CHAPTER 2

MATHEMATICAL MODELS FOR IN-LINE HOLOGRAPHY:

CONTINUOUS AND DISCRETE CASES

2.1. Introduction

Mathematical models for continous in-line holography can be found in the literature
{1,32]. The systems approach, which models the physical phenomena using filters and other
elements which have an input-output description, is emphasized in this dissertation. It is
very useful to model 'holography as a system whose elements are well known, such as
filters, Fourier transformers, vector multipliers, etc. This approach gives a better
presentation and makes it easier to apply the results of the many fields in the broad area of
system science to holography. Furthermore, this approach simplifies the transition to

discrete case and gives hints about efficient computational implementations. Such a model

is presented in this chapter for Fresnel in-line holography.

Although not used later in this dissertation, the simplification of the model for the

far-field (Fraunhofer) case is also presented.

Digital processing of holograms and digital simulation of holography require discrete
models. In this chapter, two complete and working discrete models for Fresnel in-line
holography are presented which utilize the systems approach. In order to give complete
interpretatations of the discrete models, and to show their relationship to the continuous
case, a detailed analysis of sampling rate effects is also included. The implementations of
the models are given together with sample results. The discrete models presented in this

chapter are the basis for the overall work in this dissertation.
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Finally, an extension is made to multiple exposure holography, and simulation results

are shown.
2.2. Continuous Domain Modelling

2.2.1. Recording

The mathematical model given in this section is based on the simplified diagram of
Fig.3. The object distribution in the plane located at the origin (object plane) is represented
by the object function a(x,y). The object plane is illuminated by a plane wave. Therefore,
the field just after the object plane is given by 1-a(x,y). Using Huygens-Fresnel

approximation, the field distribution at a distance z from the object plane can be found as,
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Figure 3. Hologram formation.
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where, B iz the ‘amplitude of the illumination (assumed to be 1 from now on), and A is the

wavelength. The intensity of ’1!’2(35;)’) is recorded as the hologram (in-line Fresnel

hologram) I, (x,y),ie.,

2

]Z(x,y)=1,bz(x,y)1,b;(x,y) = }glxz(x,y)}.

Defining

j{z—(x 24y7)

b4

_ 1
hz(x,y) Tz exp

equation {2.1) can be written as:

wz(x,y)= {1 —alx,y)|* hz(x,y),

(2.2)

(2.3)

(2.4)

where, ** denotes two-dimensional convolution. Since the field is represented as a two-

dimensional convolution, it can be modelled as the output of a two-dimensional linear

system, where the system impulse function is hz(x ). The block diagram of the system

corresponding to hologram recording is shown in Fig.4. Note that 1%* hz(x,y)=1.

Therefore,
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Figure 4. two-dimensional system model for hologram recording.
¥ (xy) = [1 - a(x,y)] K hz(:c,y),
= 1% h (x,y) — alxy)* h_(x.y), (2.5)
=1 - alx,y)* hz(x,y).
The hologram I _(x,y), can then be written as:
Iz(x,y) = |1 — alx,y)* hz(x,y)iz. (2.6)

Expanding the magnitude square operation, we get,

LGy =1 -a"@y) ™ Blxy) - a@y) ™ hGy)+ pey)* hGyf @)
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Although it will be more clear after the section covering the reconstruction, it is worth
noting here that the second and third terms (linear terms) are of extreme importance, since
those are the ones which make it possible to reconstruct the hologram and generate the
twin-image. The fourth term is called the cross-term, which is not desirable. The

convolution with the kernel hz(x ,y) is an operation which disperses the energy of a space

limited smooth object a(x,y) to a wider region in the x,y plane {(wider as z becomes larger).
If the energy of a(x,y) is limited, then the energy of the linear terms of eq.(2.7) drops.
much below 1, everywhere, if z is sufficiently large. Therefore, the squares of these small
values (the cross-term) are negligible. For passive objects (i.e. if the object does not amplify
the incoming illumination and if it is not a source of illumination itself), which block
only a small portion of the incoming illumination, the argument is correct even for
moderate values of z which are not large enough to satisfy the far-field condition.
Therefore, the cross-term is negligible for most practical cases, both for far-field and Fresnel

holograms.

Another interpretation and a corresponding system model for in-line holography is

possible because of the specific properties of the convolution kernel hz(x,y). The

]

convolution given in eq.2.5) can be rewritten by expanding the quadratic phase of hz(x y)

as follows:
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(3.2 (va]
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|
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i (¢*+n )Iexpl iT (¢x +'r]y)] dtdn,

jrz h (x.y) [ [[1—a(g,n)]hz(g,n)] ,

where, ]—, denotes two-dimensional continuous Fourier transform with the transform

domain variables —Z}Tgl and %Zly, throughout section 2. Thus, the hologram, 7 z(x ), is,

l3I

- IF{{l-_a(g,m]hz(g,n)]’? 2.9)

i »

1,Ge9) = b G- [insh (.y) F[ {l—a(.{,n)]hz(g,n)]

4

which is obtained by using ihz(x,y)] = 3{;. The system block diagram for this

interpretation is given in Fig.5.
2.2.2. Reconstruction

Conventionally, the reconstruction is performed by reilluminating the developed
hologram plate with the same coherent illumination, and imaging in the same plane as the
hologram was originally recorded. Thus, this procedure is equivalent to replacing a(x,y)
{or 1- a(x,y) depending on negative or positive plate used) of eq;(2.1) by its hologram

I(x,y) multiplied by —1. The reconstruction can be easily demonstrated by noting the two
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Figure 5. Another system model for in-line holography.

properties of the convolution kernel hz(x ¥

hz(x,y) o h;(x,y)=6(x,y),

hz(x,y) ** hz(x,y)=h22(x,y).

