
SIMULTANEOUS LOCALIZATION AND MAPPING

FOR UNMANNED AERIAL VEHICLES

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and sciences

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Mehmet Kök

August 2008

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Billur Barshan(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Hitay Özbay

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Ruşen Öktem

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Sciences

ii

ABSTRACT

SIMULTANEOUS LOCALIZATION AND MAPPING

FOR UNMANNED AERIAL VEHICLES

Mehmet Kök

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Billur Barshan

August 2008

Most mobile robot applications require the robot to be able to localize itself in an

unknown environment without prior information so that the robot can navigate and

accomplish tasks. The robot must be able to build a map of the unknown environment

while simultaneously localizing itself in this environment. The Simultaneous Local-

ization and Mapping (SLAM) is the formulation of this problem which has drawn a

considerable amount of interest in robotics research for the past two decades. This

work focuses on the SLAM problem for single and multiple agents equipped with vi-

sion sensors. We develop a vision-based 2-D SLAM algorithm for single and multiple

Unmanned Aerial Vehicles (UAV) flying at constant altitude. Using the features of

images obtained from an on-board camera to identify different landmarks, we apply

different approaches based on the Extended Kalman Filter (EKF), the Information

Filter (IF) and the Particle Filter (PF) to the SLAM problem. We present some sim-

ulation results and provide a comparison between the different implementations. We

find Particle Filter implementations to perform better in estimations when compared

to EKF and IF, however EKF and IF present more consistent results.

Keywords: UAV, SLAM, Extended Kalman Filter, Information Filter, Particle Filter,

FastSLAM, SIFT, multi-agent systems.

iii

ÖZET

İNSANSIZ HAVA ARAÇLARI İÇİN EŞANLI

KONUMLANDIRMA VE HARİTALAMA

Mehmet Kök

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Billur Barshan

Ağustos 2008

Gezgin robot uygulamalarının çoğu robotun bilinmeyen bir çevrede önceden bilgi sahibi

olmadan kendini konumlandırarak gezinimi sağlamasını ve görevleri gerçekleştirmesini

gerektirmektedir. Robot, bilinmeyen ortamın haritasını çıkarıp bu haritada kendisini

konumlandırabilmelidir. Eşanlı Konumlandırma ve Haritalama (EKVH) olarak bi-

linen bu problem son yirmi yıl içerisinde robotbilim araştırmaları arasında oldukça

yoğun ilgi görmüştür. Bu çalışma, görü algılayıcıları ile donatılmış tek ve birden fazla

robot için EKVH problemi üzerinde durmaktadır. Sabit yükseklikte uçtuğu varsayılan

tek ve birden fazla İnsansız Hava Aracı (İHA) için görü-tabanlı bir Eşanlı Konum-

landırma ve Haritalama (EKVH) algoritması geliştirilmiştir. Farklı yer işaretleri elde

etmek için araç üzerindeki kameradan elde edilen görüntülerin öznitelikleri kullanılarak,

Genişletilmiş Kalman Süzgeci (GKS), Bilgi Süzgeci (BS) ve de Parçacık Süzgeci EKVH

problemine uygulanmıştır. Bazı benzetim sonuçları sunularak bu yöntemler arasında

bir karşılaştırma yapılmıştır. Parçacık Süzgecinin daha iyi kestirim başarımı olduğu

ama GKS ve BS’nin daha tutarlı sonuçlar verdiği gösterilmiştir.

Anahtar Kelimeler: İHA, EKVH, Genişletilmiş Kalman Süzgeci, Bilgi Süzgeci,

Parçacık Süzgeci, çok-etmenli sistemler.

iv

ACKNOWLEDGMENTS

I would like to thank Prof. Dr. Billur Barshan for her guidance, supervision,

endless dedication and especially her patience throughout my graduate studies

leading to this thesis.

I am grateful to Prof. Dr. Hitay Özbay and Assist. Prof. Dr. Uluç Saranlı

for their help and support with my research and their invaluable advices. I also

thank Assist. Prof. Dr. Ruşen Öktem for her revisions and suggestions for my

thesis.

My special thanks to Zeynep Yücel for her friendship, support and patience, I

am deeply indebted to her help. I will miss our time together where we discussed

unimportant matters concerning the meaning of life, universe and everything. I

also would like to thank all my friends especially Mehmet Rauf Çelik, Akın Avcı

and İmran Akça for their friendship and support, I could not have done without

them.

I would also like to thank my parents and also my brother for their endless

love, support and encouragement throughout my life.

I am also appreciative of the financial support I received through a fellowship

from TÜBİTAK, the Scientific and Technical Research Council of Turkey.

v

Contents

1 Introduction 1

1.1 Literature Review . 2

1.2 Organization . 6

2 System Description 7

2.1 The UAV . 7

2.2 Extracting Landmarks from Image Data 10

2.2.1 Scale-Invariant Feature Transform (SIFT) 11

2.2.2 Reducing SIFT results . 13

3 Extended Kalman Filter 15

3.1 Kalman Filter Primer . 15

3.2 Extended Kalman Filter and SLAM 17

3.2.1 State and Observation Models 17

3.2.2 EKF Prediction Step . 19

vi

3.2.3 EKF Update Step . 20

3.2.4 Landmark Augmentation 22

4 Extended Information Filter 24

4.1 The Information Filter . 24

4.2 Extended Information Filter . 27

4.3 Multi-UAV SLAM with EIF . 28

4.3.1 Distributing the Information Filter 28

4.3.2 Information Between Agents 30

5 Rao-Blackwellized Particle Filter: FastSlam 32

5.1 Particle Filtering . 32

5.2 Factoring the Posterior . 34

5.3 The FastSLAM Algorithm . 35

5.3.1 Prediction Step . 36

5.3.2 Update of Landmarks . 37

5.3.3 Calculating Importance Weights 38

5.3.4 Importance Resampling 39

5.3.5 Landmark Augmentation in FastSLAM 39

5.4 FastSLAM 1.0 and FastSLAM 2.0 40

5.5 Multi-UAV SLAM with PF . 41

vii

6 Results 42

7 Conclusions and Future Work 78

viii

List of Figures

2.1 Motion of a UAV [37]. 8

2.2 Virtual area covered by the UAV and zoomed part of the image is

the camera view. 8

2.3 Three degrees of freedom for the process model [37]. 9

2.4 SIFT features on a sample image represented with their scales,

orientations and locations [42]. 12

2.5 Location of all the features obtained with SIFT. 13

2.6 Result of the reduction of features for off-line processing. 14

3.1 UAV states and control input. 18

5.1 Particle filter localization experiment by Wolfram et al. [13]. . . . 33

6.1 EKF-SLAM: sample run for a linear path. Results are shown at

every 20th step, the figure on the right shows the UAV’s real path

and estimated path while the figure on the left shows the real and

estimated landmark positions. The units are in pixels. 47

ix

6.2 EKF-SLAM: error plots for the linear path. Parts (a) and (b)

give robot pose error in x and y coordinates in pixels, (c) gives

the position error as an absolute distance in pixels, (d) shows the

error in robot orientation in radians. Parts (e), (f) and (g) give

average landmark errors in x and y coordinates, and as absolute

distance in pixels respectively. 48

6.3 IF-SLAM: sample run for a linear path. Results are shown at

every 20th step, the figure on the right shows the UAV’s real path

and estimated path while the figure on the left shows the real and

estimated landmark positions. The units are in pixels. 49

6.4 IF-SLAM: error plots for the linear path. Parts (a) and (b) give

robot pose error in x and y coordinates in pixels, (c) gives the

position error as an absolute distance in pixels, (d) shows the

error in robot orientation in radians. Parts (e), (f) and (g) give

average landmark errors in x and y coordinates, and as absolute

distance in pixels respectively. 50

6.5 FastSLAM 1.0: sample run for a linear path. Results are shown at

every 20th step, the figure on the right shows the UAV’s real path

and estimated path while the figure on the left shows the real and

estimated landmark positions. The units are in pixels. 51

6.6 FastSLAM 1.0: error plots for the linear path. Parts (a) and (b)

give robot pose error in x and y coordinates in pixels, (c) gives

the position error as an absolute distance in pixels, (d) shows the

error in robot orientation in radians. Parts (e), (f) and (g) give

average landmark errors in x and y coordinates, and as absolute

distance in pixels respectively. 52

x

6.7 FastSLAM 2.0: sample run for a linear path. Results are shown at

every 20th step, the figure on the right shows the UAV’s real path

and estimated path while the figure on the left shows the real and

estimated landmark positions. The units are in pixels. 53

6.8 FastSLAM 2.0: error plots for the linear path. Parts (a) and (b)

give robot pose error in x and y coordinates in pixels, (c) gives

the position error as an absolute distance in pixels, (d) shows the

error in robot orientation in radians. Parts (e), (f) and (g) give

average landmark errors in x and y coordinates, and as absolute

distance in pixels respectively. 54

6.9 EKF-SLAM: sample run for a circular path. Results are shown at

every 20th step, the figure on the right shows the UAV’s real path

and estimated path while the figure on the left shows the real and

estimated landmark positions. The units are in pixels. 55

6.10 EKF-SLAM: error plots for circular path. Parts (a) and (b) give

robot pose error in x and y coordinates in pixels, (c) gives the

position error as an absolute distance in pixels, (d) shows the

error in robot orientation in radians. Parts (e), (f) and (g) give

average landmark errors in x and y coordinates, and as absolute

distance in pixels respectively. 56

6.11 IF-SLAM: sample run for a circular path. Results are shown at

every 20th step, the figure on the right shows the UAV’s real path

and estimated path while the figure on the left shows the real and

estimated landmark positions. The units are in pixels. 57

xi

6.12 IF-SLAM: error plots for circular path. Parts (a) and (b) give

robot pose error in x and y coordinates in pixels, (c) gives the

position error as an absolute distance in pixels, (d) shows the

error in robot orientation in radians. Parts (e), (f) and (g) give

average landmark errors in x and y coordinates, and as absolute

distance in pixels respectively. 58

6.13 FastSLAM 1.0: sample run for a circular path. Results are shown

at every 20th step, the figure on the right shows the UAV’s real

path and estimated path while the figure on the left shows the real

and estimated landmark positions. The units are in pixels. 59

6.14 FastSLAM 1.0: error plots for circular path. Parts (a) and (b)

give robot pose error in x and y coordinates in pixels, (c) gives

the position error as an absolute distance in pixels, (d) shows the

error in robot orientation in radians. Parts (e), (f) and (g) give

average landmark errors in x and y coordinates, and as absolute

distance in pixels respectively. 60

6.15 FastSLAM 2.0: sample run for a circular path. Results are shown

at every 20th step, the figure on the right shows the UAV’s real

path and estimated path while the figure on the left shows the real

and estimated landmark positions. The units are in pixels. 61

6.16 FastSLAM 2.0: error plots for circular path. Parts (a) and (b)

give robot pose error in x and y coordinates in pixels, (c) gives

the position error as an absolute distance in pixels, (d) shows the

error in robot orientation in radians. Parts (e), (f) and (g) give

average landmark errors in x and y coordinates, and as absolute

distance in pixels respectively. 62

xii

6.17 EKF-SLAM: sample run for an eight-shaped path. Results are

shown at every 20th step, the figure on the right shows the UAV’s

real path and estimated path while the figure on the left shows

the real and estimated landmark positions. The units are in pixels. 63

6.18 EKF-SLAM: error plots for the eight-shaped path. Parts (a) and

(b) give robot pose error in x and y coordinates in pixels, (c) gives

the position error as an absolute distance in pixels, (d) shows the

error in robot orientation in radians. Parts (e), (f) and (g) give

average landmark errors in x and y coordinates, and as absolute

distance in pixels respectively. 64

6.19 IF-SLAM: sample run for an eight-shaped path. Results are shown

at every 20th step, the figure on the right shows the UAV’s real

path and estimated path while the figure on the left shows the real

and estimated landmark positions. The units are in pixels. 65

6.20 IF-SLAM: error plots for the eight-shaped path. Parts (a) and (b)

give robot pose error in x and y coordinates in pixels, (c) gives

the position error as an absolute distance in pixels, (d) shows the

error in robot orientation in radians. Parts (e), (f) and (g) give

average landmark errors in x and y coordinates, and as absolute

distance in pixels respectively. 66

6.21 FastSLAM 1.0: sample run for an eight-shaped path. Results are

shown at every 20th step, the figure on the right shows the UAV’s

real path and estimated path while the figure on the left shows

the real and estimated landmark positions. The units are in pixels. 67

xiii

6.22 FastSLAM 1.0: error plots for the eight-shaped path. Parts (a)

and (b) give robot pose error in x and y coordinates in pixels,

(c) gives the position error as an absolute distance in pixels, (d)

