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Preface

Linear algebra is not only a powerful mathematical theory; it is also a useful compu-
tational tool supported by abundant computer software. It provides the theoretical
foundations of the concept of linearity as well as efficient methods for solving prob-
lems formulated within this framework. For these reasons it has found applications in
many diverse fields outside mathematics, ranging over various engineering disciplines,
computer science, economics, statistics, and more.

This book is intended to introduce the theory and applications of linear algebra to
engineering students, especially those in electrical engineering. It is motivated by the
observation that, although the concept of linearity is introduced and widely used in
many basic and core courses of a typical engineering curriculum, only a few graduates
gain a full understanding of the fundamental role it plays in formulation and solution
of many engineering problems. Only in a high-level graduate course does a student
learn that matrices, linear differential operators and transfer functions, all being linear
transformations between suitably constructed linear spaces, are essentially the same.
Only then can he/she get a full grasp of the meaning of the impulse response of a
dynamical system and the Fourier transform of a signal, and relate the harmonic
content of a periodic signal and the modes of an electromagnetic field or a vibrating
structure to the coordinates of a vector in space.

The main objective of this book is to provide students of electrical engineering a
firm understanding of the concept of linearity at an early stage of their program. It is
built upon a rigorous treatment of vector spaces and linear transformations, which are
motivated by linear systems of algebraic equations and first and second order linear
differential equations. A second objective is to provide the students with a knowledge
of theoretical and operational aspects of matrix algebra that will be sufficient for
their undergraduate and early graduate curricula. Finally, the third objective is to
introduce linear differential equations as a useful application of linear algebra while
providing the students with elementary material that they will need in a concurrent
study of dynamical circuits and systems.

This book is primarily a text on linear algebra supplemented with linear differential
equations. Although merging linear differential equations in a text on linear algebra
is observed to be pedagogically useful in connecting different concepts, the book is
not intended to serve as a text on differential equations. This is evident from its
contents, as many important topics covered in an introductory course on differential
equations, such as series solutions and introductory partial differential equations are
left out; other topics such as first order nonlinear differential equations, numerical
solution techniques, and Laplace transforms are mentioned only briefly.

The main difficulty I faced in preparing the manuscript was to make a choice for
the content and presentation between conflicting alternatives: Amount of material
to be included versus suitability for a one-semester or two-quarter course, emphasis
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iv Preface

on theory versus operational aspects, mathematical formalism versus explanation of
implications of the results, and finally examples versus exercises.

• I preferred a self-contained text to one tailored for a specific course. I included
most of the material that engineering students might need throughout their
undergraduate curriculum, so that they can use it as a reference book even if
not everything in the text is taught in a specific course. Another reason for
this choice was to make the text suitable for self-study. (However, I offer some
suggestions about what might be included in a one- or two-quarter/semester
course.) To help the instructor/reader in selecting the material to be covered in
a quick treatment, I indicated more advanced and/or abstract topics (including
examples) with an asterisk (*). However, this does not mean that all the marked
sections or examples can be omitted without destroying the completeness of the
book.

• Although I gave priority to a logical development of the theory, I explained,
whenever possible, what the theory is good for. For example, the basic defini-
tions and properties of matrices are followed by systems of linear equations to
help the reader appreciate the convenience and power inherent in the matrix
formulation of linear equations. I encouraged the student to use MATLAB to
solve matrix-related problems starting immediately in the first chapter without
substituting it for the underlying theory. I avoided integrating MATLAB with
the text, leaving that to the instructor. However, I provided sufficient exercises
to demonstrate MATLAB’s power and, to a lesser degree, its limitations.

• Although I avoided a Definition-Theorem-Proof structure to make the reading
easier and less dry, I did not state any result without a proof except when:

– I thought the reader could provide a fairly straightforward proof indepen-
dently by simply imitating the steps of similar results for which a formal
proof is given, or

– In few instances, the proof of the stated result is beyond the scope of
the book, but its implications are too significant to omit. In such cases I
tried to provide insight into the meaning and the implications of the stated
result.

I endeavored to develop the material from the concrete to the abstract, in most
instances explaining the need to introduce a new definition or result. Rather
than leaving the often difficult task of establishing a connection between a new
result and a previous one to the reader, I attempted to explain the logic behind
the development, often by referring to previous examples.

• I provided sufficient examples to explain the theoretical development. How-
ever, I avoided multiple similar examples except when they emphasize different
aspects of the same concept. Instead of filling the pages with redundant ex-
amples, I preferred to include many exercises with hints to formulation and/or
solution. Again, I avoided similar exercises that differ only in the numerical
values involved.



Preface v

The first three chapters of the book contain the most essential material of a first
course on linear algebra, where the concepts of vector spaces and linear transforma-
tions are built upon linear algebraic and differential equations.