Therefore, the field after the reconstruction, ¢_(x,y ), is:

qaz(x,y) = 1+Iz(x,y) ** hz(x,y).

Substituting eq.(2.7) into equation above, and again using 1** hz.(x ,¥) =1, yields,

(2.10.2)

(2.10.b)

(211
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;az(x,y) =2 — a'lx,y)** h;(x,y)** hz(x,y) — alx,y)** h_(ey)** h_(x.y)
(cross —term ) ** h, (x,y),

=2 — a'lx,y)}* 8lx,y) — alx,y)** haz(x ,y) + non—linear terms, (212)

]

=1-a*{x,y)+ 1 - alx,y)* hzz(x ,y)j + non—linear terms,

=1-a*lx,y)+ (> (x,y) + non-linear terms.

Note that the second term (sometimes together with the preceding DC) is the desired
reconstruction. The third term is the field of the hologram of the object distribution alx,y)
at a distance 2z, (Twice the distance of the original recording.) This term is called the

twin-image effect. As indicated before, the non-linear terms are negligible for most of the

cases. It is possible to use the conjugate kernel to get a(x,y) instead of « "(x,y). In optical
reconstructions only the intensity can be recorded. Therefore, a magnitude square
operation is necessary to complete the analysis which will generate new undesired cross
terms. In some non-optical reconstructions (such as digital) it may be possible to record the

+

field.

It must be noted that in the case of intensity recording, the DC level of the hologram

Iz(x,y) (or equivalently the DC level of the reconstructed field) can be intentionally

altered to get some specific results. One of the two extremes is adding a large DC so that
the non-linear terms generated by the "magnitude square” operation are supressed and

linear terms becomes dominant, i.e, if,

p (xy)=DC - a’lx,y) + 9, (x,y) + other terms, (2.13)
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then the intensity of the reconstruction, R2 (x,y)is:

Rz(x,y) = qoz(x,y‘)go:(x,y) ,
=DC?® - 2Re{ DC alx,y)} - 2Re{ DC ¥, (x,y)) (2.14)

+ {a(x,y) Ia +|‘¢22(x,y) ° 4 other terms.

If DC is large, then non-linear terms including the intensity of the desired reconstruction
are negligible, The dominant terms are the real part of the desired reconstructed object
field and the real part of the twin-image field. On the other hand, one may completely
eliminate the DC term (by setting DC = 0). In this case the intensity of the original object
is reconstructed, together with the intensity of the contaminating twin-image and other
non-linear terms. Either of the two extreme cases, as well as any other choice of DC may
be desirable for some specific application. High DC level may create a problem of visibility
in optical holography: the DC? term in the reconstruction {(see eq.(2.14)) may get too high
_ and consfzquentiy the visibility may get very poor. However, this is not a problem in

digital reconstructions since the DC level can be very easily modified at any time.
2.2.3. Simplification of the model for far-field (Fraunhofer) case

Using the property, ‘

F{hz(g,n)! = —j)\zh;(x,y) , (2.15)

eq (2.8) can be written as,
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v (xy)= jrz b (xy) IF’{h;(g,n)} - F[a(g,n)hz(g,n)}}
|

= —(jrz)? hz(x ¥ )h;(x,y) - j)\zhz(x ) F{a(_{,n)hz(gm)] . (2.16)

=1 - j}\zhz(x,y)F{a(ﬁ,n)hz(gm)} )

An observation based on eq.2.16) is that the field, 1}/z(x ,¥), is a kind of two-dimensional

amplitude modulation (DC shifted), where the modulated signal (carrier) is the quadratic
phase function, j)\zhz(x,y)=expi—;5(x2+y2)], and the modulating signal is the Fourier

transform given in eq.{2.16). Note that both the carrier and the modulating signal are

complex. If al¢,n) is spatially limited in a small region such that hz(g,n) is almost constant

(hz(.ﬁ,n) ® —,1}—\—) within the extent of a(¢,n) (far-field assumption), then eq(2.16) can be
jAz

simplified to yield,

*

f;[/z(x,y)= 1 - hz(x,y)F[a(g,n)

(217

-1 - Sy (2T, 2w
1 - h (ry)al( x,)\zy),

where - is the two-dimensional Fourier transform of a(¢mn). The intensity of the field

gives the far-field in-line hologram as,
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I (x,y) v, (xyhy, *ay) .

o (2.18)

=1 — 2Reth (x,yH (——x,——y ] th (x,y)4( X —-—Ey)

The far-field (Fraunhofer) approximation is not considered throughout this
dissertation. Later, it will be shown that the Fresnel approximation is already simple
enough for efficient computational simulations, In fact, the additional computational effort
is minimal, and the benefits in turn are significant, since Fresnel holograms are frequently

encountered; also the Fresnel formulation already embraces the far-field case,
2.2.4. Extension to three-dimensional case