shows the error in robot orientation in radians. Parts (e), (f) and

(g) give average landmark errors in x and y coordinates, and as

absolute distance in pixels respectively. 68

6.23 FastSLAM 2.0: sample run for an eight-shaped path. Results are

shown at every 20th step, the figure on the right shows the UAV’s

real path and estimated path while the figure on the left shows

the real and estimated landmark positions. The units are in pixels. 69

6.24 FastSLAM 2.0: Parts (a) and (b) give robot pose error in x and

y coordinates in pixels, (c) gives the position error as an absolute

distance in pixels, (d) shows the error in robot orientation in radi-

ans. Parts (e), (f) and (g) give average landmark errors in x and

y coordinates, and as absolute distance in pixels respectively. . . . 70

6.25 Comparison of error levels of the four SLAM algorithms EKF,

IF, FastSLAM 1.0 and 2.0 with different range noise levels with

bearing variance σ2
B fixed at 0.2◦2. Part (a) is the error in the

estimation of the UAV location, (b) shows the error in estimation

of UAV orientation and (c) shows the average landmark position

error. 71

6.26 Comparison of error levels of the four SLAM algorithms EKF,

IF, FastSLAM 1.0 and 2.0 with different bearing noise levels with

range variance σ2
R fixed at 0.5m2. Part (a) is the error in the

estimation of the UAV location, (b) shows the error in estimation

of UAV orientation and (c) shows the average landmark position

error. 72

xiv

6.27 Comparison of error levels of the FastSLAM 1.0 and 2.0 algorithms

with different number of particles. Part (a) is the error in the

estimation of the UAV location, (b) shows the error in estimation

of UAV orientation and (c) shows the average landmark position

error. 73

6.28 A sample run of multiple UAV SLAM with IF. Results are given

at every 10th step, just before and after the communication oc-

curs. In each part, the figure on the left shows the real and the

estimated paths of each UAV, while the figure on the right shows

the individual maps of the UAVs (continued). 74

6.28 (continued) A sample run of multiple UAV SLAM with IF. Results

are given at every 10th step, just before and after the communica-

tion occurs. In each part, the figure on the left shows the real and

the estimated paths of each UAV, while the figure on the right

shows the individual maps of the UAVs. 75

6.29 A sample run of multiple UAV SLAM with PF based FastSLAM.

Results are given at every 10th step, just before and after the

communication occurs. In each part, the figure on the left shows

the real and the estimated paths of each UAV, while the figure on

the right shows the individual maps of the UAVs (continued). . . 76

6.29 (continued) A sample run of multiple UAV SLAM with PF based

FastSLAM. Results are given at every 10th step, just before and

after the communication occurs. In each part, the figure on the

left shows the real and the estimated paths of each UAV, while

the figure on the right shows the individual maps of the UAVs. . . 77

xv

List of Tables

5.1 FastSLAM steps summarized. 36

6.1 Average run times of each filter for the three different paths. . . . 45

xvi

Dedicated to my mom, dad and my dear brother.

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAV) have become an important and interesting

research area with an increasing number of military and civilian applications.

With the evolving technology and increasing availability of low-cost components,

these vehicles have been transforming from simple radio-controlled aircraft to

partially or fully autonomous agents accompanied with new challenges.

UAVs are used in exploration, reconnaissance, surveillance, target identifi-

cation and tracking missions in applications such as information retrieval, envi-

ronment monitoring, search and rescue as well as research purposes [38]. The

basic requirement in full autonomy in these types of applications is autonomous

motion planning and control. The UAV should be able to map the surrounding

environment and localize itself in this environment as well, using its on-board

sensory equipment. This is the so-called Simultaneous Localization and Mapping

(SLAM) problem which has been an important topic in robotics research for the

past two decades [22].

In this work, we propose a vision-based SLAM algorithm to realize fully

autonomous motion planning and control for an UAV. Using bird’s-eye view

images of the terrain, obtained via a camera on the UAV, we aim to identify

1

some landmarks, considered as distinctive features that can be taken as reference

points in an area. These landmarks are later on used in SLAM to build up a

map of the unknown region while simultaneously keeping track of the correct

position of the aircraft with this generated map, which is essential for efficient

motion planning and control. We implement and compare the results of three

filters: the Extended Kalman Filter (EKF), the Information Filter (IF) and the

Particle Filter (PF).

1.1 Literature Review

The probabilistic SLAM research started with the recognition of the importance

of simultaneously estimating robot location and pose while at the same time

maintaining a map as a fundamental problem in autonomous robotics. Earlier

work by Smith et al. [59, 60] and Durrant-Whyte [21] provided a statistical basis

for describing and representing geometric relationships and uncertainty between

features or landmarks in robotics. Moutarlier and Chatila [50] presented exper-

iments with a real robot as well as introducing two different ways of presenting

relationships between landmarks, relation representation and location represen-

tation.

A key paper by Smith et al. [61] showed a mobile robot, navigating in an un-

known environment while taking observations. These observations demonstrated

correlations in the estimations of landmark positions because of the common er-

ror in the estimated vehicle location and pose. In [61], a solution based on EKF

is presented. These ideas and the solution served as a foundation for most of

the current SLAM solutions. Using its on-board sensors, the robot takes obser-

vations and identifies landmarks which are then incorporated into the map. A

state vector composed of robot pose and landmark locations is maintained using

EKF through the recursive structure of the algorithm by updating the states at

2

discrete movement steps. The importance of the correlations in the estimation

and the convergence of the estimation problem is first demonstrated by Csorba

with initial results [14, 15] by considering the SLAM problem as a whole. In [18],

the proof of convergence of EKF is presented for the linear SLAM problem.

Along with EKF, there are a number of different solutions proposed for SLAM

in different probabilistic frameworks. Among these, the Kalman Filter (KF) and

its variants are still probably the most popular [22]. However, there are some

inherent problems in the EKF approach, some of which are addressed in [18]

as well. One problem is the computational complexity of the algorithm which

poses a significant problem for large scale areas as the map size increases. There

have been a number of different approaches addressing this issue. Among these

are partitioned updates [32, 39, 64, 74], global [31, 40] and relative [2, 25, 74]

submaps, sparsification using IF [26, 27, 68, 69, 72, 73] and mapping relative

quantities [14, 34, 45, 56, 73]. Another problem is the inconsistency introduced

due to the linearization process used in the EKF. One solution proposed is un-

scented filtering [35] where the nonlinear function is approximated as a proba-

bility distribution using chosen sigma-points instead of estimating the nonlinear

function or transformation by taking the first few terms of the Taylor series

expansion. In [5], the inconsistency problem of the EKF-SLAM algorithm is ad-

dressed and the ineffectiveness of the previously proposed solutions is mentioned.

However they point out that consistency is possible if a small heading variance

can be maintained.

Particle Filtering (PF), also known as sequential Monte Carlo Methods, is an-

other popular Bayesian estimation technique, based on estimating a probability

distribution using a set of random samples called particles which are propagated

over time with importance sampling and resampling mechanisms. Using parti-

cle filters removes the necessity of Gaussian noise models, enabling the use of

any probability distribution and makes it possible to directly represent nonlinear

3

models. Although PF, in its simple form, is not suitable for the SLAM problem

due to the high dimensionality of the state-space, in the FastSLAM [70] algo-

rithm, through an approach called Rao-Blackwellization [51] that marginalizes

parts of the state space, the algorithm becomes feasible. PF suffers from incon-

sistency in the long run, because of inherent problems such as particle depletion.

However, it produces consistent estimation in the short-term when used with suf-

ficient number of particles, which makes it an attractive estimator for short-term

practical uses. Expectation-Maximization (EM) [10, 65, 66] can be considered

as another popular approach to SLAM.

These approaches are mostly used in mobile ground vehicles equipped with

different types of range sensors such as laser [70, 73], sonar [10], radar [18] by com-

bining the range and bearing data with the information from odometry, GPS or

inertial sensors. Vision-based SLAM algorithms have been becoming more popu-

lar as the cost- and energy-efficient cameras which also supply richer information

become widely available. In vision-based approaches, techniques such as Harris

corner detector [33] or Scale Invariant Feature Transform (SIFT) [43] are used to

obtain a number of distinctive points on the images obtained by a camera, which

later on are used in a SLAM algorithm based on KF or PF approaches [16, 24, 58].

SLAM problem in aerial vehicles is a new topic introduced with the recent

popularity of UAV research and presents further challenges because of the mo-

tion dynamics and the effect of external factors such as wind, rain, air pockets,

drift, etc. There are very few published works on this topic. Kim and Sukkarieh

performed an EKF-based SLAM implementation on an UAV using an on-board

camera [38]. However, in this work, white markers are manually placed on the

terrain as artificial landmarks and the known size of these landmarks is used

in order to estimate range along with the bearing to landmarks obtained from

the images. This is supplemented by information provided by an on-board INS.

4

Throughout the ANSER project, other UAV SLAM experiments have been car-

ried out as well, with emphasis on IF [63, 69]. Angeli et al. proposed a purely

vision-based SLAM algorithm for Micro Air Vehicles [1]. In this work, images

from the camera are used in visual odometry, along with identifying the land-

marks defined as points obtained using Kanade-Lucas-Tomasi (KLT) tracking

used with SIFT descriptors.

Multi-agent SLAM problem is a rather less-well-studied problem in the liter-

ature. The idea is to be able to complete the exploration and mapping task much

faster using multiple robots or agents, and also to increase the robustness of the

overall system to failures that can occur in a single robot. For this purpose,

the well-known SLAM approaches should be extended to multiple robot cases

and the incorporation of multiple estimations should be solved. A decentralized

version of KF is used for data fusion in multiple sensor processing nodes [9, 57].

On the other hand, IF provides a better decentralized version of the Kalman

Filter since IF has less computational complexity in the fusion of different esti-

mations obtained by different sources. Information Filter is a form of Kalman

Filter which uses the information matrix, the inverse of the covariance matrix

in KF. IF has been used in multi-sensor data fusion systems with its suitability

to decentralized applications [30, 44, 71]. IF is used in SLAM studies with the

idea of exploiting the sparseness in the information matrix to decrease the com-

putational complexity inherent in the SLAM problem. For this purpose, Sparse

Extended Information Filter (SEIF) is introduced in [69] where a sparse informa-

tion matrix is maintained using a ‘sparsifying’ process to achieve computational

efficiency. The approach is applied to a real moving vehicle and also multi-vehicle

(multi-UAV) simulations are presented. With the existence of multiple agents in

a limited communication environment, the information passed along the nodes

also becomes an important issue [30].

5

1.2 Organization

In this thesis, we propose a novel vision-based SLAM solution for an UAV, using

the control inputs to the vehicle and natural visual features of terrain images, i.e.

without artificial landmarks, which provides fully autonomous behavior. The or-

ganization of this thesis is as follows: Chapter 2 gives a description of our system

and we describe how we identify landmarks from images. Chapters 3, 4, 5 review

the EKF, Extended Information Filter (EIF) and PF respectively. Simulation

results are given in Chapter 6. We conclude this thesis with a brief summary of

the work presented and provide some future research directions.

6

Chapter 2

System Description

2.1 The UAV

In this work, we have assumed an UAV equipped with a downward facing cam-

era flying at a constant altitude over a terrain. The bird’s-eye view images

that are supposedly taken by the downward facing camera mounted on the UAV

are represented by 80×80-pixel images captured from GoogleEarth [29] software

that can be considered as images representing the field of view of the camera.

For convenience, we work on an image of size 1280×719 pixels obtained from

GoogleEarth software taken at a given altitude of 6000 m above Bilkent Univer-

sity, Ankara, Turkey (Figure 2.2), and instead of capturing 80×80-pixel images

from GoogleEarth each time, we take 80×80-pixel sub-images of this large image

file. Throughout this work, position of the UAV and the landmarks, and the

distances are given in pixel units and the location of the aircraft in a camera

image is assumed to be the center of the image.

The aircraft model used for this simulation has three degrees-of-freedom

(DOF) which are the x-y coordinates and the bearing θr of the aircraft around the

7

Figure 2.1: Motion of a UAV [37].

Figure 2.2: Virtual area covered by the UAV and zoomed part of the image is
the camera view.

8

Figure 2.3: Three degrees of freedom for the process model [37].

z-axis, since the aircraft is assumed to fly at constant altitude without rotating

about the x and y axes. Figure 2.3 displays the three DOF of the aircraft.

With this model and landmark locations, the state vector of the Kalman

Filter consists of the position of the UAV and the position of the landmarks.

The position of the UAV is represented by xr and yr, and θr is the orientation of

the aircraft on the x − y plane. Each landmark is represented with two states,

which are its x and y positions on the terrain recorded in Xmap. Assuming that

the total number of landmarks at the k’th step is nk, this can be summarized as

follows:

xUAV (k) = [xr(k), yr(k), θr(k)]T ,

xmap(k) = [x1(k), y1(k), x2(k), y2(k), . . . , xnk
(k), ynk

(k)]T ,

x(k) =




xUAV

xmap



 .

(2.1)

The motion of the aircraft is modeled as:

xr(k) = xr(k − 1) + ux(k) + qx(k),

yr(k) = yr(k − 1) + uy(k) + qy(k),

θr(k) = θr(k − 1) + uθ(k) + qθ(k).

(2.2)

9

Here ux(k), uy(k), uθ(k) are velocities for each DOF given as control input and

qx(k), qy(k), qθ(k) are the zero mean, time-independent Gaussian noise values

associated with each DOF.