Chapter 1 is a self-contained treatment of simple matrix algebra, where basic
definitions and operations on matrices are introduced and systems of linear algebraic
equations are studied. Properties of matrix addition and scalar multiplication are
stated in a manner consistent with the corresponding properties of vector addition
and scalar multiplication to prepare the student for the more abstract concepts to
follow. The Gaussian elimination is introduced not only as a systematic approach
to solving linear equations, but also as a theoretical tool leading to the concepts of
rank and particular and complementary solutions, which in turn pave the road to a
more abstract treatment of linear equations in terms of the kernel and image of the
associated linear transformation. Through simple examples and exercise problems
the student is urged to use MATLAB to check the results of their hand calculations
and to digest the idea that a matrix is a data unit (like a number) on which they can
perform some operations.

In Chapter 2 first and second order linear differential equations are studied with
emphasis on the constant coefficient case. The three objectives of the chapter are (i)
to provide the students with solution techniques for simple differential equations that
they can immediately start utilizing in concurrent courses on circuits or dynamical
systems, (ii) to further prepare the student for linear transformations by repeating
the concepts of particular and complementary solutions in a different context and by
introducing linear differential operators, and (iii) to introduce the basics of numerical
solution techniques so that the student can begin to use MATLAB or other software,
and at the same time, to give an idea of linear difference equations, which involve yet
another type of linear transformation.

Chapter 3 contains an abstract treatment of vector spaces and linear transforma-
tions based on the ideas introduced in the preceding two chapters. The concept of a
vector space is extended beyond the familiar n-spaces with the aim of unifying lin-
ear algebraic and differential equations under a common framework. By interpreting
an n-vector as a function defined over a finite domain, the student is prepared for
function spaces. The concept of basis is given special emphasis to establish the link
between abstract vectors and the more familiar n-vectors, as well as between abstract
linear transformations and matrices. Discrete Fourier series are introduced as an ex-
ample of representation of vectors of a finite-dimensional vector space with respect to
a fixed basis. This chapter also contains some more advanced topics such as inverse
transformations, direct sum decompositions, and projections.

Chapter 4 introduces rank and inverse of matrices. Rank is defined in terms of
the row and column spaces. Left, right, two-sided and generalized inverses are based
on elementary matrices without reference to determinants. Concepts of equivalence
and similarity are related to change of basis. The LU decomposition is studied as a
natural and useful application of elementary operations. Determinants are considered
mainly for traditional reasons to mention the role they play in the solution of linear
equations with square coefficient matrices.

Chapter 5 deals with the eigenvalues, eigenvectors and diagonalization of square
matrices from a geometric perspective. The diagonalization problem is related to the
decomposition of the underlying vector space into invariant subspaces to motivate
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the much more advanced Jordan form. The chapter concludes with a treatment of
functions of a matrix, the main objective being to define the exponential matrix
function that will be needed in the study of systems of linear differential equations.

In Chapter 6 we return to linear differential equations. As opposed to the tradi-
tional approach of treating nth order linear differential equations and systems of first
order linear differential equations separately, and in that order, systems of differential
equations are studied first and the results developed in that context are used to derive
the corresponding results for nth order differential equations. This is consistent with
the matrix theoretic approach of the text to the treatment of linear problems, which
relates the abstract concepts of bases, direct sum decomposition of vector spaces, and
the Jordan form to solutions of a homogeneous system of linear differential equations
and their modal decomposition. The method of undetermined coefficients is included
as a practical way of solving linear differential equations with special forcing functions
that are common in engineering applications.

Chapter 7 treats normed and inner product spaces with emphasis on the concepts
of orthogonality and orthogonal projections, where the Gram-Schmidt orthogonal-
ization process, the least-squares problem and the Fourier series are formulated as
applications of the projection theorem.

Chapter 8 deals with unitary and Hermitian matrices for the purpose of presenting
such useful applications as quadratic forms and the singular-value decomposition,
which is related to the least-squares problem and matrix norms.

I was able to cover most of the material in a 56-class-hour one-semester course
I taught to a class of select students at the Electrical Engineering Department of
Bilkent University. However, an average class of second or third year students would
need two quarters (about 60 class hours) to cover the essential material. For such a
course, Sections 2.6, 3.4.3, 3.6 and 4.5 may be omitted, and the material in Sections
1.5, 3.4.2, 5.4, 6.2 and Chapter 8 may be discussed briefly. For a one-semester course
I suggest omitting this material completely.

The text was developed over some years of my experience with teaching linear
algebra at the Middle East Technical University and Bilkent University. My long
time friend and colleague Özay Oral and I prepared some lecture notes to meet the
demand for a text for a combined course on Linear Algebra and Differential Equations.
Although the present text is completely different from those lecture notes, both in
its approach and in contents, it would not have come to fruition without those initial
efforts. I am indebted to Özay for his motivation and encouragement that led first to
the lecture notes and eventually to the present version of the text. Thanks are also
due to my colleagues at the Middle East Technical and Bilkent Universities for their
suggestions and constructive criticisms.