Modelling and analysis throughout this dissertation are carried out for two-
dimensional object distributions. However, it is pointed out in Chapter 1 that the main use
of holography is to analyze object distributions in three-dimensional space. The extension
of the modelling and analysis given above to the three-dimensional object distribution case
~'is based on the assumption that the objects floating in a large volume of space are small in
dimension such that multiple diffractions are negligible. In other words, illumination
falling upon any object is a plane wave (the previously diffracted wave illuminating
another object is negligible compared to plane wave illumination) no matter where the
object is located. In this case, the three-dimensional volume can be thought to consist of
two-dimensional slices; each slice generates its corresponding field at. the recording
(hologram) plane, and because of the assumption above, the field corresponding to each slice
can be found using the model given in section 2.1. Since each slice is located at a different

distance z from the recording plane, the corresponding convolution kernels, hz(x ), have

a different distance parameter z. The intensity of the combined field has the same linear

terms for each slice as given for only one two-dimensional object distribution in section
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2.1. Therefore, the reconstruction explained in section 2.2 is still valid, but a specific slice is

imaged at a time, corresponding to the parameter z of the kernel used for reconstruction.

However, reconstruction' of a specific plane also includes "out of focus” reconstruction of
the other slices, which may become disturbing. The full three-dimensional distribution can

be reconstructed repeating the reconstruction process for each slice (focusing).
2.3. Discrete Domain Modelling
2.3.1. Sampling rate requirement for in-line holograms

The main purpose of this work is to extract the object distribution a(x,y) from their
holograms digitally. In order to accomplish this task, first the holograms must be digitized,
so that they can be transferred to a computer. Sampling rate (rectangular sampling is
assumed) must be chosen such that most (ideally all) of the information related to the
object distribution is preserved. Naturally, the frequency band of the hologram must be
known in order to determine the sampling rate. Since the field 'wz(x ,y) is the output of a
linear system, its frequency band is the intersection of the band of system impulse

function hz(x,y), and that of the input, 1~ a{x,y), i.e.,

band of *ipz(x,y) = band of hz(x,y) () band of [1 -—a(x,y)] . (2.19)

The system impulse function hz(x ,¥) is not band limited. Therefore, the frequency band
of wz(x ,¥) is exactly equal to the frequency band of 1— a(x,y). The immediate result of

this observation is that if the input object distribution is bandlimited, then 'gbz(x ,y) can be

! The term "reconsiruclion” as used in this paragraph is nol a good usage {or optical reconsiruction process, since
w hat is reconstrucled isonly the wave front. The reconstructed w ave front is then "imaged" at different disiances.
How ever, the digital case is conceptually different since there is no significance of a w ave froni. Inslead, depending
on the convolution kernel used, the images of individual planes are obtained directly from the hologram. Thus
each of them can be considered as a seperate "reconsiruction’ at a certain distance. The term 'reconsitruction” is
used in this second sense Lhroughout this dissertation.




-27_

sampled without losing any information, at a rate higher than the Nyquist rate of a(x,y).
Since 1 (x.y)=4 (x.y )1,!:2*(1: ,y), its Fourier transform, 1{x,») (transform domain variables

are u and v) is given by,
luw) = ¥ up)® vi-u,-v) , (2.20)

where \Pz(u ,») is the Fourier transform of ';"fz(x ,y). Therefore, Iz(x,y) is band limited, but
its upper frequency limits are twice that of '¢/z(x,y ), and that of a(x,y). The frequency
bands occupied by individual terms of Iz(x,y} (see €q.(2.7)), can be easily seen from Fig.6.
The linear important terms of Iz(x ,y) occupy the same band as a(x,y). Since the cross-

term is negligible most of the time and since it is an undesirable term anyway, there is no
need to determine the sampling rate according to its bandwidth. Therefore, the sampling
rate requirement for in-line holograms is the same as that of the input a{x,y), in oi“:ier not
to lose any information related to input object, due to sampling. The sampling rate
requirement of a(x,y) {equivalently the frequency band of it) can be determined from
- -either physical considerations or the desired resolution. In applications where it is desirable
to keep the cross-term, the sampling rtate requirement is. twice of that of a(x,y).

Undersampling results in aliasing as usual.
2.3.2. Digital simulation of in-line holography (Type I}

The digital simulation of in-line holography (recording and/or reconstruction)
requires the digital implementation of either one of the continupus systems shown in
Figs.4 and 5. The one which implements the system of Fig.4 is denoted as Type Il in this

dissertation, whereas the other one is called Type Il
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Figure 6. Frequency bands occupied by different components of hologram, a) Assumed
band of the input object distribution a(x,y), b)Band of a “(x,y) ** h:(x ,y), given a, «¢)

Band of a(x,y)** h_(x,y), given a, d) Band of |a(x y)* b (x ,y)lz, given a.