2.2 Extracting Landmarks from Image Data

In order for SLAM to work, we have to be able to maintain some form of a

map, and update it with each step so that we have some form of a reference

that the aircraft can localize itself with respect to. In our case, the map consists

of a number of reference points, namely the landmarks that can be identified

easily from the image data and observed consistently. There are several aspects

concerning the landmarks that have to be taken into consideration: Sufficient

number of landmarks should be detected and the descriptors of these landmarks

should be distinctive enough to decrease the mismatch probability. Excessive

number of landmarks should be avoided because the runtime of SLAM would be

affected drastically by this number due to the increasing dimensionality of the

state vector x(k). Finally, landmark detection should be fast enough to be able

to match the speed of the UAV.

To identify landmarks from the image data, we use image feature extraction

methods. Feature extraction is the process of finding a smaller set of data in

order to reduce the amount of resources to describe a large set of data accu-

rately. In computer vision, feature extraction methods are used to classify and

match images mostly for object recognition purposes. There are a number of

methods in computer vision literature developed to extract visual features from

an image. Edge detection [11], corner detection [33], blob detection [12], ridge

detection [41] and other interest point detectors such as scale-invariant feature

10

transform (SIFT) [43], speeded up robust features (SURF) [8] and smallest uni-

value segment assimilating nucleus (SUSAN) [62] are some of the low-level feature

extraction methods.

Although SIFT is more popular in vision-based SLAM research [17, 24, 55,

58], other visual features such as Harris Corner Detector [16], KLT [1], edge

landmarks [23] are also used in SLAM solutions. Different feature extraction

algorithms are compared in [6, 46, 75] which demonstrate the performances of

different feature extracting methods in various scenarios. Most of the methods

compared are convenient with tuned free parameters, such as matching thresh-

olds.

2.2.1 Scale-Invariant Feature Transform (SIFT)

Among the methods mentioned above, SIFT is found to be more convenient for

our work which we found to be more accurate and robust in this type of appli-

cation. SIFT, devised by Lowe, is a computer vision algorithm for extracting

distinctive features from images, to be used in tasks such as matching different

views of an object or scene (e.g. for stereo vision) and object recognition. An ex-

ample image with its SIFT features is given in Figure 2.4. This is also supported

by the fact that SIFT is developed for extracting distinctive features from images

and features are invariant to image scale, rotation, translation, partially invari-

ant and robust to changing viewpoints and change in illumination, and resistant

to partial occlusions. These characteristics make them suitable as landmarks for

SLAM algorithms since the landmarks will be observed from different viewpoints

with different illumination properties as the UAV moves. Using SIFT to solve

data association and loop closing problems has been a popular approach [28, 54].

Outdoor images produce a high number of features (between 5,000−10,000

features) for an image with average resolution of 1280×720 and each feature is

11

Figure 2.4: SIFT features on a sample image represented with their scales, ori-
entations and locations [42].

represented by a descriptor vector consisting of 128 elements. These 128 ele-

ments consist of magnitudes of 4×4 array of histograms with 8 orientation bins

obtained from the gradient magnitude and orientation calculated in a 16×16

region around each keypoint. Each point is also assigned a scale and an orien-

tation. Considering that matching two features is done by calculating Euclidean

distances of these vectors in a nearest-neighborhood algorithm, using this many

features is unnecessary as well as being costly for a SLAM algorithm. Therefore,

we tried to reduce the number of feature points.

Along with these considerations, another important issue in using SIFT fea-

tures is the mismatches. Although SIFT features are highly descriptive, mis-

matches can still occur which may prevent the Kalman filter in SLAM algorithm

from error pruning. Although mismatches can be avoided by modifying certain

thresholds, this constitutes a trade-off between matching sufficient number of

landmarks and mismatching many landmarks. The small number of mismatches

that occur are handled by filtering out observed landmarks that are matched to

landmarks that are improbable to be observed by the vehicle at its given pose.

12

Figure 2.5: Location of all the features obtained with SIFT.

2.2.2 Reducing SIFT results

For the 1280×719 image shown in Figure 2.2, including terrain, buildings and

roads, over 9,000 features were extracted using the SIFT algorithm (Figure 2.5).

This many features is not necessary and not suitable for use in a Kalman filter,

and processing this many features is also a problem. In Figure 2.6, we illustrate

a reduced set of features that can be used for off-line processing. In a real life

scenario images obtained via camera can be down-sampled to a lower resolution,

which enables faster processing with SIFT algorithm, producing fewer features

while still identifying landmarks sufficient enough for SLAM. Therefore, in this

work, we performed on-line processing where 80×80 images were captured at a

time, representing the field of view of the on-board camera.

Along with on-line processing of a smaller sized image to obtain fewer features,

we also apply a selection process to further decrease the number of landmarks

used. In our experiments, we observed that features with higher scale magnitude

appear to be more robust and mismatches among these appear rarely. There-

fore, selecting a number of features with higher descriptor scales proved to be a

13

Figure 2.6: Result of the reduction of features for off-line processing.

convenient approach. We also track the features in multiple consecutive images

and select the ones that can be consistently observed. About 30 SIFT features

were selected per 80×80 image where the density of features is similar to that of

Figure 2.6.

14

Chapter 3

Extended Kalman Filter

3.1 Kalman Filter Primer

The Kalman Filter (KF) has been one of the most commonly used state estima-

tors since its introduction in the seminal paper by Kalman [36]. KF offers an

estimator for a linear system modeled in state space form as:

x(k) = F(k)x(k − 1) + G(k)w(k),

z(k) = H(k)x(k) + v(k).

where w(k) and v(k) are zero-mean Gaussian noise sequences distributed ac-

cording to:

w(k) ∼ N (0,Q(k)),

v(k) ∼ N (0,R(k)).

Using the notation in [7], the estimate of the state x(k) at time i, given the

information up to and including time j, is given by:

x̂(i|j) = E[x(i)|z(1), ..., z(j)],

15

with corresponding covariance

P(i|j) = E[(x(i) − x̂(i|j))(x(i) − x̂(i|j))T |z(1), ..., z(j)].

The corresponding KF is given as:

Time Update (Prediction):

x̂(k|k − 1) = F(k)x̂(k − 1|k − 1),

P(k|k − 1) = F(k)P(k − 1|k − 1)FT (k) + G(k)Q(k)GT (k),

x̂(0| − 1) = x0, P(0| − 1) = P0

(3.1)

Measurement Update (Observation):

x̂(k|k) = x̂(k|k − 1) + W(k)ν(k),

P(k|k) = P(k|k − 1)W(k)S(k)WT (k),

where ν(k) = z(k) − H(k)x̂(k|k − 1),

S(k) = H(k)P(k|k − 1)HT (k) + R(k),

W(k) = P(k|k − 1)HT (k)S−1(k),

(3.2)

ν(k) is the innovation or measurement residual sequence, which is the difference

between the measurement and predicted measurements, representing the new

information. S(k) is the innovation covariance matrix representing the uncer-

tainty in the measurement. W(k) is the Kalman gain matrix that adjusts the

prediction given the measurement.

16

3.2 Extended Kalman Filter and SLAM

3.2.1 State and Observation Models

The state model given in Equation (2.2) can be represented with state equations,

including the landmark states, as follows:

x(k) =































xr(k)

yr(k)

θr(k)

x1(k)

y1(k)

x2(k)

y2(k)

...

xnk
(k)

ynk
(k)































=































xr(k − 1) + ux(k)

yr(k − 1) + uy(k)

θr(k − 1) + uθ(k)

x1(k − 1)

y1(k − 1)

x2(k − 1)

y2(k − 1)

...

xnk
(k − 1)

ynk
(k − 1)































+ w(k) u(k) =




u1(k)

u2(k)



 .

= f(x(k − 1),u(k)) + w(k),

(3.3)

Here, x(k) is the state vector and u(k) is the control input given to the system

at the k’th step with ux(k) = cos(θr(k − 1))u1(k), uy(k) = sin(θr(k − 1))u1(k)

and uθ(k) is simply u2(k) (Figure 3.1). w(k) is the temporally uncorrelated

zero-mean Gaussian process noise with covariance matrix Q(k) so that w(k) ∼

N (0,Q(k)) and E[w(i)w(j)] = δijQ(i). x(k) consists of UAV x−y position and

orientation representing the UAV states, and landmark positions representing the

map states. Since this is a SLAM application, the state vector keeps growing as

new landmarks are detected and are added as states. The positions of landmarks

do not change with the motion and process noise is assumed to be zero for the

landmark states.

17

Figure 3.1: UAV states and control input.

The observation model can be stated with hi(k) given as a function that

returns the range and the bearing of the ith landmark with respect to the vehicle

at the kth step and v(k) here is the temporally uncorrelated zero-mean Gaussian

observation noise with covariance R(k). We assume that the process noise w(i)

and the observation noise v(i) are uncorrelated:

z(k) = h(x(k)) + v(k),

where h(k) =












h1(x1, y1)

h2(x2, y2)

...

hnk
(xnk

, ynk
)












, hi(xi, yi) =




hi1

hi2



 =





√

∆xi
2 + ∆yi

2

arctan2 (−∆yi,−∆xi) − θr(k)



 ,

and ∆xi = xr(k) − xi(k), ∆yi = yr(k) − yi(k),

with v(k) =












v1(k)

v2(k)

...

vnk
(k)












, v(k) ∼ N (0,R(k)), E[v(i)v(j)] = δijR(i),

E[w(i)vT (j)] = 0.

18

The first element of hi is the distance of the i’th landmark to the UAV. The

second element is the relative orientation of the landmark with respect to the

vehicle, namely the bearing. One issue to note here is that not each landmark

is observed at each state and the number of landmarks keep increasing. The

matching of landmarks to the map (data association) is carried out by the SIFT

matching algorithm.

Note here that both the motion model and observation model are non-linear,

therefore linearized versions of KF and IF will be used, EKF and EIF respectively.

The state and observation equations of the system can be summarized as

follows:

x(k) = f(x(k − 1),u(k)) + w(k),

z(k) = h(x(k)) + v(k).
(3.4)

3.2.2 EKF Prediction Step

Since the state model is nonlinear, for EKF we take the F matrix as the gradient

of function f(x(k−1),u(k)) given in Equation (3.4). F turns out to be as follows:

F(k) = ∇f =
∂f(x(k − 1),u(k))

∂x(k)

=












∂f1
∂xr

∂f1
∂yr

∂f1
∂θr

∂f1
∂x1

∂f1
∂y1

. . . ∂f1
∂xn

k

∂f1
∂yn

k

∂f2
∂xr

∂f2
∂yr

∂f2
∂θr

∂f2
∂x1

∂f2
∂y1

. . . ∂f2
∂xn

k

∂f2
∂yn

k

...
...

...
...

...
. . .

...
...

∂f2n
k
+3

∂xr

∂f2n
k
+3

∂yr

∂f2n
k
+3

∂θr

∂f2n
k
+3

∂x1

∂f2n
k
+3

∂y1
. . .

∂f2n
k
+3

∂xn
k

∂f2n
k
+3

∂yn
k












=












1 0 − sin θr(k − 1)u1(k) 0

0 1 cos θr(k − 1)u1(k) 0

0 0 1 0

0 0 0 I2nk×2nk












.

19

Here, it should be pointed out that the map part of the state vector consists

of 2nk elements for nk landmarks since each landmark is represented by its x

and y coordinates in the state vector. With this F, the prediction step can be

expressed as follows:

x̂(k|k − 1) = f(x̂(k − 1),u(k)),

P(k|k − 1) = F(k)P(k − 1|k − 1)FT (k) + Q(k).

As mentioned before, the process noise is zero for map states which are landmark

positions, therefore, covariance matrix Q(k) is zero for the map states.

3.2.3 EKF Update Step

Similarly, because of the nonlinearity of the observation model, we use the gra-

dient of the function h(x(k)), H in our update equations. Using Equation (2.1),

H can be derived as:

H(k) = ∇h =
∂h(x(k))

∂x(k)
=

[

HUAV (k) Hmap(k)
]

where HUAV (k) =
∂h(x(k))

∂xUAV (k)
=






















∆x1

p1

∆y1

p1
0

−∆y1

p2
1

∆x1

p2
1

−1

∆x2

p2

∆y2

p2
0

−∆y2

p2
2

∆x2

p2
2

−1

...
...

...

∆xn
k

pn
k

∆yn
k

pn
k

0

−∆ynk

p2
n

k

∆xnk

p2
n

k

−1






















20

HMAP (k) =
∂h(x(k))

∂xMAP (k)
=




























−∆x1

p1

−∆y1

p1
0 0 0 . . . 0 0 0

∆y1

p2
1

−∆x1

p2
1

0 0 0 . . . 0 0 0

0 0 −∆x2

p2

−∆y2

p2
0 . . . 0 0 0

0 0 ∆y2

p2
2

−∆x2

p2
2

0 . . . 0 0 0

0 0 0 0 0 0

...
...

...
...

. . .
...

...

0 0 0 0 0 0

0 0 0 0 0 . . . 0
−∆xn

k

pn
k

−∆yn
k

pn
k

0 0 0 0 0 . . . 0
∆yn

k

p2
n

k

−∆xn
k

p2
n

k




























,

where pi =
√

∆x2
i + ∆y2

i .

Considering that we do not observe all landmarks at each iteration of the

EKF, we do not have observation measurements for some of the states at a given

iteration. Furthermore, we may have some previously unobserved states. In

order to include only the observed states in our update equations, we process

them one by one to obtain H̃(k) a sub-matrix of H and use this sub-matrix in

the update equations. If we observe mk landmarks at step k, H̃(k) is obtained

as:

H̃(k) =












H1(k)

H2(k)

...