M. Erol Sezer
sezer@ee.bilkent.edu.tr
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Chapter 1

Matrices and Systems of Linear

Equations

1.1 Basic Matrix Definitions

An m × n (read “m-by-n”) matrix is an array of mn elements of a field F arranged
in m rows and n columns as

A =











a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn











A matrix with m rows and n columns is said to be of order (size, dimension) m×n.
We denote matrices with uppercase letters and their elements with corresponding
lowercase letters, and use the notation A = [ aij ]m×n to describe an m × n matrix
where aij typifies the element in the ith row and the jth column. When the order
of A need not be specified we simply write A = [ aij ]. The set of all m× n matrices
with elements from F is denoted by F

m×n. Throughout the book we will assume that
the underlying field F is either R (in which case A is a real matrix) or C (in which
case A is a complex matrix).1

A 1×n matrix is called a row matrix or a row vector, and an m× 1 matrix is
called a column matrix or a column vector.2 We denote row and column vectors
with boldface lowercase letters. Thus

x = [ x1 x2 · · · xn ]

is a 1× n row vector, and

y =











y1

y2

...
ym











1Definition of a field and a brief review of complex numbers are given in Appendix A. Since the
field of real numbers is a subfield of complex numbers, every real matrix can also be viewed as a
complex matrix.

2The use of the term “vector” for a column or a row matrix is justified in Chapter 3.
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2 Matrices and Systems of Linear Equations

is an m× 1 column vector, which we also denote as

y = col [ y1, y2, . . . , ym ]

to save space. Note that a single column or row index suffices to denote elements of
a row or a column vector.

An n× n matrix is called a square matrix of order n. The sum of the diagonal
elements a11, . . . , ann of a square matrix A = [ aij ]n×n is called the trace of A,
denoted tr (A):

tr (A) =

n
∑

i=1

aii

A square matrix D = [ dij ]n×n in which dij = 0 for all i 6= j is called a diagonal

matrix, denoted

D =











d11 0 · · · 0
0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn











= diag [ d11, d22, . . . , dnn ]

A square matrix L = [ lij ]n×n in which lij = 0 whenever i < j is called a lower

triangular matrix for the obvious reason that all the elements located above its
diagonal are zero. Similarly, a square matrix U = [ uij ]n×n with uij = 0 whenever
i > j is called an upper triangular matrix.

Example 1.1

The array

A =

[

0
√

2 −1
3 e ln 5

]

is a 2 × 3 real matrix with elements a11 = 0, a12 =
√

2, . . . , a23 = ln 5.

The array

B =

[

1 + 2i −3 −1 + i
0 −3i 5

−1 −2 3 + 2i

]

is a complex square matrix of order 3 with

tr (B) = (1 + 2i) + (−3i) + (3 + 2i) = 4 + i

The matrices

C =

[

1 0 0
2 3 0
0 4 5

]

, D =

[

3 + i 0 0
0 −1 0
0 0 0

]

are lower triangular and diagonal, respectively.
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1.2 Basic Matrix Operations

1.2.1 Matrix Addition and Scalar Multiplication

Let A = [ aij ] and B = [ bij ] be two matrices in F
m×n.

A and B are said to be equal, denoted A = B, if aij = bij for all (i, j).3 Note
that it would be meaningless to talk about equality of two matrices unless they are
of the same size and their elements are comparable, that is, they are also of the same
type.

If aij = 0 for all (i, j), then A is called an m × n zero matrix (null matrix),
denoted Om×n, or simply O if the order is known. That is, Om×n = [ 0 ]m×n.

The sum of A and B, denoted A + B, is defined in terms of their elements as

A + B = [ aij + bij ]m×n

That is, the (i, j)th element of A + B is the sum of the corresponding elements of A
and B. The subtraction operation is defined in terms of addition as

A−B = A + (−B)

where

−B = [−bij ]

Note that, like equality, addition and subtraction operations are defined only for
matrices belonging to the same class, and that if A ∈ F

m×n and B ∈ F
m×n, then

A + B ∈ F
m×n, −B ∈ F

m×n, and therefore, A−B ∈ F
m×n.

Any element of the field F over which the matrices of concern are defined is called
a scalar. The scalar product of a matrix A with a scalar c, denoted cA, is also
defined element-by-element as

cA = [ caij ]m×n

Thus the (i, j)th element of cA is c times the corresponding element of A. It follows
from the definition that cA ∈ F

m×n. Clearly,

(−1)A = −A

Example 1.2

[ −1 1 − i
1 + 2i 0
−i 3 + 2i

]

+

[

2 1
−1 −2

3 −1

]

=

[

1 2 − i
2i −2

3 − i 2 + 2i

]

and

(1 + i)

[

1 − i 0
1 −1 + 2i

]

=

[

2 0
1 + i −3 + i

]

The first example above shows that we can add a real matrix to a complex matrix by

treating it as a complex matrix. Similarly, a real matrix can be multiplied with a complex

scalar, and a complex matrix with a real scalar.

3We will use the phrase “for all (i, j)” to mean “for all 1 ≤ i ≤ m and 1 ≤ j ≤ n” if the ranges
of the indices i (1 to m) and j (1 to n) are known.
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We list below some properties of matrix addition and scalar multiplication.