Lets consider the system given in Fig.4. A discrete system impulse function th(n Jm)

must be determined i:orresponding to the continuous impulse function hz(x ¥

As already mentioned, the system impulse function hz(x ,¥) is neither band-limited

nor space-limited. Lets define that the function a, P(x,y) is obtained from the original
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input function «(x,y), by passing it through an ideal low-pass filter with cut-off

frequencies u and v, ie.,
= K
a, ,(x.y) = alx.y) g, Xy (2.21)

Let us suppose that this band-limited function, a, P(x,y), is the input to the recording

system. Then the field, ¥_{(x,y ), is,

¢z(x,y) = [1 —aLP(x,y)] R hz(x,y) ,

(2.22)
- [1-aap)|m g, ) n Gy)
Now, define
| h, xy) =g, ey h (xy) . (2.23)
Thus,
v, @y) = [1-atep)]sn Gy . (224)

What is shown above is, in fact, the direct consequence of linearity: the assumption that
the input is band-limited is equivalent to the assumption that the system is band-limited.
Therefore, the discrete system impulse function can be obtained from the continuous

system impulse function by sampling it at a rate determined as discussed in section 2.3.1.
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Another observation is based on the fact that the band-limited system function th JD(x ),
drops quickly to zero beyond some spatial limit x_ and Y, In other words, it is almost

space-limited, This can be shown from the linear instantenous frequency, i.e.,

hz(x,y) = ¢ expijolx,y)}

d¢ v
u, = Jr = v 2x (2.25)
dd T
= = _—_2y,
Vi dy Az Y

So, the approximate cut-off points in space are,

x = if,?uc’

(2.26)
.
c T3y e

+

Thus, the approximate spatial extent of the kernel can be deduced from the cut-off

frequencies. Therefore, the discrete impulse response hz . (n,m) given by,

[ | N, -1 M, -1
h (XnYm) in|=——=— P E S
) 2 2 (2.27)
th(n,m) = .
0 else
{

characterizes the discrete linear system. N N and M p are odd integers and they give the

discrete size of the filter in dimensions n and m, respectively. They are defined as,
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x|
h - 211”‘“"}?"1]'}'1 ]
(2.28)
ty |
Mh = 2[{—};-]}+1 ,

where, X and Y are the sampling periods in x and y coordinates, respectively. (If an even

length filter is desired, then the domain of eq{2.27) can be changed to

N, N, ~M, h
ne [——2—— +1, 5" }, and m e [—5—— +1, —5- 1)} Similarly, the input function can be

discretized to yield,

aD(n,m) = a(Xn,¥m) . (2.29)

If the size of a, {(nm)is N[1 % Ma, then the discrete field q’i’zp {n,n) can be found as discrete
linear convolution of two finite size two-dimensional sequences, a, (n,m) and th(n,m).

There are many well known efficient methods to do this task [38-40]. The resultant discrete

"' field has the size (Nh +Na*1) x (M'JIL +M_ - 1). The final "magnitude square” operation to

get the intensity is trivial.

In order to increase computational efficiency, circular convolution can be used instead

of linear convolution, i.e.,

';{JZD (nm) = |1- a, (n ,m)}@@th (n,m). (2.30)

The implicit periodicity assumption of using circular convolution affects the results in the

form of overlapping and wrapping. If the size of the convolution is not large enough to
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cover the size of the resultant field sz(n,m ), as given above, then overlapping occurs.

This phenomenon affects the accuracy of simulations, and is more detrimental to the
reconstructions since the size of the reconstructed field is significantly larger than that of
recording (the size is (N_+2N, ~2)x(M_+2M, -2). This size expansion in the
reconstruction occurs only for the twin-image component (and also for some of the non-
linear terms) but not for the desired reconstructed object. Therefore, the effect is not
significant if the purpose is to reconstruct the object distribution. However, if the
simulation is done, for instance, to check the twin-image effect, then necessary precautions

must be taken, as explained above, to have a faithful simulation.

Discrete simulations based on the discretized version of the continuous model of Fig.4

{Type I) using circular convolution are done using the formulation given below,

The continuous Fourier transform of the convolution kernel hz(x,y) is known

analytically as,

|

]
CH V)= /_’[h (x,y)] F1~———exp|; (.12+y2)lr (u2+v2)}l. (2.31)
l ]
The band-limited version is used for the simulations. Therefore,
. AZ :
522 (2009
exp T4 Uty Iuléuc and Ivlévc , (2.32)

0 else .

|
7 Lp(u,v)=1
|
{
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", P(u ,v) is sampled to get the discrete version:
HzD(k,l)mHzLP(Uk,Vl) , : (2.33)

where, U and V are the sampling periods in coordinates # and v, respectively. It is shown

in section 2.3.1 that th P(x,y) is almost space-limited. In order not to have overlapping in

(x,y) domain (the size of the object is assumed to be negligible compared to the size of the

kernel), it is necessary to have (also see eq.(2.26)),

7w Az
[ S T
(2.34)
_ﬂ_ o = AZ_ .
v Ve 2 Ve

(If the size of the object is not negligible, then x and y_in eq.(2.24) above, must be

N X MY
.- replaced by xc+—i2‘—— and yc+—-——;~~ .) Suppose that the size of circular convolution is

N x M. In order to utilize the complete range N x M, to represent H__(k.l), the

sampling rate must satisfy,

Us— =u ,
(2.35)
Vo =¥

Combining eq.(2.34) and eq.(2.35) yields,
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no, AN
U  2n 2
(2.36)
T Az ., N
e Myil
T )
which results in,
U = __2_71__
(hzN
(2.37)
vV = _ 2
(2N

Furthermore, if the sampling in (x,y) domain is carried out to have exactly N samples per
period in x coordinate (period = 25/ U ), and exactly M samples per period in y coordinate,

(period = 2m/ V), then,

2
XN = ==,
! , U
(2.38)
_ 2w
YM v -

In order to utilize the complete region N x M, also in {x,y} domain, the inequalities in the

equations above must be converted to equalities. In this case, from eq.(2.37) and eq.(2.38),

W%
- |2
X N , |
(2.39)
y = |AZ g
M
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In practice it is very hard to achieve such precision, but it is not necessary to do so since
slight overlappings (larger sampling period in u,v domain), or slight waste in the usable

region (smaller sampling period in the u,v domain) in the x,y domain is acceptable.