Hmk
(k)












,

Hi(k) = ∇hi =
∂hi(xi, yi)

∂x(k)
,

=





∂hi1
(k)

∂xr

∂hi1
(k)

∂yr

∂hi1
(k)

∂θr
0 . . . 0

∂hi1
(k)

∂xi

∂hi1
(k)

∂yi

0 . . . 0

∂hi2
(k)

∂xr

∂hi2
(k)

∂yr

∂hi2
(k)

∂θr
0 . . . 0

∂hi2
(k)

∂xi

∂hi2
(k)

∂yi

0 . . . 0





=





∆xi

pi

∆yi

pi

0 0 . . . 0 −∆xi

pi

−∆yi

pi

0 . . . 0

−∆yi

p2
i

∆xi

p2
i

−1 0 . . . 0 ∆yi

p2
i

−∆xi

p2
i

0 . . . 0



 .

21

The update equations for all the states can be listed as follows:

x̂(k|k) = x̂(k|k − 1) + W(k)ν(k),

P(k|k) = P(k|k − 1) − W(k)S(k)WT (k),

where ν(k) = z(k) − h(x̂(k|k − 1)),

S(k) = H̃(k)P(k|k − 1)H̃T (k) + R(k),

W(k) = P(k|k − 1)H̃T (k)S−1(k),

R(k) =












R1(k) 0 . . . 0

0 R2(k) . . . 0

...
...

. . .
...

0 0 . . . Rmk
(k)












.

3.2.4 Landmark Augmentation

Since this is a SLAM application, at each iteration, that is at each motion step,

we may observe landmarks that match landmarks in our map or observe new

landmarks in which case we need to update our map, which is represented by the

state vector. We have to update the state vector x(k) and the covariance matrix

P(k) associated with it as well. This process is called landmark augmentation.

Here, we have the landmark initialization function g(x(k), zi(k)) as a function

of range ri and bearing θi of a landmark i with respect to the UAV position and

22

orientation.

g(x(k), zi(k)) =




g1

g2



 =




xr(k) + ri cos(θi + θr(k))

yr(k) + ri sin(θi + θr(k))



 ,

x∗(k|k) =




x̂(k|k)

g(x̂(k|k), zi(k))



 ,

P∗(k|k) = ∇Yx,zP(k|k)∇YT
x,z,

∇Yx,z =




I2nk+3×2nk+3 02nk+3×2

∇Gx ∇Gz



 .

where ∇Gx and ∇Gz are gradients of g(x(k), zi(k)) with respect to x and z,

respectively, given as follows:

∇Gx =





∂g1

∂xr

∂g1

∂yr

∂g1

∂θr

∂g1

∂x1

∂g1

∂y1
. . . ∂g1

∂xn
k

∂g1

∂yn
k

∂g2

∂xr

∂g2

∂yr

∂g2

∂θr

∂g2

∂x1

∂g2

∂y1
. . . ∂g2

∂xn
k

∂g2

∂yn
k



 =




1 0 −ri sin(θi + θr(k)) 0 . . . 0

0 1 ri cos(θi + θr(k)) 0 . . . 0



 ,

∇Gz =





∂g1

∂ri

∂g1

∂θi

∂g2

∂ri

∂g2

∂θi



 =




cos(θi + θr(k)) −ri sin(θi + θr(k))

sin(θi + θr(k)) ri cos(θi + θr(k))



 .

After obtaining the augmented state vector x∗(k|k) and augmented covariance

matrix P∗(k|k) we assign these as:

x(k) = x∗(k|k),

P(k) = P∗(k|k).

to complete the k’th step and move on to the next step.

23

Chapter 4

Extended Information Filter

4.1 The Information Filter

The Information Filter (IF) is a different form of the Kalman Filter represented in

terms of measures of information about the states rather than using direct state

estimates and the covariances associated with them. For a system with Gaussian

noise, the inverse of the covariance matrix, Fisher information matrix, provides

the measure of information about the state present in the observations [53].

In KF, the Gaussian random vector x(k) is parametrized by its first and

second-order moments, the mean vector µ(k) and the covariance matrix Σ(k)

which is called the covariance form of the filter. IF makes use of the canonical

parametrization also known as canonical form or natural form [26] which relates

24

to the covariance form as follows:

p(x(k)) = N (µ(k),Σ(k)),

∝ e−
1

2
((x(k)−µ(k))T Σ−1(k)(x(k)−µ(k))),

= e−
1

2
xT (k)Σ−1(k)x(k)−2µT (k)Σ−1(k)x(k)+µT (k)Σ−1(k)µ(k),

∝ e−
1

2
(xT (k)Σ−1(k)x(k)−2µT (k)Σ−1(k)x(k)),

= e−
1

2
xT (k)Y(k)x(k)+yT (k)x(k),

∝ N−1(y(k),Y(j)).

where the proportionality sign accounts for the normalization constant. When

µ(k) is x(k) and covariance matrix Σ(k) is P(k), the information state vector is

defined as

y(k) , P−1(k)x(k) (4.1)

and the information matrix is

Y(k) , P−1(k). (4.2)

Substituting (4.1) and (4.2) in the Kalman Filter equations (3.1) and (3.2),

the Information Filter equations can be obtained which can be summarized as

follows:

Time Update:

ŷ(k|k − 1) = L(k|k − 1)ŷ(k|k − 1), (4.3a)

Y(k|k − 1) = [F(k)Y−1(k − 1|k − 1)FT (k) + G(k)Q(k)GT (k)]−1. (4.3b)

25

Measurement Update:

ŷ(k|k) = ŷ(k|k − 1) + i(k), (4.4a)

Y(k|k) = Y(k|k − 1) + I(k). (4.4b)

Defining

i(k) , HT (k)R−1(k)z(k) (4.5)

as the information state contribution from an observation z(k),

I(k) , HT (k)R−1(k)H(k) (4.6)

as its associated information matrix, and

L(k|k − 1) = P−1(k|k − 1)F(k)P−1(k − 1|k − 1).

as a propagation coefficient.

This is the information form of the Kalman Filter. The IF is functionally

equivalent to the KF, but has some attractive properties. One characteristic

that is observed is that the estimation equations (4.4a) and (4.4b) are simpler

than that of the KF, at the expense of increased complexity in the prediction step

of IF. This enables partitioning of the estimation equations which are simpler in

information form for a decentralized scenario. This property will be exploited

in this work. Another property is that information matrix used in IF becomes

almost sparse when normalized, which provides a way of decreasing the com-

putational costs of the filter by imposing sparseness. This property has been

26

studied by Thrun et al. [69] and Eustice et al. [26, 72] with good results. One

other property is that the information form enables easier initialization of the

state vector and the information matrix [47].

4.2 Extended Information Filter

Similar to the Extended Kalman Filter in Chapter 3, because of the nonlinear-

ity of our system model, we need a linearization process which results in the

Extended Information Filter (EIF). Substituting the linearized versions of the

process and observation model into Equations (4.3b), (4.5) and (4.6), time up-

date and measurement update steps of the EIF can be obtained as follows:

Time update:

x(k − 1) = Y−1(k − 1|k − 1)y(k − 1|k − 1),

y(k|k − 1) = Y(k|k − 1)f(x(k − 1),u(k)),

Y(k|k − 1) = [F(k)P(k − 1|k − 1)FT (k) + G(k)Q(k)GT (k)]−1.

Estimation:

ŷ(k|k) = ŷ(k|k − 1) + i(k),

Y(k|k) = Y(k|k − 1) + I(k).

with information state contribution and associated information matrix modified

as:

i(k) , HT (k)R−1(k)(ν(k) + H(k)x̂(k|k − 1)),

I(k) , HT (k)R−1(k)H(k),

and ν(k) is again the innovation sequence given by

ν(k) = z(k) − h(x̂(k|k − 1)).

27

One of the downfalls that appears with the IF is that the indirect propagation

of state and covariance vectors becomes a problem when these are needed. Along

with the need for state and covariance estimates for realistic use, in EIF, state

estimate is also needed for the linearization of the prediction and measurement

steps. This situation makes the sparsification methods more attractive [4].

4.3 Multi-UAV SLAM with EIF

As mentioned before, one attractive feature of the information form is its suitabil-

ity for decentralized applications. The estimation step equations where observa-

tions are incorporated into the estimation can be separated into a multi-agent

framework, providing the ability to process information from different sources.

4.3.1 Distributing the Information Filter

Assume an observation vector z(k) consisting of observations from N subvectors

corresponding to observations made by each sensor:

z(k) =
[

zT
1 (k), . . . , zT

N(k)
]T

,

with observation matrix and observation noise also partitioned corresponding to

these observations:

H(k) =
[

HT
1 (k), . . . , HT

N(k)
]T

,

v(k) =
[

vT
1 (k), . . . , vT

N (k)

]T

.

with the assumption that the observation noise are not correlated

E[v(k)vT (k)] = R(k) = blockdiag{R1(k), . . . ,RN(k)},

28

so that sensor model is partitioned into N equations of the form

zj(k) = Hj(k)x(k) + vj(k),

with

E[vp(i)v
T
q (j)] = σijσpqRp(i).

When we define

ij(k) , HT
j (k)R−1

j (k)zj(k),

Ij(k) , HT
j (k)R−1

j (k)Hj(k),

ij(k) being the information state contribution from zj(k) and Ij(k) being its

associated information matrix, we obtain:

i(k) =
N∑

j=1

ij(k) =
N∑

j=1

HT
j (k)R−1

j (k)zj(k),

I(k) =

N∑

j=1

Ij(k) =

N∑

j=1

HT
j (k)R−1

j (k)Hj(k).

The resulting estimation equations are:

ŷ(k|k) = ŷ(k|k − 1) +

N∑

j=1

ij(k),

Y(k|k) = Y(k|k − 1) +
N∑

j=1

Ij(k).

This enables the information from different sources to be incorporated easily with

summation of their information state contributions and associated information

matrices. This can be extended to EIF as well.

29

4.3.2 Information Between Agents

Considering a decentralized SLAM application, each agent has its own vehicle

and map estimate, but does not need to know the vehicle estimate of the other

agents. Each node receives only map information from other agents which can be

easily incorporated into the local map estimate. We can define map information

in covariance and information form as follows with m and v subscripts meaning

map and vehicle respectively:

x(k) = [xv(k) xm(k)]T ,

P(k) =




Pvv(k) Pvm(k)

PT
vm(k) Pmm(k)



 ,

y∗

mm(k) = P−1
mm(k)xm(k),

Y∗

mm(k) = P−1
mm(k).

When we separate the information form, similarly:

y(k) = [yv(k) ym(k)]T ,

Y(k) =




Yvv(k) Yvm(k)

YT
vm(k) Ymm(k)



 .

We note that

y∗

mm(k) 6= ym(k),

Y∗

mm(k) 6= Ymm(k).

This situation is because the vehicle states have effect on the map states. To

remove the vehicle information in order to leave map information only, we can

30

use [63]:

y∗

mm(k) = ym(k) − Yvm(k)Y−1
vv (k)yv(k),

Y∗

mm(k) = Ymm(k) − Yvm(k)Y−1
vv (k)YT

vm(k).

With these equations, at each communication step, agents calculate the map

information and transmit these, along with the landmark descriptors. At the

receiving end, this information is incorporated to the information vector and

matrix simply by addition after carrying out a data association step to match

the information.

31

Chapter 5

Rao-Blackwellized Particle

Filter: FastSlam

Previous SLAM efforts, based on KF and its variants, mostly focused on improv-

ing the performance of EKF-SLAM while keeping the Gaussian assumption on

the process and measurement noise models. The FastSlam algorithm proposed

by Thrun and Montemerlo [70] provides a fundamentally different solution based

on Particle Filtering or recursive Monte Carlo Sampling to the SLAM problem.

5.1 Particle Filtering

The Kalman Filter and its variants represent the probability distributions using

a parametrized model, a multivariate Gaussian, as shown in Chapter 3 and 4.

Unlike KF, Particle Filters, also called Sequential Monte Carlo Methods [19], try

to represent a probability distribution, which can be non-Gaussian in general,

based on a finite set of weighted samples, called particles. The weights signify the

reliability of the specific particle and estimate of the random variable is obtained

with the weighted sum of all particles. The density of particles in a region

32

(a) Initially the robot pose is
very uncertain.

(b) After a number of steps,
particles start to converge.

(c) After many observations
the posterior converges to a
unimodal posterior.

Figure 5.1: Particle filter localization experiment by Wolfram et al. [13].

and their weights represent the probability of that region, high density with

high weights meaning high probability. Given sufficient number of samples, this

non-parametric representation can approximate an arbitrarily complex multi-

modal probability distribution [48]. With infinite number of samples, the true

distribution can be obtained exactly [19].

Particle Filters have been implemented for a number of real world applica-

tions especially for robot localization [67] and robot mapping [19, 51, 66]. An

example of a Monte Carlo localization experiment can be seen in Figure 5.1. At

the start, the robot has no prior information about its location in a given map,

which is represented by scattering the particles uniformly, displaying the uncer-

tainty shown in Figure 5.1(a). Figure 5.1(b) shows particles after a number of

controls and observations have taken place. The converged posterior can be seen

in Figure 5.1(c).