A1. A + B = B + A

A2. (A + B) + C = A + (B + C)

A3. A + O = A

A4. A + (−A) = O

S1. c(dA) = (cd)A

S2. (c + d)A = cA + dA

S3. c(A + B) = cA + cB

S4. 1A = A, where 1 is the multiplicative identity of F.

Note that in property S2 the same symbol “+” is used to denote both the addition
of the scalars c and d, and also the addition of the matrices cA and dA. This should
cause no confusion as which operation is meant is clear from the operands. Similarly,
in property S1, cd represents the product of the scalars c and d, whereas dA represents
the scalar multiplication of the matrix A with the scalar d, although no symbol is
used to denote either of these two different types of multiplications.4

The properties above follow from the properties of addition and multiplication of
the scalars involved. For example, property S2 can be proved as

(c + d)A = [ (c + d)aij ] = [ caij + daij ]

= [ caij ] + [ daij ] = c [ aij ] + d [ aij ] = cA + dA

Proofs of the other properties are left to the reader.
From the basic properties above we can derive further useful properties of matrix

addition and scalar multiplication. For example,

A + B = O =⇒ B = −A

A + B = A + C =⇒ B = C

cA = O =⇒ c = 0 or A = O

We finally note that if A1, A2, . . . , Ak ∈ F
m×n then because of property A2, an

expression of the form A1 + A2 + · · ·+ Ak unambiguously defines a matrix in F
m×n.

1.2.2 Transpose of a Matrix

Let A be an m × n matrix. The n ×m matrix obtained by interchanging the rows
and columns of A is called the transpose of A, denoted At. Thus if A = [ aij ]m×n

then At = B = [ bij ]n×m where bij = aji for all (i, j). From the definition it follows
that

(At)t = A

4If we used a symbol for scalar multiplication, say “·”, then property S1 would be stated as

c · (d · A) = (cd) · A



1.2 Basic Matrix Operations 5

If A is a complex matrix then its conjugate transpose (obtained by transposing
A and replacing every element with its complex conjugate, or vice versa) is called
the Hermitian adjoint of A, denoted Ah. Thus if A = [ aij ]m×n then Ah = C =
[ cij ]n×m where cij = a∗

ji for all (i, j). Again, the definition implies that

(Ah)h = A

Note that if A is real then Ah = At. Hence all properties concerning the Hermitian
adjoint of a complex matrix are valid for the transpose of a real matrix. For this
reason, from now on we will state and prove such properties only for the Hermitian
adjoint. For example, the properties

(A + B)h = Ah + Bh

(cA)h = c∗Ah

involving complex matrices A and B and a complex scalar c can be shown in one or
two steps. We can then safely state without proof that

(A + B)t = At + Bt

(cA)t = cAt

for real matrices A and B and a real scalar c.
Clearly, the transpose or Hermitian adjoint of a row vector is a column vector,

and vice versa. Also, Dt = D and Dh = D∗ for any diagonal matrix D. Finally,

Oh
m×n = Ot

m×n = On×m

whether O is treated as a real or as a complex matrix.
A square matrix A is called symmetric if At = A, and skew-symmetric if

At = −A. Thus A = [ aij ]n×n is symmetric if and only if aij = aji for all (i, j), and
skew-symmetric if and only if aij = −aji for all (i, j). Note that if A is skew-symmetric
then aii = −aii, which requires that the diagonal elements should be zero.

A complex square matrix is called Hermitian if Ah = A, and skew-Hermitian

if Ah = −A. Clearly, a real Hermitian matrix is symmetric, and a real skew-Hermitian
matrix is skew-symmetric. Further properties of Hermitian matrices are dealt with
in Exercises 1.14-1.16.

Example 1.3

The transpose and the Hermitian adjoint of the matrix B in Example 1.1 are

Bt =

[

1 + 2i 0 −1
−3 −3i −2

−1 + i 5 3 + 2i

]

, Bh =

[

1 − 2i 0 −1
−3 3i −2

−1 − i 5 3 − 2i

]

The transpose of the lower triangular matrix C in Example 1.1 is the upper triangular
matrix

Ct =

[

1 2 0
0 3 4
0 0 5

]

The matrices
[

1 3 −1
3 0 2

−1 2 4

]

,

[

0 1 −2
−1 0 0

2 0 0

]

,

[

1 1 + i
1 − i 2

]

are symmetric, skew-symmetric, and Hermitian, respectively.
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1.2.3 Matrix Multiplication

Let A = [ aij ]m×n and B = [ bij ]p×q. If A has exactly as many columns as B has
rows, that is, if n = p, then A and B are said to be compatible for the product
AB. The product is then defined to be an m× q matrix AB = C = [ cij ]m×q whose
elements are

cij = ai1b1j + ai2b2j + · · ·+ ainbnj =

n
∑

k=1

aikbkj

That is, the (i, j)th element of the product is the sum of the ordered products of the ith
row elements of A with the jth column elements of B.5 Thus it takes n multiplications
to compute a single element of the product, and therefore, mnq multiplications to
compute C.

