you take the z-transform of
both sides of the equation to obtain an algebraic equation in F (z). You solve
for F (z) from this equation and take the inverse z-transform to find f .

Example:-3.13 Find a closed form expression for the general term of the
Fibonacci sequence which is defined by F1 = F2 = 1 and Fn + Fn+1 = Fn+2

for n ≥ 1.

Solution: We define f(n) = Fn+1 for n ≥ 0. Then recurrence equation
becomes f(n) + f(n + 1) = f(n + 2) with f(0) = f(1) = 1. Using the list of
elementary z-transforms we find that transforming both sides of this equation
gives
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F (z) + (zF (z)− z) = z2F (z)− z2 − z.

Solving this for F (z) we find

F (z) =
z2

z2 − z − 1
=

(
φ

φ + 1/φ

)
z

z − φ
+

(
1/φ

φ + 1/φ

)
z

z + 1/φ

where φ =
1 +

√
5

2
is the Golden Ratio. Applying inverse z-transform to

F (z) we find

f(n) =

(
φ

φ + 1/φ

)
(φ)n +

(
1/φ

φ + 1/φ

)
(−1

φ
)n

=
1√
5

(
φn+1 − (−1

φ
)n+1

)
.

Since f(n) = Fn+1, we obtain the following closed form formula for the
general term of the Fibonacci sequence:

Fn =
1√
5

(
φn −

(
−1

φ

)n)
, for n > 2.
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Example:-3.14 [5, Ex-5 p94] Solve the following difference equation:
f(n + 2)− 4f(n + 1) + 4f(n) = 2n, with f(0) = 1, f(1) = −1.

Solution: Apply z-transform to both sides of this equation. Note first that:

Z(f(n)) = F (z),

Z(f(n + 1)) = zF (z)− zf(0) = zF (z)− z,

Z(f(n + 2)) = z2F (z)− z2f(0)− zf(1) = z2F (z)− z2 + z,

Z(2n) =
z

z − 2
.

The difference equation then becomes

(z − 2)2F (z)− (z2 − 5z) =
z

z − 2

and solving for F (z) we find

F (z) =
z3 − 7z2 + 11z

(z − 2)3
.

The residue method to find the inverse z-transform of this function says that

f(n) = Res
z=2

zn−1F (z).

This residue is equal to
φ′′(2)

2
where φ(z) = zn−1(z3 − 7z2 + 11z).

Taking successive derivatives gives

φ(z) = zn+2 − 7zn+1 + 11zn,

φ′(z) = (n + 2)zn+1 − 7(n + 1)zn + 11nzn−1,

φ′′(z) = (n + 2)(n + 1)zn − 7(n + 1)nzn−1 + 11n(n− 1)zn−2,

= zn−2
(
(n + 2)(n + 1)z2 − 7(n + 1)nz + 11n(n− 1)

)

and putting in z = 2 gives

φ′′(2) = 2n−2(n2 − 13n + 8). Hence

f(n) =
φ′′(2)

2
= 2n−3(n2 − 13n + 8).
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Example:-3.15 [4, Ex-5 p371] Solve the following difference equation:
in+2 − in+1 + in = 0, where i1 = 3i0 − V/R and i0, V and R are constants.

Solution: Let I(z) denote the z-transform of in.

Z(in) = I(z),

Z(in+1) = zI(z)− zi0,

Z(in+2) = z2I(z)− z2i0 − zi1,

= z2I(z)− z2i0 − z(i0 − V/R).

The difference equation becomes

z2I(z)− z2i0 − z(3i0 − V/R)− 4zI(z) + 4zi0 + I(z) = 0

from which we find

I(z) =
i0z

2 − (
i0 + V

R

)
z

z2 − 4z + 1
.

The residue method to invert this is easier than the other methods. The
function I(z) has two simple poles at

z1 = 2−
√

3 and

z2 = 2 +
√

3.

An easy calculation gives

Res
z = z1

zn−1I(z) =
i0 + z1 −

(
i0 + V

R

)

−2
√

3
zn
1 , and

Res
z = z2

zn−1I(z) =
i0 + z2 −

(
i0 + V

R

)

2
√

3
zn
2 ,

Hence we get

in = Res
z = z1

zn−1I(z) + Res
z = z2

zn−1I(z), n ≥ 1

=
i0 + z1 −

(
i0 + V

R

)

−2
√

3
zn
1 +

i0 + z2 −
(
i0 + V

R

)

2
√

3
zn
2 ,

=
i0

2
√

3

(
(zn+1

2 − zn+1
1 ) + (zn

1 − zn
2 )

)
+

V

R

1

2
√

3
(zn

1 − zn
2 )

= i0



‖n/2‖∑

k=0

(
n + 1
2k + 1

)
3k2n−2k −

‖(n−1)/2‖∑

k=0

(
n

2k + 1

)
3k2n−2k−1




−V

R



‖(n−1)/2‖∑

k=0

(
n

2k + 1

)
3k2n−2k−1


 ,

where ‖m‖ stands for the greatest integer which is less than or equal to m.
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The first few values of in are as follows:

i1 = 3 i0 − V
R
, i2 = 11 i0 − 4 V

R
,

i3 = 41 i0 − 15 V
R
, i4 = 153 i0 − 56 V

R
,

i5 = 571 i0 − 209 V
R
, i6 = 2131 i0 − 780 V

R
,

i10 = 413403 i0 − 151316 V
R
, i20 = 216695104121 i0 − 79315912984 V

R

Example:-3.16 Suppose you deposit m millions of TL to a bank savings
account each month. The bank gives you 100c per cent interest per month,
where 0 < c < 1. Find how much money you will have at the end of the n-th
month.