One of the drawbacks of the PF is that the number of particles needed to

approximate a distribution scales exponentially with the state space size. There-

fore, a straight PF implementation is not feasible for a SLAM application, where

the length of the state vector tends to keep increasing. However, through a pro-

cess called Rao-Blackwellization, the SLAM problem can be divided into separate

landmark estimation problems, conditioned on the estimate of the robot’s path.

The resulting algorithm is called FastSLAM [48, 70] which is an example of a

Rao-Blackwellized Particle Filter (RBPF) [19, 20].

33

5.2 Factoring the Posterior

For the system given in Equation (3.4), common SLAM approaches try to com-

pute the posterior probability on robot pose and map given as:

p(x(k) | uk, zk),

where uk = [u(1), . . . , u(k)],

and zk = [z(1), . . . , z(k)].

FastSLAM computes a slightly different posterior, the posterior over map and

robot path. Using Equation (2.1), we can write this posterior as:

p(xk
UAV , xmap(k) | uk, zk),

where xk
UAV = [xUAV (1), . . . , xUAV (k)].

The SLAM problem can be summarized as estimating the location of

all landmarks xmap(k) and the path of the vehicle xk
UAV given all the past

control inputs and measurements. Each of the measurements, denoted by

z(1), . . . , z(k), is a function of landmark position and UAV pose xUAV (k)

at the time the measurement was taken. Therefore, with the knowledge of

xk
UAV = xUAV (1), . . . ,xUAV (k), landmark measurements become independent

of each other. With this, the SLAM posterior can be factored into a product of

simpler terms:

p(xk
UAV , xmap(k) | uk, zk) = p(xk

UAV | uk, zk) p(xmap(k)| uk, zk), (5.1a)

p(xmap(k)| uk, zk) =

nk∏

i=1

p(xi(k)| uk(k), zk(k)), (5.1b)

p(xk
UAV , xmap(k) | uk, zk) = p(xk

UAV | uk, zk)
︸ ︷︷ ︸

path posterior

nk∏

i=1

p(xi(k)| uk, zk)

︸ ︷︷ ︸

landmark estimators

. (5.1c)

34

This factorization, first introduced by Murphy and Russel [52], states that

the SLAM posterior can be separated into a robot path posterior p(xk
UAV | u

k, zk)

and nk landmark posteriors conditioned on the robot’s path.

5.3 The FastSLAM Algorithm

The factorization of the SLAM posterior in Equation (5.1) shows that SLAM

problem can be solved without maintaining cross-correlations explicitly under

appropriate conditioning. FastSLAM exploits this feature by maintaining nk +1

filters, one for each term in Equation (5.1c). With this, each filter becomes

low-dimensional.

FastSLAM uses a particle filter to maintain an estimate of the path posterior,

the first term in Equation (5.1c). On the other hand, the landmark posteriors

are estimated using EKFs. Each particle has its own set of EKFs, one for each

landmark which makes each EKF low-dimensional. The landmark EKFs are

all conditioned on the particular particle’s path posterior. In total, there are

nk × M EKFs, where M is the particle count in the particle filter. This form is

an example of the Rao-Blackwellized Particle Filter mentioned before.

Each FastSLAM particle is in the form:

S[m](k) = {xk,[m]
UAV ,µ

[m]
1 (k),Σ

[m]
1 (k), . . . ,µ[m]

nk
(k),Σ[m]

nk
(k)}

with [m] representing the index of the particle, x
k,[m]
UAV is the m-th particle’s path

estimate and µ
[m]
i (k) and Σ

[m]
i (k) represent the mean and covariance of the Gaus-

sian estimate of the i-th landmark conditioned on the path posterior x
k,[m]
UAV . Fil-

tering, obtaining the posterior at step k from the posterior of step k − 1, is done

by generating a new particle set S(k) from S(k − 1) incorporating the latest

control input u(k) and the latest measurement z(k).

35

1. Sample a new robot pose for each particle given the new
control.
2. Update the landmark EKFs of the observed feature in each
particle.
3. Calculate the importance weight for each particle.
4. Draw a new unweighted particle set using importance resam-
pling.

Table 5.1: FastSLAM steps summarized.

This process consists of four sub-steps. Prediction is the first, where a new

pose for each particle is drawn incorporating the control input and added to

the particular path estimate s[m](k − 1). In the update step, the EKF of the

observed landmarks are updated with the observations. With the next step,

each particle is given an importance weight, reflecting the difference between the

prediction and observation. Finally a new set of particles S(k) is drawn from the

weighted particles using importance resampling. These four steps are summarized

in Table 5.1.

5.3.1 Prediction Step

The first step of FastSLAM is to generate probabilistic guesses of the new robot

pose at step k given particles at step k − 1. This prediction is obtained from

sampling the probability distribution given as:

x
[m]
UAV (k) ∼ p(xUAV (k) | x

[m]
UAV (k − 1),u(k)),

Assuming the particles S(k − 1) are distributed according to the known distri-

bution p(xk−1
UAV | uk−1, zk−1), the new particles are distributed according to:

p(xk
UAV | uk, zk−1).

which is referred as proposal distribution. Using the motion model given in

Equation (3.3) the new pose x[m](k) of the m-th particle can be obtained by

36

adding the new control forward from the previous pose x[m](k− 1) similar to the

prediction step of the EKF.

x
[m]
UAV (k) =








x
[m]
r (k − 1) + cos(θ

[m]
r (k − 1))u1(k)

y
[m]
r (k − 1) + sin(θ

[m]
r (k − 1))u1(k)

θ
[m]
r (k − 1) + u2(k)








u(k) =




u1(k)

u2(k)



 .

5.3.2 Update of Landmarks

Since FastSLAM maintains the estimate of landmarks with EKF, the update step

is the same as EKF update equations, however, this time there is a separate EKF

for each landmark in each particle. The update equations can be summarized as

follows:

zi(k) = hi(xi, yi) + vi(k),

hi(xi, yi) =




hi1

hi2



 =





√

∆xi
2 + ∆yi

2

arctan2 (−∆yi,−∆xi) − θr(k)



 ,

and ∆xi = xr(k) − xi(k), ∆yi = yr(k) − yi(k),

Hi(k) = ∇hi =
∂hi(xi, yi)

∂φi

=





−∆xi

pi

−∆yi

pi

∆yi

p2
i

−∆xi

p2
i



 ,

where φi = [xi, yi], pi =
√

∆x2
i + ∆y2

i .

µ
[m]
i (k) = µ

[m]
i (k − 1) + W(k)ν(k),

Σ
[m]
i (k) = Σ

[m]
i (k − 1) −W(k)S(k)WT (k),

ν(k) = zi(k) − hi(xi, yi),

Ψ(k) = Hi(k)Σ
[m]
i (k − 1)HT

i (k) + R(k),

W(k) = Σ
[m]
i (k − 1)HT

i (k)Ψ−1(k),

With these, the update of a landmark becomes a constant time operation, and

for the overall particle set, the update time required increases linearly with the

37

number of landmarks nk, unlike EKF-SLAM where the update time is quadratic

in nk.

5.3.3 Calculating Importance Weights

Particles drawn in the prediction step, using the motion model are distributed

according to the distribution p(xk
UAV | uk, zk−1), whereas we need particles from

the desired posterior p(xk
UAV | uk, zk). The importance sampling corrects this

difference by modifying particle weights that account for this difference. For

FastSLAM, the importance weight for a single particle w[m](k) is equal to the

ratio of the SLAM posterior and the proposal distribution given previously:

w[m](k) =
target distribution

proposal distribution
=

p(x
[m]
UAV | uk, zk)

p(x
[m]
UAV | uk, zk−1)

.

Considering that we have landmark estimators in EKF form, this weight can be

computed in closed form, commonly computed in terms of the innovation ν(k)

which is the difference between the actual observation zi(k) and the predicted

observation hi(xi, yi) given in the previous section. The sequence of innovations

in the EKF is Gaussian distributed with zero mean and covariance ψ(k), where

ψ(k) is the innovation covariance matrix also defined in the previous section.

With these, the importance weight can be calculated as:

w[m](k) =
1

√

|2πψ(k)|
e−

1

2
νT (k)ψ−1(k)ν(k)

The importance weight calculation is constant-time operation per particle, per

observed landmark.

38

5.3.4 Importance Resampling

The particles we obtained in the previous three steps were temporary particles.

Once the importance weights are assigned, a new set of samples is drawn, with

replacement, with probabilities equal to the importance weights. Naive imple-

mentation of sampling requires linear time in the number of the landmarks, but

with a sophisticated implementation scheme this can be reduced to O(log(nk))

by organizing the landmarks as a binary tree instead of an array.

5.3.5 Landmark Augmentation in FastSLAM

Because of the nature of the SLAM problem, we have an increasing number

of landmarks in order to maintain a map estimate, since at each step we may

encounter new landmarks which must be added to our estimators. In FastSLAM

this step is rather easy, where we just have to initialize new landmark mean and

covariance for each particle, using similar relations to that of EKF-SLAM. We

can summarize this procedure as follows:

g(x
[m]
UAV (k), zi(k)) =




g1

g2



 =




xr(k) + ri cos(θi + θr(k))

yr(k) + ri sin(θi + θr(k))



 ,

µ
[m]
nk+1(k) = g(x

[m]
UAV (k), zi(k))

Σ
[m]
nk+1(k) = ∇GzR(k)∇GT

z ,

∇Gz =





∂g1

∂ri

∂g1

∂θi

∂g2

∂ri

∂g2

∂θi



 =




cos(θi + θr(k)) −ri sin(θi + θr(k))

sin(θi + θr(k)) ri cos(θi + θr(k))



 .

where ∇Gz is the gradient of g(x
[m]
UAV (k), zi(k)) with respect to x

[m]
UAV and zi(k).

39

5.4 FastSLAM 1.0 and FastSLAM 2.0

There are two versions of FastSLAM algorithms in the literature, FastSLAM

1.0 [70] and FastSLAM 2.0 [49], which differ only in the proposal distribution-

prediction step and importance weights. The FastSLAM 2.0 algorithm is superior

to the FastSLAM 1.0. FastSLAM 2.0 proposes solutions to the inherent prob-

lems in FastSLAM 1.0 such as particle impoverishment which is a result of the

decreasing diversity due to the structure of the algorithm. FastSLAM 2.0 also

provides a proof of convergence. In FastSLAM 1.0, the proposal distribution is

obtained from the motion model as:

x
[m]
UAV (k) ∼ p(xUAV (k) | x

[m]
UAV (k − 1),u(k)),

and with this, the weights are calculated according to the marginalized observa-

tion model:

w[m](k) ∼ w[m](k)p(z(k)|xk,[m]
UAV , zk−1)

In FastSLAM 2.0, the proposal distribution includes the current observation as

well, which results in:

x
[m]
UAV (k) ∼ p(xUAV (k) | x

[m]
UAV (k − 1),u(k), z(k))

∼ p(xUAV (k) | x
k,[m]
UAV ,uk, zk)

Conditioned on all the available information x
k,[m]
UAV , uk and zk, this gives the

smallest possible variance in importance weight w[m](k) for each particle. The

proposal distribution becomes optimal, making FastSLAM 2.0 more advanta-

geous.

40

5.5 Multi-UAV SLAM with PF

Although PF does not inherently possess characteristics that will enable an easy

implementation of multi-UAV SLAM algorithm, an algorithm based on making

use of information form to benefit from the additivity can be developed. Similar

to the multi-UAV IF case, we are considering a decentralized SLAM application

where each UAV has its own estimate of its location and the map but does not

maintain estimate of other UAVs. Each UAV receives map information from

other UAVs as a set of particles, which can be incorporated into its own set

of particles by merging the estimates of each particle with a simple addition in

the information form. After a data association step, the receiving UAV adds

the information received by firstly merging the matched landmarks using the

information form and then by initializing new landmarks in each particle for the

landmarks that are not matched.

41

Chapter 6

Results

For the evaluation and comparison of the four filters EKF, IF, FastSLAM 1.0 and

FastSLAM 2.0 described in the previous chapters, MATLAB implementations of

these filters are tested on simulated data sets created by the system described in

Chapter 2. For FastSLAM 1.0 and 2.0 we modified the sample codes from Tim

Bailey’s website for our scenario [3]. These simulated datasets consist of three

different paths: linear, circular and eight-shaped. Example instances for each

filter on each path type are given in Figures 6.1–6.24 which demonstrate how

the filters work. FastSLAM 1.0 and 2.0 are executed with a moderate number

of 100 particles in these instances. Each run has a set of figures showing the run

at intermediate steps (at every 20th step), followed by estimation error plots at

the end of the run. In each figure pair, the red path on the left shows the actual

path along which the UAV travels through and the black colored path shows the

path estimated by the filter. The figures on the right show the real and estimated

positions of the landmarks as well as the 3σ confidence level ellipses for that step.

The green triangle on the right part indicates the position and the heading of the

UAV at the given step. Following each run, error plots are presented showing

estimation error in the robot pose given as xr and yr coordinates, bearing θr and

also average estimation errors in the landmark positions x and y.