In order to efficiently compute the circular convolution (see Fig.7), the discrete Fourier

transform of the N x M input object is taken. Because of the restrictions imposed by the

fast Fourier transform algorithm used, the size of the circular convolution is restricted to

be N =27, and M =27, where r and s are positive integers. The symmetrical discrete

]
N N orlzl—%d—«rl,iw—,is

kernel HZD(k 1), which is zero for k & |- 5 +1,._2_ ;

periodically extended by duplicating it beyond that region. The N x M portion of this
periodic signal corresponding to k € [0,N-1] and [ € [0, M-1], is multiplied by size
N x M discrete Fourier transform of the input. Finally, an inverse discrete Fourier

transform is taken to get the periodic field q&zD(n ;) A point-by-point magnitude square

operation gives the desired result I . {n,m), which is the hologram.

r _—— = = T T T e e e e T
I
i 1
| l
[_+ sz(nsm) l
DFT,, .. IDFT, .} p | : ia_,_,
aD(n,m)l |12D(n,m)
|
| |
H_ G} ]

Figure 7. The discrete implementation of the continuous system given in Fig.4,
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The conclusion on the digital simulations using circular convolutions can be
summarized as follows: the noise-free (assuming that the digitization is negligible)
hologram of a periodic two-dimensional object, whose each period is an exact replica of the
displayed N x M image, is generated, resulting in a periodic hologram; one period of it is

displayed. (This statement is correct whether there is overlapping or not.) (See Fig.8.)

I
r - r
|

= -

- F
Nt
I

—
|

object

Q

t_
|
T rr - r T
|
T
|

.1__
I
I
T
l
—

periodic object

wrapping and
overlapping

displayed
period

periodic hologram

Figure 8. The effect of implicit periodicity.
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2.3.2.1. Results- The simulation results (Type I} given below are implemented following
the formulation above (See Fig.7). The same sampling periods are used for x and y

coordinates. Therefore,

X =Y and U Vo, (2.40)

Also a sguare two-dimensional circular convolution size of 512 x 512 is selected. The
circular convolution is efficiently impiemented using a two-dimensional fast Fourier
transform algorithm. For the purpose of normalization, a new variable o is introduced,

such that,

e oo M ye
a3 ?\ZX (2.41)

Therefore, the equality condition of eq.(2.34) is equivalent to « = 1. If the simulation of the
reconstruction stage of an actual optical hologram is done, then the sampling of the optical
_, hologram is adjusted to have « close to 1, using eq.(2.41). Note that the parameter a is the
only parameter which characterizes the overall hologram system, within a gain factor, once

the size is set as constant N x N, since,

’

¥

] [y
w = K‘expljfEXz(nzﬂng) = K expiluz%(nz-rmaj . (2.42)

The parameter « also uniquely defines 17 (k! ): from eq.2.41) and eq.(2.38), we can write,
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A Az ypye (2.43)
o 452 '
So,
1 = AZ
ME.N = I??U2 . (2.44)

Therefore HzD(k,l) can be written as,

sl oma e
I=3 N(k +l )J . (2.45)

]
H (k1) =expl-j 22 UAK2419)| = exp
2D | 4n «

The synthesized images displayed below are obtained using a COMTAL Vision One/20
image processing system. Each has 512 x 512 pixels, and each pixel has 256 gray levels. An
image whose hologram is to be simulated is transferred to a VAX/11 mini-computer. The

| compu;tations are performed using real arithmetic for accuracy, by executing the subroutine
given in Appendix A. The results of the computations are converted to 256 gray level
images. For most of the pictures, this is done by assigning the lowest pixel value to 0, and
the highest one to 255. This assures the maximum use of the dynamic range of the gray
scale, but the DC level shift and the gain used to achieve this result are different for each
image. The resultant images are transferred back to the image processing system for

display. For all synthesized objects, white (gray level 255) corresponds to total

transparency, whereas black (gray level O) represents completely opaque areas.
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Figure 9. A synthesized object,
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Figure 10. Profile of the object of Fig.9 through center.

255
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Figure 11. The simulated in-line Fresnel hologram (Type I) of object shown in Fig9. a=1
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255

Figure 12. Profile” of the hologram of Fig.11 through center.

2 Profiles given in this disserlalion are graphic representations of gray levels on a cross-seclional line of an image.
The graphs are on w hite background, and for visual convenience, lhe area belw een Lhe graph and Lhe cenler gray
level (128) is filled w ith black.




Figure 13. Digital reconstruction (Type I) from the hologram of Fig.11.
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255

128

Figure 14. The profile of reconstruction of Fig.13 through center.
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Figure 15. Another synthesized object.
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Figure 16. Simulated in-line Fresnel hologram (Type 1) of object shown in Fig.15. u=038.