Solution: Let f(n) denote the amount of money you will have at the end of
the n-th month. You start with f(0) = m, which means that you first deposit
m millions of TL, so have m millions TL to begin with. At the end of the
first month you earn (1+c)m millions of TL and deposit m millions TL more
yourself, so at the end of the first month you have f(1) = m (1 + (1 + c))
millions TL at the bank.

Arguing similarly we see that the recursive relation that we have to solve is

f(n + 1) = (1 + c)f(n) + m, with f(0) = m.

Since this is an easy problem we will demonstrate the implementation of four
different methods in solving it.
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Induction Method: Use induction to show that

f(n) =
(
(1 + c)n+1 − 1

) m

c
, for n = 0, 1, 2, ...

The next three methods involve the z-transform technique. Take the z-
transform of the given recursion equation, solve for F (z) and find the inverse
z-transform of the solution. As usual we have

Z(f(n)) = F (z),

Z(f(n + 1)) = zF (z)− zf(0)

= zF (z)− zm,

Z(m) =
mz

z − 1
,

and the recursion equation becomes

zF (z)− zm = (1 + c)F (z) +
mz

z − 1
.

Solving this for F (z) gives

F (z) =
z2

(z − 1)(z − (1 + c))
m.

Now we will demonstrate the use of the three methods of inversion on this
function.

Power Series Method:

F (z) =
z2

(z − 1)(z − (1 + c))
m

=
1

(1− 1/z)(1− (1 + c)/z)
m

=

( ∞∑
n=0

1

zn

)( ∞∑
n=0

(1 + c)n

zn

)
m

=
∞∑

n=0

(
n∑

k=0

(1 + c)k

)
m

zn

=
∞∑

n=0

[(1 + c)n+1 − 1]m

c

1

zn
,

and hence the coefficient of 1/zn gives the required function f(n).
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Partial Fractions Method:

F (z) =

[
z

(z − 1)(z − (1 + c))

]
zm

=

[
−1

c

1

z − 1
+

1 + c

c

1

z − (1 + c))

]
zm

=

[
−1

c

z

z − 1
+

1 + c

c

z

z − (1 + c))

]
m

= −m

c
Z(1) +

(1 + c)m

c
Z((1 + c)n)

= Z(
[(1 + c)n+1 − 1]m

c
).

f(n) =
[(1 + c)n+1 − 1]m

c
.

Residue Method: We note that zn−1F (z) =
zn+1m

(z − 1)(z − (1 + c))
. Calcu-

lating its residues we find

Res
z = 1

(
zn−1F (z)

)
= −m

c
,

Res
z = 1 + c

(
zn−1F (z)

)
=

(1 + c)n+1m

c
.

Finally, adding up the residues we find the expected formula

f(n) =
[(1 + c)n+1 − 1]m

c
.

3.5 Unsorted exercises

These exercises are mostly taken from [4, 5, 8].
Determine the z-transform of the following samples:

Exercise:-1 cosh αn. Ans:
z2 − z cosh α

z2 − 2z cosh α + 1
.

Exercise:-2 sinh αn. Ans:
sinh α

z2 − 2z cosh α + 1
.
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Determine the inverse z-transform of the following functions:

Exercise:-3
z

(z − 3)2
. Ans: n(3n−1).

Exercise:-4
z

z2 + 1
. Ans: sin

nπ

2
.

Exercise:-5
4z

4z2 − 2z
√

3 + 1
. Ans:

(
1

2

)n−2

sin
nπ

6
.

Exercise:-6
2z3

(z − 2)3
. Ans: (n2 + 3n + 2)2n.

Exercise:-7 z
(
e1/z − 1

)
. Ans: 1/(n + 1)!.

Exercise:-8 sinh
2

z
. Ans: (1− (−1)n)

2n−1

n!
.

Solve the following difference equations:
Exercise:-9 f(n + 1) + 2f(n) = (−1)n, with f(0) = −2.

Ans: f(n) = (−1)n − 3(−2)n.
Exercise:-10 x(n + 2) + 5x(n + 1) + 6x(n) = 3, with x(0) = −2, x(1) = 1.

Ans: x(n) = (1/4)− 6(−2)n + (15/4)(−3)n.
Exercise:-11 2f(n + 3) − 3f(n + 2) + f(n) = 0, with f(0) = 0, f(1) = 1,
f(2) = −4. Ans: f(n) = −(8/3)(−1/2)n + (8/3)− 3n.
Exercise:-12 x(n + 2)− 2x(n + 1) + x(n) = 0, with x(0) = A, x(1) = B.

Ans: x(n) = A + (B − A)n
Exercise:-13 y(n + 2)−

√
3y(n + 1) + y(n) = 0, with y(0) = 1, y(1) =

√
3.

Ans: y(n) = cos(nπ/6) +
√

3 sin(nπ/6).
Exercise:-14 a(n + 2)− 5a(n + 1) + 6a(n) = 1, with a(0) = 2, a(1) = 3.

Ans: a(n) = (1− 3n + 2n+2)/2.
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