42

In Figures 6.1–6.8, a linear path is given, where the UAV goes back and forth

on a straight line at a speed of V = 10 pixel/s. The process noise has no angular

component so the real path of the UAV does not deviate from the line. The

control inputs have a process noise with variance of (σ2
V), where σV = 1 pixel/s

and the observation noise variances are (σ2
R, σ2

B) with range component σR =

1 pixel and bearing component σB = 1.5◦. Figures 6.9–6.16 show an instance of

a circular path, and Figures 6.17–6.24 demonstrate an eight-shaped path. For

these paths the observation noise is the same as in the linear path, but the

process noise has an angular speed component as well, with variances (σ2
V , σ2

ω)

where σV = 1 pixel/s similarly and σω = 2 ◦/s is the standard deviation of the

angular velocity noise.

The SLAM algorithm progresses as follows: As the vehicle moves and new

observations are acquired, the error in the estimates accumulate since both the

process and the observation models are noisy. As the landmarks are observed,

they are matched to the existent map, and these errors can be pruned out by

the filter. This process continues at each step which can be observed in the

given figures. The more the landmarks are observed, the faster the estimated

path converges to the actual path. As new landmarks are observed, the estimated

path again deviates from the actual path as these new landmarks introduce some

estimation error into the process. As the landmarks are re-observed, their error

covariance decreases and the corresponding error covariance ellipses shrink. The

estimation of the landmarks’ convergence to the real positions of the landmarks

can be observed in these figures as well. The convergence results from mainly re-

observing of the same landmarks in the succeeding steps as the acquired images

overlap. We also observe an overall decrease in error at the completion of each

loop, which is called ‘loop closure’ where relatively high number of observed

landmarks are matched to the map. However, the effect of loop closure is not

significant after the aforementioned overlapping effect. The outer landmarks’

43

error covariance ellipses do not diminish in size as much as the inner landmarks,

as the outer ones tend to be observed less.

However, we also observe that not all error in the estimate can be pruned

out. Not all landmarks converge to their actual position with each prediction-

update step, some even diverge from the actual positions. The position of the

landmarks converge to local minima where the difference between predicted ob-

servations and real observations become biased, which appears as a small error

in the updates with small innovation. This prevents the landmark positions and

the UAV position from converging to their real positions. Instead, they converge

to another configuration which appears as actual positions when the prediction

error is calculated.

In Figures 6.25 and 6.26, average error levels of the four filters in 80 runs of

each noise level for a circular path can be seen. For different range noise lev-

els (Figure 6.25) we observe an increase in estimation errors with the increase

in noise levels in range and bearing errors for all the filters, which is an ex-

pected result. However, FastSLAM becomes significantly more successful when

the noise levels are quite high, whereas EKF and IF start to have large errors

when the range noise is high. For the different bearing error case, this behaviour

only appears in PF algorithms, whereas in EKF and IF with different bearing

errors shows different characteristics, which is probably due to the linearization

involved in these. With increased bearing error, EKF and IF become more suit-

able estimators with less error. We can say that PF based approaches perform

similarly if not better than the KF-based algorithms, especially when the noise

levels are high.

In Table 6.1, we can also see the average run times of these filters in the same

80 runs. Using these and also the given sample runs we can compare the filters

regarding their performance. EKF and IF are essentially equivalent as mentioned

44

Filter Average Run Times (sec)
Linear Path Circular Path Eight-shaped Path

Extended Kalman Filter 51 66 82
Information Filter 76 109 150

FastSLAM 1.0 91 77 71
FastSLAM 2.0 152 131 116

Table 6.1: Average run times of each filter for the three different paths.

before, the slight difference that appears is due to the numerical differences. How-

ever, the IF has a bigger run time with a naive implementation because of the

matrix inverse operations involved in obtaining the state vectors at each step.

The performance can be improved by using special care for these calculations.

Using SEIF also can improve this performance. The main advantage of IF is

the decentralization ability mentioned before. Looking at FastSLAM 1.0 and

FastSLAM 2.0 results, we can conclude that these provide slightly better perfor-

mance than KF variants. Although they seem to have long run times compared

to EKF, this is mainly because of the implementation in MATLAB, which is not

optimized to loop operations as opposed to matrix operations used in EKF. This

performance can be improved using a different simulation environment which

will also enable increasing the number or particles for better estimation. We

can assume that FastSLAM 1.0 and 2.0 will offer better performance with less

run time when compared to EKF and IF, with FastSLAM 2.0 being a better

estimator with the drawback of a longer runtime.

A comparison of FastSLAM 1.0 and 2.0 performance with changing the parti-

cle counts is given in Figure 6.27, which shows that increasing the particle count

up to a certain point improves the performance slightly. This also shows that es-

pecially for FastSLAM 2.0, small number of particles can be sufficient for a fairly

good estimation. However, FastSLAM 1.0 and 2.0 also have their drawbacks,

with their sampling and resampling processes which involves random sampling

of the estimated posterior. Both can converge to a less accurate estimation at

45

some point and recovering from this situation is hardly possible with their al-

gorithm. FastSLAM also shows a huge variance in the estimation error even on

the same data, with the same noise levels. This can be solved with an increased

number of particles, along with other techniques such as particle injection at an

increased cost of computation.

In Figure 6.28, a sample run for a multi-UAV scenario is presented, with

shots given at each 10th step before communication and after communication

between UAVs. The plots show each UAV with its own map. Sharing the map

information, each UAV can update its own map to a common map including

information from the other UAV at the given communication step, which are

at each 10th step. The performance of the process can also be seen. When

compared to the eight-shaped path by a single UAV (Figures 6.17–6.24) using

two UAVs for the same task has its advantages in robustness and also completion

of tasks in less time. We also present a sample instance for the particle filter based

multi-UAV SLAM algorithm in Figure 6.29.

46

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(a) (b)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(c) (d)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(e) (f)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(g) (h)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(i) (j)

Figure 6.1: EKF-SLAM: sample run for a linear path. Results are shown at every
20th step, the figure on the right shows the UAV’s real path and estimated path
while the figure on the left shows the real and estimated landmark positions.
The units are in pixels.

47

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180 200
−6

−5

−4

−3

−2

−1

0

1

2

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180 200
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

(c) (d)

0 20 40 60 80 100 120 140 160 180 200
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 20 40 60 80 100 120 140 160 180 200
−6

−5

−4

−3

−2

−1

0

1

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(g)

Figure 6.2: EKF-SLAM: error plots for the linear path. Parts (a) and (b) give
robot pose error in x and y coordinates in pixels, (c) gives the position error as
an absolute distance in pixels, (d) shows the error in robot orientation in radians.
Parts (e), (f) and (g) give average landmark errors in x and y coordinates, and
as absolute distance in pixels respectively.

48

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(a) (b)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(c) (d)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(e) (f)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(g) (h)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(i) (j)

Figure 6.3: IF-SLAM: sample run for a linear path. Results are shown at every
20th step, the figure on the right shows the UAV’s real path and estimated path
while the figure on the left shows the real and estimated landmark positions.
The units are in pixels.

49

0 50 100 150 200 250
−0.5

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250
−6

−5

−4

−3

−2

−1

0

1

2

(a) (b)

0 50 100 150 200 250
0

1

2

3

4

5

6

0 50 100 150 200 250
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

(c) (d)

0 50 100 150 200 250
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 50 100 150 200 250
−6

−5

−4

−3

−2

−1

0

1

(e) (f)

0 50 100 150 200 250
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(g)

Figure 6.4: IF-SLAM: error plots for the linear path. Parts (a) and (b) give
robot pose error in x and y coordinates in pixels, (c) gives the position error as
an absolute distance in pixels, (d) shows the error in robot orientation in radians.
Parts (e), (f) and (g) give average landmark errors in x and y coordinates, and
as absolute distance in pixels respectively.

50

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(a) (b)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(c) (d)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(e) (f)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(g) (h)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(i) (j)

Figure 6.5: FastSLAM 1.0: sample run for a linear path. Results are shown at
every 20th step, the figure on the right shows the UAV’s real path and estimated
path while the figure on the left shows the real and estimated landmark positions.
The units are in pixels.

51

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180 200
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

15
x 10

−4

(c) (d)

0 20 40 60 80 100 120 140 160 180 200

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160 180 200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
0.8

1

1.2

1.4

1.6

1.8

2

(g)

Figure 6.6: FastSLAM 1.0: error plots for the linear path. Parts (a) and (b) give
robot pose error in x and y coordinates in pixels, (c) gives the position error as
an absolute distance in pixels, (d) shows the error in robot orientation in radians.
Parts (e), (f) and (g) give average landmark errors in x and y coordinates, and
as absolute distance in pixels respectively.

52

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(a) (b)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(c) (d)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(e) (f)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(g) (h)

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

400 500 600 700
350

400

450

(i) (j)

Figure 6.7: FastSLAM 2.0: sample run for a linear path. Results are shown at
every 20th step, the figure on the right shows the UAV’s real path and estimated
path while the figure on the left shows the real and estimated landmark positions.
The units are in pixels.

53

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180 200
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1
x 10

−3

(c) (d)

0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120 140 160 180 200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

4.5

(g)

Figure 6.8: FastSLAM 2.0: error plots for the linear path. Parts (a) and (b) give
robot pose error in x and y coordinates in pixels, (c) gives the position error as
an absolute distance in pixels, (d) shows the error in robot orientation in radians.
Parts (e), (f) and (g) give average landmark errors in x and y coordinates, and
as absolute distance in pixels respectively.

54

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(a) (b)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(c) (d)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(e) (f)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(g) (h)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(i) (j)

Figure 6.9: EKF-SLAM: sample run for a circular path. Results are shown at
every 20th step, the figure on the right shows the UAV’s real path and estimated
path while the figure on the left shows the real and estimated landmark positions.
The units are in pixels.

55

0 20 40 60 80 100 120 140 160 180 200
−12

−10

−8

−6

−4

−2

0

2

4

0 20 40 60 80 100 120 140 160 180 200
−8

−6

−4

−2

0

2

4

6

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(c) (d)

0 20 40 60 80 100 120 140 160 180 200
−7

−6

−5

−4

−3

−2

−1

0

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

1

2

3

4

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

(g)

Figure 6.10: EKF-SLAM: error plots for circular path. Parts (a) and (b) give
robot pose error in x and y coordinates in pixels, (c) gives the position error as
an absolute distance in pixels, (d) shows the error in robot orientation in radians.
Parts (e), (f) and (g) give average landmark errors in x and y coordinates, and
as absolute distance in pixels respectively.

56

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(a) (b)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(c) (d)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(e) (f)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(g) (h)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(i) (j)

Figure 6.11: IF-SLAM: sample run for a circular path. Results are shown at
every 20th step, the figure on the right shows the UAV’s real path and estimated
path while the figure on the left shows the real and estimated landmark positions.
The units are in pixels.

57

0 20 40 60 80 100 120 140 160 180 200
−12

−10

−8

−6

−4

−2

0

2

4

0 20 40 60 80 100 120 140 160 180 200
−8

−6

−4

−2

0

2

4

6

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(c) (d)

0 20 40 60 80 100 120 140 160 180 200
−7

−6

−5

−4

−3

−2

−1

0

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

1

2

3

4

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

(g)

Figure 6.12: IF-SLAM: error plots for circular path. Parts (a) and (b) give robot
pose error in x and y coordinates in pixels, (c) gives the position error as an
absolute distance in pixels, (d) shows the error in robot orientation in radians.
Parts (e), (f) and (g) give average landmark errors in x and y coordinates, and
as absolute distance in pixels respectively.

58

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(a) (b)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(c) (d)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(e) (f)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(g) (h)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(i) (j)

Figure 6.13: FastSLAM 1.0: sample run for a circular path. Results are shown at
every 20th step, the figure on the right shows the UAV’s real path and estimated
path while the figure on the left shows the real and estimated landmark positions.
The units are in pixels.

59

0 20 40 60 80 100 120 140 160 180 200
−8

−7

−6

−5

−4

−3

−2

−1

0

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

1

2

3

4

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

(c) (d)

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160 180 200

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

4.5

(g)

Figure 6.14: FastSLAM 1.0: error plots for circular path. Parts (a) and (b) give
robot pose error in x and y coordinates in pixels, (c) gives the position error as
an absolute distance in pixels, (d) shows the error in robot orientation in radians.
Parts (e), (f) and (g) give average landmark errors in x and y coordinates, and
as absolute distance in pixels respectively.

60

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(a) (b)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(c) (d)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(e) (f)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(g) (h)

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

250 300 350 400 450 500 550
300

350

400

450

500

550

600

(i) (j)

Figure 6.15: FastSLAM 2.0: sample run for a circular path. Results are shown at
every 20th step, the figure on the right shows the UAV’s real path and estimated
path while the figure on the left shows the real and estimated landmark positions.
The units are in pixels.

61

0 20 40 60 80 100 120 140 160 180 200
−6

−4

−2

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

4

6

8

10

12

14

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

(c) (d)

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

9

10

(g)

Figure 6.16: FastSLAM 2.0: error plots for circular path. Parts (a) and (b) give
robot pose error in x and y coordinates in pixels, (c) gives the position error as
an absolute distance in pixels, (d) shows the error in robot orientation in radians.
Parts (e), (f) and (g) give average landmark errors in x and y coordinates, and
as absolute distance in pixels respectively.