Since the object is very small compared to circular convolution size this hologram
is a typical far-field hologram.




Figure 17. Digital reconstruction (Type I) from the hologram shown in Fig.16.
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Figure 18. Another simulated object.




Figure 19. Simulated in-line Fresnel hologram of object shown in Fig.18, «=1.05.

Note that the object size is almost same as the circular convolution size. Therefore,
overlapping effect is significant.
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Figure 20. Digital reconstruction (Type I) from the hologram shown in Fig.19.
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Figure 21. A digitized optical hologram.




-52.

Figure 22. Digital reconstruction from the hologram of Fig.21. a=0.962.
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2.3.3. Digital simulation of in-line holography (Type II)

The digital simulation based on the system model of Fig.5 is called Type II. The

formulation for the continuous case is given in eq.(2.9) as

o1 X

I (xy)= a—z—— Lff[l a({,n)lexp

Xy— 131

(§2+'r}2)

exp! J——(£x+ny)] d.fdn'z (2.46)

Suppose that the variables ¢ and 7 are discretized using sampling periods P and ()
respectively. Also suppose that the variables x and y are sampled with periods X and ¥

Let the input function {l—a( ,'r])] be space limited, such that it equals zero for { ¢
] q

[0, (N-DP]or n # [0,(M-1)Q ] In this case, eq(2.46) can be written in discrete

domain as,

I am)=I (nX m¥)=
zD z

- Zl MEI 1~alpP qQ)]exp[jjw(PBP2+quz)]
E I Az (2.47)

|
exp [—j%g (PXpn +QYgn)

If the sampling periods X,¥ ,P and Q are chosen to satisfy,
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2n _ 2w
PR
(2.48)
27 2w
e T
then eq.(2.47) can be written as,
IZD(n,m)=
1 -1 M1 ] I fz (2.49)
— 3 [l —-a (p,q)}exp (P2 2+0%g%)exp J(——np+——mq |
(Az)? |p=0 q— |

From eq.(2.49) and from the definition of discrete Fourier transform, the equation above

becomes,

[a¥]

(2.50)

I (nm) = —— DFTI [I—aD(p,q)] exp{%(PzthZqz)

| S —

Note that both variable sets n,m and p,g correspond to space variables, for hologram and

input object, respectively, even though they are related by a discrete Fourier transform.

As in Type I, Type 1l simulation also implies periodicity through the discrete Fourier
transform used. However, there is a delicate conceptual difference between the periodicity
of the two cases: the periodicity of Type I is induced by circular convolution, whereas the
periodicity of Type II is the outcome of a single discrete Fourier transform. In order to
show the nature of periodicity in Type II, suppose there is an illuminated (space limited

illumination) continuous domain object distribution, as indicated above. (This is equivalent
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to saying that there is a window just in front of the object distribution which passes the
light in a limited space, but blocks the rest.) The continuous hologram obtained from this

space limited illumination has a strong edge effects as a result of the sharp boundary which
limits the illumination. Now, suppose that the illuminated object distribution [i—a(.é,'r;)] is

discretized by sampling. Since the hologram field is given by a Fourier transform
relationship, the effect of discretization in (¢,7) domain results in shifting-and-adding in
(x,y) domain. Depending on the sampling rate, the separation of the shifts will be
different. If the sampling rate in ({,n7) domain is too high, then the individual holograms
with strong edge effects will not overlap. Otherwise, there will be overlapping.
Analytically, sampling in (£7) domain with sampling periods P and Q, respectively,

results in a continuous periodic hologram in (x,y) domain, as:

[x's]

‘I’z(x,y)= 2, i Iz(x—%z—r,y~%§s), (2.51)

Fe=—mg=—m

where [ z(Jc,y) has the edge-effect as indicated above. Similarly, sampling of I z(Jc ¥

implies the assumption that the input object distribution is also periodic, where the

periodicity is induced by shifting-and-adding, i., if,

[ {1 ‘a(fﬂ])] g5|£§£ ,and f;sgimu;
E
{

(2.52)

0 else

then the periodic input will be,
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Fem = Y % sy (253

r=—eng=—m

Note that from eq.(2.48), the periods in {¢,7) domain, %{2—, and %,‘3 are found as,

Az
2o = P ,
¥ N
: (2.54)
Az _
Y e

which is the expected result of using the discrete Fourier transform for an N x M
sequence, where the sequence Is obtained from a continuous function with sampling
periods P and Q. Once, the sampling periods in the (¢7) domain are fixed, then the
sampling periods in the {x,y) domain are also fixed from eq.(2.54). Note that the
corresponding periods in the two domains are not necessarily equal. Therefore, the spatial
extents of one period in two continuous domains are different. So, in the hologram
““domain, if is possible to get results beyond the illuminated region if one period is larger
than the size of the illumination. In this case, the portion of the result lying out of the
region is the edge effect oscillations around zero level, with overlapping from other periods.
On the other hand, if the period is smaller than the object illumination size, then

overlapping of holograms from adjacent periods oceurs. The first case corresponds to