Example 1.4

Let

A =

[

1 −1 2
3 0 1

]

, B =

[

1 2 0 −1
0 −1 1 3
1 0 −1 2

]

Since A is 2 × 3 and B is 3 × 4, the product C = AB is defined, and is a 2 × 4 matrix.
Some of the elements of C are found as

c11 = 1 · 1 + (−1) · 0 + 2 · 1 = 3

c12 = 1 · 2 + (−1) · (−1) + 2 · 0 = 3

c24 = 3 · (−1) + 0 · 3 + 1 · 2 = −1

Computing other elements of C similarly, we obtain

C =

[

3 3 −3 0
4 6 −1 −1

]

On the other hand, the product BA is not defined.

Example 1.5

Let

A =

[

1 −1 2
3 0 1

]

, x =

[

2
1

−1

]

, y =
[

−1 1
]

Then

Ax =

[

−1
5

]

yA =
[

2 1 −1
]

xy =

[ −2 2
−1 1

1 −1

]

Other pairwise products are not defined.

5Implicit in the definition of matrix multiplication is the assumption that elements of A can be
multiplied with those of B, which requires that they belong to the same field. However, we can
multiply a complex matrix with a real one.
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Examples 1.4 and 1.5 illustrate that matrix multiplication is not commutative. If
A is m×n and B is n× q, then AB is an m× q matrix, but BA is not defined unless
q = m. If q = m, that is, when B is n×m, then both AB and BA are defined, but
AB is m×m, while BA is n×n. Even when A and B are both n×n square matrices,
so that both AB and BA are defined and are n × n matrices, in general AB 6= BA.
For example, if

A =

[

0 1
0 0

]

, B =

[

1 0
0 0

]

(1.1)

then AB = O, but BA = A. Therefore, the order in which two matrices are multiplied
is important. In the product AB, B is said to be premultiplied (or multiplied from
left) with A, and A is said to be postmultiplied (or multiplied from right) with B.

Two square matrices A and B of the same order are said to commute if AB = BA.
Obviously, every square matrix commutes with itself. If A is a square matrix then we
denote the product AA by A2. Higher order powers of A are defined recursively as
Ak+1 = AAk , k = 1, 2, . . ..

We now state several properties of matrix multiplication.

M1. (AB)C = A(BC)

M2. A(B + C) = AB + AC
(A + B)C = AC + BC

M3. OA = O
AO = O

M4. (AB)h = BhAh

In stating these properties, we implicitly assume that the products involved are
defined. Note that the two properties in item M2, as well as those in item M3, are
different (that is, one does not follow from the other), as matrix multiplication is not
commutative.

The properties above follow directly from definitions. For example, letting A =
[ aij ]m×n, B = [ bij ]n×q and C = [ cij ]n×q, we have

A(B + C) = [ aij ] [ bij + cij ]

= [
n

∑

k=1

aik(bkj + ckj) ]

= [

n
∑

k=1

aikbkj +

n
∑

k=1

aikckj ]

= [

n
∑

k=1

aikbkj ] + [

n
∑

k=1

aikckj ]

= AB + AC

Some usual properties of multiplication of scalars (like commutativity) do not hold
for matrices. For example, AB = O does not necessarily imply that A = O or B = O
as for the matrices in (1.1). Similarly, AB = AC does not necessarily imply that
B = C.
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Finally, as in the case of matrix addition, an expression of the form A1A2 · · ·Ak

is unambiguous due to property M1, and can be evaluated by computing pairwise
products of adjacent matrices in any sequence without changing the original order of
the matrices. For example, the product ABCD can be evaluated as

((AB)C)D) or (AB)(CD) or (A(BC))D or A((BC)D) or A(B(CD))

However, a careful reader might observe that one of these equivalent expressions might
be easier to compute depending on the order of the matrices (see Exercise 1.9).

Multiplication with a diagonal matrix

Let

D = [ dij ] = diag [ d1, d2, . . . , dn ]

Also, let A = [ aij ]m×n, and consider the product C = AD = [ cij ]m×n. Since dkj = 0
for k 6= j and djj = dj ,

cij =

n
∑

k=1

aikdkj = aijdjj = aijdj

Thus

AD =











a11d1 a12d2 · · · a1ndn

a21d1 a22d2 · · · a2ndn

...
...

...
am1d1 am2d2 · · · amndn











that is, the product AD is obtained simply by scaling the columns of A with the
diagonal elements of D.

Similarly, if B = [ bij ]n×p then

DB =











d1b11 d1b12 · · · d1b1p

d2b21 d2b22 · · · d2b2p

...
...

...
dnbn1 dnbn2 · · · dnbnp











that is, the product DB is obtained by scaling the rows of B with the diagonal
elements of D.

Now consider a diagonal matrix having all 1’s on its diagonal. Such a matrix is
called an identity matrix, denoted I or In if the order needs to be specified. That
is,

In =











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











n×n

= diag [ 1, 1, . . . , 1 ]

Applying the above results about the product of a matrix with a diagonal matrix to
D = I we obtain
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M5. IA = A

AI = A

as further properties of matrix multiplication. In fact, it is because of these properties
that I is called an identity matrix: It acts like a multiplicative identity.