62

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(a) (b)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(c) (d)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(e) (f)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(g) (h)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(i) (j)

Figure 6.17: EKF-SLAM: sample run for an eight-shaped path. Results are
shown at every 20th step, the figure on the right shows the UAV’s real path
and estimated path while the figure on the left shows the real and estimated
landmark positions. The units are in pixels.

63

0 20 40 60 80 100 120 140 160 180 200
−25

−20

−15

−10

−5

0

5

10

15

0 20 40 60 80 100 120 140 160 180 200
−10

−5

0

5

10

15

20

25

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

(c) (d)

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4

6

8

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

2

3

4

5

6

7

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

(g)

Figure 6.18: EKF-SLAM: error plots for the eight-shaped path. Parts (a) and (b)
give robot pose error in x and y coordinates in pixels, (c) gives the position error
as an absolute distance in pixels, (d) shows the error in robot orientation in radi-
ans. Parts (e), (f) and (g) give average landmark errors in x and y coordinates,
and as absolute distance in pixels respectively.

64

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(a) (b)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(c) (d)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(e) (f)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(g) (h)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(i) (j)

Figure 6.19: IF-SLAM: sample run for an eight-shaped path. Results are shown
at every 20th step, the figure on the right shows the UAV’s real path and esti-
mated path while the figure on the left shows the real and estimated landmark
positions. The units are in pixels.

65

0 20 40 60 80 100 120 140 160 180 200
−25

−20

−15

−10

−5

0

5

10

15

0 20 40 60 80 100 120 140 160 180 200
−10

−5

0

5

10

15

20

25

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

(c) (d)

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4

6

8

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

2

3

4

5

6

7

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

(g)

Figure 6.20: IF-SLAM: error plots for the eight-shaped path. Parts (a) and (b)
give robot pose error in x and y coordinates in pixels, (c) gives the position error
as an absolute distance in pixels, (d) shows the error in robot orientation in radi-
ans. Parts (e), (f) and (g) give average landmark errors in x and y coordinates,
and as absolute distance in pixels respectively.

66

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(a) (b)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(c) (d)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(e) (f)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(g) (h)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(i) (j)

Figure 6.21: FastSLAM 1.0: sample run for an eight-shaped path. Results are
shown at every 20th step, the figure on the right shows the UAV’s real path
and estimated path while the figure on the left shows the real and estimated
landmark positions. The units are in pixels.

67

0 20 40 60 80 100 120 140 160 180 200
−20

−15

−10

−5

0

5

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4

6

8

10

12

14

16

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) (d)

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

9

(g)

Figure 6.22: FastSLAM 1.0: error plots for the eight-shaped path. Parts (a)
and (b) give robot pose error in x and y coordinates in pixels, (c) gives the
position error as an absolute distance in pixels, (d) shows the error in robot
orientation in radians. Parts (e), (f) and (g) give average landmark errors in x
and y coordinates, and as absolute distance in pixels respectively.

68

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(a) (b)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(c) (d)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(e) (f)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(g) (h)

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

600

(i) (j)

Figure 6.23: FastSLAM 2.0: sample run for an eight-shaped path. Results are
shown at every 20th step, the figure on the right shows the UAV’s real path
and estimated path while the figure on the left shows the real and estimated
landmark positions. The units are in pixels.

69

0 20 40 60 80 100 120 140 160 180 200
−14

−12

−10

−8

−6

−4

−2

0

2

4

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4

6

8

10

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

0 20 40 60 80 100 120 140 160 180 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) (d)

0 20 40 60 80 100 120 140 160 180 200
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

(e) (f)

0 20 40 60 80 100 120 140 160 180 200
2

3

4

5

6

7

8

9

10

(g)

Figure 6.24: FastSLAM 2.0: Parts (a) and (b) give robot pose error in x and
y coordinates in pixels, (c) gives the position error as an absolute distance in
pixels, (d) shows the error in robot orientation in radians. Parts (e), (f) and (g)
give average landmark errors in x and y coordinates, and as absolute distance in
pixels respectively.

70

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

35

σ
R

[pixels]

M
e

a
n

 L
a

n
d

m
a

rk
 L

o
c
a

ti
o

n
 E

rr
o

r
[p

ix
e

ls
]

Error comparison of four filters

EKF

IF

FastSLAM 1.0

FastSLAM 2.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
R

[pixels]

M
e

a
n

 O
ri
e

n
ta

ti
o

n
 E

rr
o

r
[r

a
d

ia
n

s
]

Error comparison of four filters

EKF

IF

FastSLAM 1.0

FastSLAM 2.0

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

35

σ
R

[pixels]

M
e

a
n

 L
a

n
d

m
a

rk
 L

o
c
a

ti
o

n
 E

rr
o

r
[p

ix
e

ls
]

Error comparison of four filters

EKF

IF

FastSLAM 1.0

FastSLAM 2.0

(c)

Figure 6.25: Comparison of error levels of the four SLAM algorithms EKF, IF,
FastSLAM 1.0 and 2.0 with different range noise levels with bearing variance
σ2

B fixed at 0.2◦2. Part (a) is the error in the estimation of the UAV location,
(b) shows the error in estimation of UAV orientation and (c) shows the average
landmark position error.

71

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

6

8

10

12

14

16

σ
B
[deg]

M
e

a
n

 U
A

V
 L

o
c
a

ti
o

n
 E

rr
o

r
[p

ix
e

ls
]

Error comparison of four filters

EKF

IF

FastSLAM 1.0

FastSLAM 2.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

σ
B
[deg]

M
e

a
n

 U
A

V
 O

ri
e

n
ta

ti
o

n
 E

rr
o

r
[r

a
d

ia
n

s
]

Error comparison of four filters

EKF

IF

FastSLAM 1.0

FastSLAM 2.0

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

6

8

10

12

14

16

σ
B
[deg]

M
e

a
n

 L
a

n
d

m
a

rk
 L

o
c
a

ti
o

n
 E

rr
o

r
[p

ix
e

ls
]

Error comparison of four filters

EKF

IF

FastSLAM 1.0

FastSLAM 2.0

(c)

Figure 6.26: Comparison of error levels of the four SLAM algorithms EKF, IF,
FastSLAM 1.0 and 2.0 with different bearing noise levels with range variance
σ2

R fixed at 0.5m2. Part (a) is the error in the estimation of the UAV location,
(b) shows the error in estimation of UAV orientation and (c) shows the average
landmark position error.

72

0 20 40 60 80 100 120 140 160 180 200
6

8

10

12

14

16

18

20

22

24

26

of Particles

M
e
a
n
 U

A
V

 L
o
c
a
ti
o
n
 E

rr
o
r

[p
ix

e
ls

]

Error comparison of in FastSLAM with different number of particles

FastSLAM 1.0

FastSLAM 2.0

0 20 40 60 80 100 120 140 160 180 200

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

of Particles

M
e

a
n

 O
ri
e

n
ta

ti
o

n
 E

rr
o

r
[r

a
d

ia
n

s
]

Error comparison of in FastSLAM with different number of particles

FastSLAM 1.0

FastSLAM 2.0

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
7

8

9

10

11

12

13

14

15

of Particles

M
e
a
n
 L

a
n
d
m

a
rk

 L
o
c
a
ti
o
n
 E

rr
o
r

[p
ix

e
ls

]

Error comparison of in FastSLAM with different number of particles

FastSLAM 1.0

FastSLAM 2.0

(c)

Figure 6.27: Comparison of error levels of the FastSLAM 1.0 and 2.0 algorithms
with different number of particles. Part (a) is the error in the estimation of
the UAV location, (b) shows the error in estimation of UAV orientation and (c)
shows the average landmark position error.

73

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

(a)

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

(b) (c)

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

(d) (e)

Figure 6.28: A sample run of multiple UAV SLAM with IF. Results are given at
every 10th step, just before and after the communication occurs. In each part,
the figure on the left shows the real and the estimated paths of each UAV, while
the figure on the right shows the individual maps of the UAVs (continued).

74

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

(f) (g)

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

300 400 500
300

350

400

450

500

550

600

(h) (i)

Figure 6.28: (continued) A sample run of multiple UAV SLAM with IF. Results
are given at every 10th step, just before and after the communication occurs. In
each part, the figure on the left shows the real and the estimated paths of each
UAV, while the figure on the right shows the individual maps of the UAVs.

75

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

(a)

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

(b) (c)

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

(d) (e)

Figure 6.29: A sample run of multiple UAV SLAM with PF based FastSLAM.
Results are given at every 10th step, just before and after the communication
occurs. In each part, the figure on the left shows the real and the estimated
paths of each UAV, while the figure on the right shows the individual maps of
the UAVs (continued).

76

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

(f) (g)

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

300 400 500

300

350

400

450

500

550

600

(h) (i)

Figure 6.29: (continued) A sample run of multiple UAV SLAM with PF based
FastSLAM. Results are given at every 10th step, just before and after the com-
munication occurs. In each part, the figure on the left shows the real and the
estimated paths of each UAV, while the figure on the right shows the individual
maps of the UAVs.

77

Chapter 7

Conclusions and Future Work

In this thesis, we constructed a vision-based SLAM algorithm, using visual fea-

tures of images acquired with a camera as landmarks. The visual features used

are SIFT features obtained using the well-known SIFT algorithm. We decreased

the number of these features by using a selection process over smaller sized im-

ages to obtain a smaller set of landmarks. With this experimental framework,

we used four well known SLAM algorithms: EKF, IF, FastSLAM 1.0 and 2.0

and demonstrated their different performance characteristics. We also presented

a multi-UAV SLAM application based on IF and PF.

Our algorithms are based on processing visual data which can be easily gath-

ered with low-cost commercial equipment. Using visual data provides easy so-

lutions to problems that appear inherently in the SLAM applications, such as

landmark identification and data association. This important aspect constitutes

one of the major contributions of our work. Using visual data not only provides a

framework for the SLAM, but it also has the advantage of providing rich data for

different purposes. In this thesis, we also demonstrated that visual data can be

easily incorporated into a framework, to be used with readily available popular

SLAM solutions. One other contribution of this thesis is the extension of our

78

framework to the multi-UAV case, which can provide robustness and efficiency

in common UAV applications.

There are still shortcomings of our approach that needs to be addressed along

with testing our work in a more realistic framework. The following improvements

and extensions can be considered as future work:

• One step is to develop a better simulation environment to incorporate more

realistic data.

• We also need to consider real aircraft dynamics and forgo the assumption

of constant altitude to have a more practical and realistic implementation.

• A more systematic landmark selection scheme is needed to select useful

features only which can reduce the computational costs of the filters dras-

tically. Landmark deletion, i.e. deletion of less observed landmarks, can

help in this aspect as well.

• Fusion of data from different sources such as different aircraft with dif-

ferent characteristics or different sensors can also increase efficiency and

robustness.

79

Bibliography

[1] Angeli, A., Filliat, D. and Doncieux, S. and Meyer, J.-A., “2D simultaneous

localization and mapping for micro aerial vehicles,” in Proceedings of the

European Micro Aerial Vehicles Conference, 2006.

[2] Bailey, T., “Mobile Robot Localisation and Mapping in Extensive Out-

door Environments,” Ph.D. dissertation, University of Sydney, 2002,

http://www-personal.acfr.usyd.edu.au/tbailey/techreports/phdthesis.htm.

[3] ——, “Home Page of Tim Bailey,” http://www-

personal.acfr.usyd.edu.au/tbailey/, Aug 01, 2008.

[4] Bailey, T. and Durrant-Whyte, H. F., “Simultaneous localisation and map-

ping (SLAM): Part II state-of-the-art,” Robotics and Automation Magazine,

vol. 13, pp. 108–117, 2006.

[5] Bailey, T., Nieto, J., Guivant, J., Stevens, M. and Nebot, E., “Consistency

of the EKF-SLAM Algorithm,” Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 3562–3568, 2006.

[6] Ballesta, M., Gil, A., Reinoso, O. and Martinez-Mozos, O., Evaluation of in-

terest point detectors for visual SLAM, 2nd ed. International SAR, January

2008, pp. 190–199.

[7] Bar-Shalom, Y. and Li, X. R., Estimation and Tracking: Principles, Tech-

niques, and Software. Norwood, MA: Artech House, Inc, 1993.

80

[8] Bay, H., Tuytelaars, T. and Van Gool, L., “SURF: Speeded up robust fea-

tures,” European Conference on Computer Vision, vol. 1, pp. 404–417, 2006.

[9] Berg, T. M. and Durrant-Whyte, H. F., “Model distribution in decentralized

multi-sensor data fusion,” in American Control Conference, vol. 28, 1991.

[10] Burgard, W., Fox, D., Jans, H., Matenar, C. and Thrun, S., “Sonar-based

mapping of large-scale mobile robot environments using EM,” in Sixteenth

International Conference on Machine Learning. San Francisco, CA, U.S.A.:

Morgan Kaufmann Publishers Inc., 1999, pp. 67–76.

[11] Canny, J., “A computational approach to edge detection,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp.

679–698, 1986.

[12] Carson, C., Belongie, S., Greenspan, H. and Malik, J., “Blobworld: image

segmentation using expectation-maximization and its application to image

querying,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 24, no. 8, pp. 1026–1038, 2002.