1%
Az
P T ]
< LN
(2.55)
1]
AZ
< e )
¢ M
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and the conditions for the second case can be obtained by changing the direction of
inequalities above. The equality case of eq.2.55) is interesting. In this case, the
corresponding sampling rates in the two domains are equal, ie., X =P and ¥ = Q. Alsoin
this case, the overlapping of the edge effects occurs such that the edge-effect components
from adjacent periods cancel each other. The formulations of Type I and Type II are
exactly equivalent only in this case. To show this, first a coeflicient, 8, is defined similar to

o, i.e.,

2R TR
g M )\zQ
(2.56)
2 5 pe
“ N Az
The conditions,
%
Az
X =P =2 s
N
' (2.57)
' %
AZ
Y = - Yy [
Q M

are equivalent to have a =1 and g=1. In this case, the discrete normalized periodic kernel

D i p N M F ) '

So, Type I formulation (see eq.(2.30)) can be written as (see eq.(2.58),
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2

N-1M 1 . N
Iam=| S 5 [ra, el i Ea-pPein-gd] | . @59
p=04¢=0 7 N M

Expanding the quadratic exponents as in eq.(2.8), we get,

|
Ila,m) = l expi—;&nhj—ma)‘j

| M
(2.60)
N-1M -1 [
Z Z [l—aD(p,q)]exp[j(%p%r%qz)lexp wj(%pn+—2j}qm) ,
pxo q=0 I. I
which can be reduced to,
| 1M1 [ m 7 2n 2w i
Ing)=13 3, l—aD(p,q)]explj(jv—pE«rm—qz) exp _j(ﬁpn+ﬁqM) , (2.61)
|p=0 ¢=0
where it is equal to the formula for Type Il simulation:
)
I. w o, T 2 1
Ia,m) = DFTI [I—aD(p,q)lcprJ(—ﬁp *57 9 ) l I . (2.62)
J

I |

The Type II simulation can be summarized as follows: periodically shifted
overlappings of the hologram of a two-dimensional object distribution which is

illuminated by a finite-extent illumination (window) is generated, and its one period is
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displayed. Type I and Type Il simulations are exactly equivalent only if some certain

conditions are met related to sampling.

A final remark is about the computational complexity of the Type II simulations. The
amount of computation required for a Type II simulation is the same as that of the far-field
case (see eq.(2.16)) since both of them, require a single DFT computation together with a
single array multiplication and a final magnitude squaring. Therefore, computing the more
accurate Fresnel hologram requires the same computational effort as computing the far-field
hologram. Even in Type I simulations, the difference of computational requirement of
Fresnel simulations compared to the far-field case is an additional discrete Fourier
transform; The extra computational effort is justified, however, not only by the increased
accuracy, but also because of the enourmous additional range of possible simulations that

can be performed.

2.3.3.1. Results The simulation results {Type II) given below are implemented following

the formulation above. The same sampling periods are used for ¢ and 7 coordinates so that,
P=0Q and X =Y . (2.63).

An object size of 512 x 512 is used throughout the simulations shown. The discrete Fourier
transform is efficiently implemented using the same two-dimensional fast Fourier
transform algorithm as in Type 1 simulations. Note that, computationally, Type 11
simulations are significantly more eficient compared to Type I, since one fast Fourier
transform operation is completely eliminated. But, if the parameter o is not equal to 1, then
there is strong edge-effect in Type II. Furthermore, if «#1, then the sampling periods in the
two space domains corresponding to the input object and the hologram are different in

Type 1. (They are always equal in Type 1.) During display, one sample corresponds to one
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pixel which has a certain fixed size. Therefore, even though the physical sampling periods
are different in two domains, they are displayed as if they were same. The result is a
change in the scale for the input object and the hologram. If « <1, then the sampling
period X, is larger than P. So, the image in (x,y) domain will look smaller when

displayed. The scale is proportional to a,

Therefore, if the simulation of hologram recording is to ibe done, « can be set to be 1,
and in this case Type Il simulator must be preferred to Type I‘since they both generate the
same result and since Type II is much more efficient computationally. For digital
reconstructions from optical holograms, « can not be made exactly one, therefore it is
better to use Type I simulator to avoid scale change and strong edge-effects (The edge-effect
in Type 1 is only due to mismatch of the gray levels at parallel edges of the hologram
portion, which is not significant in most of the cases.) It is possible to decrease the edge-
effect by using a window which softens the sharp edges of the input object, but it is not

done in the results shown to emphasize the difference of the two simulations.

The following images show some applications of Type Il simulator. The synthesized
'objects are generated using a COMTAL Vision One/20 image processing system, and as in
| Type 1, each has 512 x 512 pixels, and each pixel has 256 gray levels. A VAX/11 mini-
computer receives the image from the processor, and generates the result by executing the
subroutine given in Appendix B. The computations are done using real arithmetic, but the

output is converted to 256 gray levels, as in Type | case, for display at the image processor.
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Figure 23. A synthesized object.
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Figure 24, Simulated hologram (Type II) of the object shown in Fig.23. (a=1).
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Figure 25. Digital reconstruction (Type 1}) from the hologram of Fig.24.
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Figure 26. A digitized optical hologram.
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Figure 27. Digital reconstruction (Type 11} from the hologram shown in Fig.26. «=0.930.