From the definition it follows that

Ih = It = I

Note that the jth column of an n×n identity matrix is an n× 1 vector having all
0’s except a 1 in the jth position. Because of their special structure columns of an
identity matrix deserve a special notation: We denote the jth column by ej . Thus

e1 =











1
0
...
0











, e2 =











0
1
...
0











, . . . , en =











0
0
...
1











Then, obviously, the rows of In are et
1, e

t
2, . . . , e

t
n.

1.3 Partitioned Matrices

Let A be any matrix. By deleting some of the rows and some of the columns of A we
obtain a smaller matrix called a submatrix of A.

Let us partition the rows of an m× n matrix A into p groups of size m1, . . . , mp,
and the columns into q groups of size n1, . . . , nq, where

p
∑

i=1

mi = m ,

q
∑

j=1

nj = n

Calling the submatrix of A consisting of the ith group of mi rows and the jth group
of nj columns Aij , we can represent A as

A =











A11 A12 · · · A1q

A21 A22 · · · A2q

...
...

...
Ap1 Ap2 · · · Apq











= [ Aij ]

Each submatrix Aij in the above representation is called a block of A.6 In general,
the blocks Aij are of different order; however, all blocks in the same row block have
the same number of rows, and all blocks in the same column block have the same
number of columns. Note also that only the rows (but not the columns) or only the

6Representing a partitioned matrix A in terms of its blocks does not mean that A is a matrix with
elements themselves being matrices. However, the blocks of a partitioned matrix may be treated
just like its elements in some matrix operations as explained later in this section.
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columns (but not the rows) of a matrix may be partitioned. Below are some examples
of partitioned matrices.

A =









∗ ∗ 0

1 0 ∗
0 1 ∗

0 1 ∗









=









A11 O

I A22

et
2 A33









B =





b11 b12 b13

b21 b22 b23

b31 b32 b33



 = [ B1 B2 ]

In =











1 0 0
0 1 0
...

... · · ·
...

0 0 1











= [ e1 e2 · · · en ]

=















1 0 · · · 0

0 1 · · · 0

...

0 0 · · · 1















=















et
1

et
2

...

et
n















Note how partitioning of A is used to display its special structure and how the identity
matrix can be expressed in terms of its columns or rows.

If A and B are matrices of the same order and are partitioned in exactly the same
way so that their corresponding blocks are of the same order, then the sum A + B
can be obtained by adding the corresponding blocks. That is, if

A = [Aij ] and B = [Bij ]

where the blocks Aij and Bij are of the same order for all (i, j), then

A + B = [Aij + Bij ]

If A and B are partitioned matrices compatible for the product AB, then the
product can be obtained by treating the blocks of A and B as if they were their
elements. That is, if A = [ Aij ] and B = [ Bij ] then AB = C = [ Cij ], where

Cij =
∑

k

AikBkj

Of course, this requires that the blocks Aik and Bkj be compatible for the products
AikBkj for all (i, k, j). In other words, columns of A must be partitioned in exactly
the same way as the rows of B are partitioned.

Block multiplication is useful in expressing matrix products in a compact form.
For example, if A is an m × n matrix and B is an n × q matrix partitioned into its
columns as

B = [b1 b2 · · · bq ]



1.3 Partitioned Matrices 11

where each bj is an n × 1 column vector, then the product AB can be obtained by
block multiplication as

AB = A [b1 b2 · · · bq ] = [ Ab1 Ab2 · · · Abq ]

Observe that the product is also partitioned into its columns, the jth column being
an m× 1 vector obtained by premultiplying the jth column of B with A.

Similarly, if A is partitioned into its rows as

A =











α1

α2

...
αm











where each αi is a 1× n row vector, then the product AB can be expressed as

AB =











α1

α2

...
αm











B =











α1B

α2B
...

αmB











Now the product is partitioned into its rows, the ith row being a 1×q vector obtained
by postmultiplying the ith row of A with B.

If both A and B are partitioned as above (A into its rows and B into its columns),
then AB = C = [ Cij ]m×q, where each block Cij = αibj is a scalar. In fact, Cij = cij ,
the (i, j)th element of C, as expected. This is actually how matrix multiplication is
defined. The (i, j)th element of the product AB is the product of the ith row of A
with the jth column of B.

Alternatively, we may choose to partition A into its columns and B into its rows
as

A = [a1 a2 · · · an ] , B =











β1

β2

...
βn











where now each ai is an m×1 column vector and each βj is a 1× q row vector. Then
the product AB consists of only one block given as

AB = a1β1 + a2β2 + . . . + anβn

where each product term aiβi is an m× q matrix.