[13] Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., Burgard, W.,

Kavraki, L. E. and Thrun S., Principles of Robot Motion: Theory, Algo-

rithms, and Implementations. MIT Press, June 2005.

[14] Csorba, M., “Simultaneous Localisation and Map Build-

ing,” Ph.D. dissertation, University of Oxford, 1998,

http://www.cas.edu.au/content.php/292.html?publicationid=157&display-

page=2.

[15] Csorba, M. and Durrant-Whyte, H. F., “A new approach to simultaneous

localisation and map building,” in SPIE Aerosense, vol. 2738, 1996, pp.

26–36.

81

[16] Davison, A. J. and Murray, D. W., “Simultaneous localization and map-

building using active vision,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24, no. 7, pp. 865–880, 2002.

[17] Davison, A. J., Reid, I. D., Molton, N.D. and Stasse, O., “MonoSLAM:

Real-time single camera SLAM,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, pp. 1052–1067, 2007.

[18] Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H. F. and Csorba,

M., “A solution to the simultaneous localization and map building (SLAM)

problem,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3,

pp. 229–241, June 2001.

[19] Doucet, A., de Freitas, J. F. G. and Gordon, N. J., Sequential Monte Carlo

Methods in Practice. New York: Springer-Verlag, 2001.

[20] Doucet A,, K. M., de Freitas, N., Murphy, K. and Russell, S., “Rao-

Blackwellised particle filtering for dynamic Bayesian networks,” in Proceed-

ings of the Sixteenth Conference on Uncertainty in Artificial Intelligence,

Stanford-California, 2000, pp. 176–183.

[21] Durrant-Whyte, H. F., “Uncertain geometry in robotics,” IEEE Transac-

tions on Robotics and Automation, vol. 4, no. 1, pp. 23–31, February 1988.

[22] Durrant-Whyte, H. F. and Bailey, T., “Simultaneous localisation and map-

ping (SLAM): Part I The essential algorithms,” Robotics and Automation

Magazine, vol. 13, pp. 99–110, 2006.

[23] Eade, E. and Drummond, T., “Edge landmarks in monocular SLAM,”

British Machine Vision Conference, 2006.

[24] Elinas, P., Sim, R. and Little, J. J., “σSLAM: stereo vision SLAM using the

Rao-Blackwellised particle filter and a novel mixture proposal distribution,”

Proceedings of IEEE International Conference on Robotics and Automation,

pp. 1564–1570, May 15-19, 2006.

82

[25] Estrada, C., Neira, J. and Tardos, J. D., “Hierarchical SLAM: real-time

accurate mapping of large environments,” IEEE Transactions on Robotics

and Automation, vol. 21, no. 4, pp. 588–596, 2005.

[26] Eustice, R. M., Singh, H. and Leonard, J. J., “Exactly sparse delayed-

state filters for view-based SLAM,” IEEE Transactions on Robotics and

Automation, vol. 22, no. 6, pp. 1100–1114, 2006.

[27] Eustice, R. M., Singh, H., Leonard, J. J., Walter, M. and Ballard, R., “Visu-

ally navigating the RMS titanic with SLAM information filters,” in Robotics:

Science And Systems. MIT Press, 2005.

[28] Gil, A., Reinoso, O., Martinez-Mozos, O., Stachniss, C. and Burgard, W.,

“Improving data association in vision-based SLAM,” Proceedings of the

2006 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, 2006.

[29] Google, “Google Earth,” http://earth.google.com/, Aug 01, 2008.

[30] Grime, S., Durrant-Whyte, H. F. and Ho, P., “Communication in decentral-

ized data-fusion systems,” in American Control Conference, vol. 29, 1991,

pp. 3299–3305.

[31] Guivant, J. and Nebot, E., “Improving computational and memory require-

ments of simultaneous localization and map building algorithms,” Proceed-

ings of IEEE International Conference on Robotics and Automation, vol. 3,

pp. 2731–2736, 2002.

[32] Guivant, J. E. and Nebot, E. M., “Optimization of the simultaneous lo-

calization and map-building algorithm for real-time implementation,” IEEE

Transactions on Robotics and Automation, vol. 17, no. 3, pp. 242–257, 2001.

[33] Harris, C. and Stephens, M., “A combined corner and edge detector,” Pro-

ceedings of The Fourth Alvey Vision Conference, Manchester, vol. 15, pp.

189–192, 1988.

83

[34] Julier, S. J. and Uhlmann, J. K., “Using multiple SLAM algorithms,” Pro-

ceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, vol. 1, pp. 200–205, 2003.

[35] ——, “Unscented filtering and nonlinear estimation,” Proceedings of the

IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[36] Kalman, R. E., “A new approach to linear filtering and prediction prob-

lems,” Transactions on ASME: Journal of Basic Engineering, vol. 82D, pp.

35–45, March 1960.

[37] Kim, J. and Sukkarieh, S., “Autonomous airborne navigation in unknown

terrain environments,” IEEE Transactions on Aerospace and Electronic Sys-

tems, vol. 40, no. 3, pp. 1031–1045, 2004.

[38] ——, “Real-time implementation of airborne inertial-SLAM,” Robotics and

Autonomous Systems, vol. 55, pp. 62–71, 2007.

[39] Knight, J., Davison, A. and Reid, I., “Towards constant time SLAM using

postponement,” in RSJ International Conference on Intelligent Robots and

Systems, vol. 1, 2001, pp. 405–413.

[40] Leonard, J. J. and Newman, P., “Consistent, convergent, and constant-time

SLAM,” in International Joint Conference on Artificial Intelligence, vol. 18,

2003, pp. 1143–1150.

[41] Lindeberg, T., “Edge detection and ridge detection with automatic scale

selection,” International Journal of Computer Vision, vol. 30, no. 2, pp.

117–154, 1998.

[42] Lowe, D. G., “Distinctive Image Features from Scale-Invariant Keypoints,”

Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[43] ——, “Distinctive image features from scale-invariant keypoints,” Interna-

tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

84

[44] Manyika, J. M. and Durrant-Whyte, H. F., “On sensor management in de-

centralized data fusion,” in 31st IEEE Conference on Decision and Control,

1992, pp. 3506–3507.

[45] Martinelli, A., Nguyen, V., Tomatis, N. and Siegwart, R., “A relative map

approach to SLAM based on shift and rotation invariants,” Robotics and

Autonomous Systems, vol. 55, no. 1, pp. 50–61, 2007.

[46] Martinez-Mozos, O., Gil, A., Ballesta, M. and Reinoso, O., Interest point

detectors for visual SLAM, ser. Current Topics in Artificial Intelligence.

Springer-Verlag, 2008, vol. 4788, pp. 170–179.

[47] Maybeck, P. S., Stochastic Models, Estimation, and Control. New York,

NY: Academic Press, 1979, vol. I,II,III.

[48] Montemerlo, M., “FastSLAM: A Factored Solution to the Simultaneous Lo-

calization and Mapping Problem With Unknown Data Association,” Ph.D.

dissertation, Carnegie Mellon University, 2003.

[49] Montemerlo, M., Thrun, S., Koller, D. and Wegbreit, B., “FastSLAM 2.0:

An improved particle filtering algorithm for simultaneous localization and

mapping that provably converges,” in Sixteenth International Joint Confer-

ence on Artificial Intelligence (IJCAI), vol. 1156. Menlo Park, CA, USA:

AAAI Press, 2003, pp. 1151–1156.

[50] Moutarlier, P. and Chatila, R., “Stochastic multisensory data fusion for

mobile robot location and environment modelling,” 5th International Sym-

posium on Robotics Research, vol. 1, pp. 85–94, 1989.

[51] Murphy, K., “Bayesian map learning in dynamic environments,” Advances

in Neural Information Processing Systems, vol. 12, pp. 1015–1021, 2000.

[52] Murphy, K. and Russell, S., “Rao-blackwellized particle filtering for dynamic

Bayesian networks,” Sequential Monte Carlo Methods in Practice., pp. 499–

515, 2001.

85

[53] Mutambara, G. O., Decentralized Estimation and Control for Multisensor

Systems. 2000 Corporate Blvd., N.W., Boca Raton, Florida: CRC press

LLC, 1998.

[54] Newman, P. and Ho, K., “SLAM-loop closing with visually salient features,”

Proceedings of IEEE International Conference on Robotics and Automation,

pp. 635–642, 2005.

[55] Newman, P., Cole, D. and Ho, K., “Outdoor SLAM using visual appearance

and laser ranging,” IEEE Transactions on Robotics and Automation, pp.

1180–1187, 2006.

[56] Nguyen, V. and Siegwart, R., “Information relative map going toward con-

stant time SLAM,” in European Robotics Symposium 2008 Springer Tracts

in Advanced Robotics, vol. 44. Berlin-Heidelberg: Springer-Verlag, 2008,

pp. 134–144.

[57] Rao, B. S. and Durrant-Whyte, H. F., “Fully decentralised algorithm for

multisensor Kalman filtering,” Control Theory and Applications, IEE Pro-

ceedings D [see also IEE Proceedings-Control Theory and Applications], vol.

138, no. 5, pp. 413–420, 1991.

[58] Se, S., Lowe, D. G. and Little, J. J., “Vision-based global localization and

mapping for mobile robots,” IEEE Transactions on Robotics and Automa-

tion, vol. 21, no. 3, pp. 364–375, 2005.

[59] Smith, R. and Cheeseman, P., “On the representation and estimation of

spatial uncertainty,” The International Journal of Robotics Research, vol. 5,

no. 4, pp. 56–68, 1986.

[60] Smith, R., Self, M. and Cheeseman, P., “A stochastic map for uncertain

spatial relationships,” The Fourth International Symposium of Robotics Re-

search, pp. 467–474, 1987.

86

[61] ——, “Estimating uncertain spatial relationships in robotics,” Autonomous

Robot Vehicles, vol. 1, pp. 167–193, 1990.

[62] Smith, S. M., “A new class of corner finder,” in 3rd British Machine Vision

Conference. University of Leeds, 1992, pp. 139–148.

[63] Sukkarieh, S., Nettleton, E., Kim, J. H., Ridley, M., Goktogan, A. and

Durrant-Whyte, H. F., “The ANSER Project: data fusion across multi-

ple uninhabited air vehicles,” International Journal of Robotics Research,

vol. 22, no. 7-8, pp. 505–540, 2003.

[64] Tardos, J., Neira, J., Newman, P. and Leonard, J. J., “Robust mapping

and localization in indoor environments using SONAR data,” International

Journal of Robotics Research, vol. 21, no. 4, pp. 311–330, 2002.

[65] Thrun, S., “Robotic mapping: a survey,” in Exploring Artificial Intelligence

in the New Millenium, G. Lakemeyer and B. Nebel, Eds. San Francisco,

CA, USA: Morgan Kaufmann, 2002.

[66] Thrun, S., Burgard, W. and Fox, D., “A probabilistic approach to concurrent

mapping and localization for mobile robots,” Autonomous Robots, vol. 5,

no. 3, pp. 253–271, 1998.

[67] Thrun, S., Fox, D. and Burgard, W., “Monte Carlo localization with mixture

proposal distribution,” in Proceedings of the AAAI National Conference on

Artificial Intelligence, 2000, pp. 859–865.

[68] Thrun, S., Koller, D., Ghahramani, Z. and Durrant-Whyte, H. F. and

Ng, A. Y., “Simultaneous mapping and localization with sparse extended

information filters: theory and initial results,” Algorithmic Foundations of

Robotics V, 2003.

[69] Thrun, S., Liu, Y., Koller, D., Ng, A. Y., Ghahramani, Z. and Durrant-

Whyte, H. F., “Simultaneous localization and mapping with sparse extended

87

information filters,” International Journal of Robotics Research, vol. 23, no.

7–8, pp. 693–716, 2004.

[70] Thrun, S., Montemerlo, M., Koller, D., Wegbreit, B., Nieto, J. and Nebot,

E., “FastSLAM: An efficient solution to the simultaneous localization and

mapping problem with unknown data association,” Journal of Machine

Learning Research, vol. 4, no. 3, pp. 380–407, 2004.

[71] Vercauteren, T. and Wang, X., “Decentralized sigma-point information fil-

ters for target tracking in collaborative sensor networks,” IEEE Transactions

on Signal Processing, vol. 53, no. 8, Part 2, pp. 2997–3009, 2005.

[72] Walter, M. R., Eustice, R. M. and Leonard, J. J., “Exactly sparse extended

information filters for feature-based SLAM,” The International Journal of

Robotics Research, vol. 26, no. 4, pp. 335–359, 2007.

[73] Wang, Z., Huang, S. and Dissanayake, G., “D-SLAM: A decoupled solu-

tion to simultaneous localization and mapping,” International Journal of

Robotics Research, vol. 26, no. 2, pp. 187–204, 2007.

[74] Williams, S. B., “Efficient Solutions to Autonomous Mapping and Nav-

igation Problems,” Ph.D. dissertation, The University of Sydney, 2001,

http://www.cas.edu.au/content.php/292.html?publicationid=169&display-

page=1.

[75] Zhang, H., “Quantitative evaluation of feature extractors for visual SLAM,”

in Fourth Canadian Conference on Computer and Robot Vision. IEEE

Computer Society Washington, DC, USA, 2007, pp. 157–164.

88