Note that the scale is different in the hologram and the reconstruction as indicated
in the text. Also, the edge-effect is clearly visible.
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2.4. Comparison of Digital Reconstructions with Optical Reconstructions

The optical recording and reconstruction form a two-step process, where the same
process of recording is repeated for reconstruction. Every physical process inevitably adds
distortion, mainly for two reasons: system imperfections and random noise. System
imperfections arise either because of the imperfect components (such as lenses, coherence of
laser, quality of recording film in optical holography) or because of the very nature of the
process which does not match the mathematical model given. For instance, in in-line
holography, the optical retrieval of the object distribution is solely based on the nice
property of the mathematical model as given in eq.(2.10.a). However, the model is based on
approximations, and nature does not work exactly as the model. Therefore, the optical
recording process deviates from the ideal case, and a subsequent optical recording makes the

deviation worse,

On the other hand, in the simulations given in previous chapters, where both the
hologram and the reconstruction of synthesized objects are simulated, the overall digital
process follows the strict mathematical formulation that the simulations are based on. In
.. this case, it is known beforehand that the discrete version of eq.(2.10.a) holds. Therefore,

the object component of the reconstructions are exactly the same as the original object.

In the case of optical recording and digital reconstruction, the overall process still
deviates from the ideal case, but since the imperfect second stage (reconstruction) is replaced
by an ideal computational one (assuming digitization effects are negligible), the overall
system is more close to the ideal case than the pure optical process. There is no additional
random noise (except the negligible quantization error due to digitization) and
imperfections in the digital reconstruction stage. Therefore, digital reconstruction from
optical in-line holograms, as given in previous sections, is a superior technique compared to

the optical reconstruction.
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The following pictures demonstrate the difference,
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Figure 29. Digital reconstruction (Type 1), corresponding to the optical reconstruc-
tion of Fig.28. «=0.970,
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Figure 30. The digitized hologram portion from which the reconstruction of Fig.29
is obtained.
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Figure 31. Another optical reconstruction.
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Figure 32. Digital reconstruction (Type 1), corresponding to the optical reconstruc-
tion of Fig.31. a=0.760.
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Figure 33. The digitized hologram portion from which the reconstruction of Fig.32
is obtained.
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2.5. Multiexposure Holography Simulations

Multiexposure holograms are made by recording superpositions of many holograms.

Thus, a multiexposure hologram 7 (x,y) is given by,

1

gl

I{xy) = I (x,y) . (2.64)

k

1

Since each individual hologram is given by (non-linear terms are assumed negligible, see

eq.(2.7)),

]z =1 _a;:(x,y)** h; (x,y)——ak(x,y)** hz (I,y) ) (2-65)
. k .

the multiexposure hologram becomes,

Nl

o llxy) = 1-

[
= aEy) iy Gey) +a ey Gy) | (260

k=1

Reconstructions from this hologram are performed by reilluminating it with the same
coherent plane wave, and imaging at a distance corresponding to one of the exposures, for

instance Z; In this case the reconstruction of a, (x,y) is superposed onto its twin-image, as

discused in section 2. However, many additional terms are also produced in the
reconstruction due to the other components of the multiexposure hologram. These are the
so called “out of focus” reconstructions of object distributions located at planes other than

zj . Analytically,
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il

¢, (x,9) =1+ Ixy)*™ h (x.y),

PN S _ 1 K -
2 % aj(x,y) 7 aj(x,y) hzzj(x,y)
(2.67)

K

L >, Ia;(x,y)** R xy)* b (xy)+a ey)®™ h (xy)*™ h (x,y)

K k=1 | % % k % z;
k#j

Using the properties,

*
h, (xy)®h Gy)=h _ (y), (2.68.2)
& ; J L .
and,
h )™ h (xy)=h_, (xy). (2.68.b)
z, z; z, %z e

" the reconstructed field, . (x,y), can be written as,
J

PN TR 1 ** _
sz(x’y) 2 Kaj(x,y) Kaj(x,y) hzzj(x,y)

% Y g ley)** hz._z’(x,y) +a (x,y)* hz'h_(x,y) .
k=1 ik 7k

k+j

From the formula above, it can be seen that the reconstruction has the desired object

a;(x,y), and its twin-image. In addition to that, each single component of the
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multiexposure hologram, other than [ . (x,y), generates fwo additional terms which are
J

themselves hologram fields: they correspond to hologram fields of ak(x,y) at distances
Z_-,- —z, and zj +zk, for each k. Among these hologram fields, the ones corresponding to

small distances could be bothersome since they correspond to almost focused

reconstructions,
2.5.1. Simulation Results

Some simulations are done using the Type I simulator of section 2.3.2. Fig.34 shows a
simulated double exposure hologram of synthesized objects. One of the hologram
comﬁonents has the normalized hologram coeflicient a=11, and the other one has a=12.
(See section 2.3.2 for definition of «.) They are superposed using the image processor. Two
reconstructions are obtained from the same hologram: one for u=1.1, and the other for
«=1.2. The two reconstructions are shown in Figs.35 and 36. The four terms can be easily
seen from each reconstructions. Two of them correspond to the focused object and its
twin-image, whereas the other two are the holograms of the other object, at distances as

formulated above.

v
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Figure 34. A simulated double exposure hologram.
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Figure 35. Reconstruction from the double exposure hologram of Fig.34. a=1.1.
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Figure 36. Reconstruction from the double exposure hologram of Fig.34, a=1.2,