As a final property of partitioned matrices we note that if A = [ Aij ] then Ah =
[ Ah

ji ] as the reader can verify by examples.
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1.4 Systems of Linear Equations

An m × n system of linear equations, or an m × n linear system, is a set of m
equations in n unknown variables x1, x2, . . . , xn, written as

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

(1.2)

where the coefficients aij and the constants bi are fixed scalars. Letting

A = [ aij ] , x = col [ x1, x2, . . . , xn ] , b = col [ b1, b2, . . . , bn ]

the system in (1.2) can be written in matrix form as

Ax = b (1.3)

A is called the coefficient matrix of (1.3). If b=0, then the system (1.3) is said to
be homogeneous.

An n× 1 column vector x = φ is called a solution of (1.3) if Aφ = b. A system
may have no solution, a unique solution, or more than one solution. If it has at least
one solution, it is said to be consistent, otherwise, inconsistent. A homogeneous
system is always consistent as it has at least the trivial (null) solution x = 0.

We are interested in the following problems associated with a linear system:

a) Determine whether the system is consistent.

b) If it is consistent

i. determine if it has a unique solution or many solutions,

ii. if it has a unique solution find it,

iii. if it has many solutions, find a solution or all solutions.

c) If it is inconsistent find x = φ that is closest to being a solution.

In this section we will deal with problems (a) and (b), leaving (c) to Chapter 7.

Example 1.6

The system

x1 − x2 = 1
x1 + x2 = 5

(1.4)

has a unique solution
[

x1

x2

]

=

[

3
2

]

(1.5)

which can be obtained graphically as illustrated in Figure 1.1(a). Each of the equations
describes a straight line in the x1x2 plane, and the solution is their intersection point.

The equations of the system

x1 − x2 = 1
2x1 − 2x2 = −6
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Figure 1.1: Geometric representation of systems in Example 1.6

describe parallel lines in the x1x2 plane as illustrated in Figure 1.1(b). Since there is no
point common to both lines, the system has no solution.

On the other hand, the equations of the system

x1 − x2 = 1
2x1 − 2x2 = 2

are proportional, and describe the same line shown in Figure 1.1(c). Since any point on
this line satisfies both equations, the system has infinitely many solutions. To charac-
terize these solutions we choose one of the variables, say x2, arbitrarily as x2 = c, and
determine the other variable from either of the equations as x1 = 1 + c. Thus we obtain
a one-parameter family of solutions described as

[

x1

x2

]

=

[

1 + c
c

]

=

[

1
0

]

+ c

[

1
1

]

The geometric interpretation of equations and their solution(s) can easily be gen-
eralized to systems containing three variables x1, x2 and x3, where each equation
defines a plane in the x1x2x3 space, and any point common to all planes, if it ex-
ists, defines a solution (see Exercise 1.28). However, when there are more than three
variables, the geometric interpretation loses much of its appeal (for we can not vi-
sualize what an equation in four or more variables describes), and we resort to pure
algebraic methods. One such method is the elimination method, which we recall by
reconsidering the example above.

Example 1.7

Let us consider the system in (1.4). One way of finding the solution is to express one of
the variables in terms of the other by using one of the equations, and then to substitute
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this expression into the other equation. For example, by expressing x1 in terms of x2

using the first equation we get

x1 = 1 + x2

Substituting this expression for x1 into the second equation and rearranging the terms
we obtain

2x2 = 4 (1.6)

The last equation gives x2 = 2, and from the expression for x1 we get

x1 = 1 + x2 = 1 + 2 = 3

thus obtaining the solution in (1.5).
What we did by expressing x1 in terms of x2 and substituting this expression into the

second equation was to eliminate x1 from the second equation. We could do this simply
by subtracting the first equation from the second, which would give (1.6) directly.

Alternatively, we could eliminate x2 from the second equation by adding the first
equation to it. This would give

2x1 = 6

from which we would obtain x1 = 3. Then from the first equation we would get

x2 = x1 − 1 = 3 − 1 = 2

reaching the same solution.

For the simple example considered above, it makes no difference whether we elim-
inated x1 or x2. However, to solve larger equations we need to be more systematic
in the elimination process, especially if we are using a computer program to do the
job. A systematic procedure is based on transforming the given system into a simpler
equivalent system in which variables can be solved one after the other by successive
substitutions as we explain by the following example.

Example 1.8

Let us solve the system

x1 − 2x2 − x3 = 1
−2x1 + 8x2 − x3 = 5

2x1 − 6x2 + 2x3 = −4
(1.7)

by using the elimination method.
We first eliminate the variable x1 from all equations except one. Since it appears

in all three equations, we can associate it with any one of them and eliminate from the
other two. Associating x1 arbitrarily with the first equation, we eliminate it from the
second and third equations by adding 2 times the first equation to the second and −2
times the first equation to the third. After these manipulations the equations become

x1 − 2x2 − x3 = 1
4x2 − 3x3 = 7

− 2x2 + 4x3 = −6
(1.8)

Next we eliminate x2 from one of the last two equations. This can be done by
associating x2 with the second equation and eliminating it from the third (by adding
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1/2 times the second equation to the third). Alternatively, we may associate x2 with the
third equation and eliminate it from the second (by adding 2 times the third equation
to the second). To avoid dealing with fractions we choose the latter. However, before
the elimination we first interchange the second and third equations so that the equation
with which x2 is associated comes before those from which it is to be eliminated. This
gives

x1 − 2x2 − x3 = 1
− 2x2 + 4x3 = −6

4x2 − 3x3 = 7
(1.9)

Now we add 2 times the second equation to the third and obtain

x1 − 2x2 − x3 = 1
− 2x2 + 4x3 = −6

5x3 = −5
(1.10)

The system in (1.10) has a triangular shape which allows us to solve the unknown
variables starting from the last equation and working backwards. From the last equation
we obtain

x3 = −5/5 = −1

Substituting the value of x3 into the second equation we find

x2 = (−1/2)(−6 − 4x3) = (−1/2)(−6 + 4) = 1

Finally, substituting the values of x2 and x3 into the first equation we get

x1 = 1 + 2x2 + x3 = 1 + 2 − 1 = 2

Thus we obtain the solution of the system (1.7) as

x =

[

2
1

−1

]

(1.11)

Instead of finding x2 and x1 by successive backward substitutions, we can continue
elimination of the variables in (1.10) in the reverse order. Starting with the system in
(1.10), we first multiply the last equation with 1/5 to normalize the coefficient of x3 to 1,
and then add 1 and −4 times the resulting equation to the first and the second equations
to eliminate x3 from the first two equations. After these operations the system becomes

x1 − 2x2 = 0
− 2x2 = −2

x3 = −1

Now we scale the second equation with −1/2, add 2 times the resulting equation to the
first to eliminate x2 from the first equation, and thus obtain

x1 = 2
x2 = 1

x3 = −1
(1.12)

Note that in the last two steps we not only eliminated the variables x2 and x3 from the
first two equations but also normalized their coefficients to 1. (Coefficient of x1 in the
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first equation was already 1 at the start, so we need not do anything about it.) The final
system in (1.12) is so simple that it displays the solution.

Backward elimination need not wait until forward elimination is completed; they
can be performed simultaneously. Consider the system in (1.9) in which x1 is already
eliminated from the second and third equations. Scaling the second equation with −1/2,
and adding 2 and −4 times the resulting equation to the first and the third equations,
we eliminate x2 not only from the third equation but also from the first equations, and
get

x1 − 5x3 = 7
x2 − 2x3 = 3

5x3 = −5

Now, multiplying the third equation with 1/5 and adding 5 and 2 times the resulting

equation to the first and second equations, we eliminate x3 from these equations and end

up with (1.12). However, a careful reader may observe that it is not smart to perform

forward and backward eliminations simultaneously (see Exercise 1.37).

Example 1.8 illustrates the recursive nature of the elimination method. After the
elimination of x1, the last two equations in (1.8) form a 2× 2 system

4x2 − 3x3 = 7
−2x2 + 4x3 = −6

(1.13)

which is obviously easier to solve than the original 3 × 3 system. Once x2 and x3

are solved from (1.13), x1 can easily be found from the first equation in (1.8) by
substitution. Now the process can be repeated for (1.13) to further reduce it to a
simpler system. This is exactly what we do when we eliminate x2 from one of the
equations in (1.13) to reach the triangular system in (1.10). Thus at every step of the
elimination process, both the number of equations and the number of unknowns are
reduced by at least one.7

Let us consider the system (1.7) in matrix form:





1 −2 −1
−2 8 −1

2 −6 2









x1

x2

x3



 =





1
5
−4



 (1.14)

After the first two operations the equations take the form in (1.8), which has the
matrix representation





1 −2 −1
0 4 −3
0 −2 4









x1

x2

x3



 =





1
7
−6





Apparently, the operation of adding 2 times the first equation to the second equation is
reflected as adding 2 times the first row of the coefficient matrix in (1.14) to its second
row, and at the same time, adding 2 times the first element of the column matrix on the
right-hand side of (1.14) to its second element. Since the same operations are involved

7Although in Example 1.8 the number of equations and and the number of unknowns are reduced
by exactly one, we will later see examples where either or both are reduced by more than one.
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in the coefficient matrix and the column on the right-hand side, we conveniently form
an augmented matrix

[ A b ] =





1 −2 −1 1
−2 8 −1 5

2 −6 2 −4





associated with the system in (1.7), and represent the operations leading to (1.12) as
row operations on the augmented matrix as





1 −2 −1 1
−2 8 −1 5

2 −6 2 −4





2R1 + R2 → R2

−2R1 + R3 → R3

−→





1 −2 −1 1
0 4 −3 7
0 −2 4 −6





R2 ↔ R3

2R2 + R3 → R3

−→





1 −2 −1 1
0 −2 4 −6
0 0 5 −5





(1/5)R3 → R3

R3 + R1 → R1

−4R3 + R2 → R2

−→





1 −2 0 0
0 −2 0 −2
0 0 1 −1





−(1/2)R2 → R2

2R2 + R1 → R1

−→





1 0 0 2
0 1 0 1
0 0 1 −1





The first two steps of the above operations correspond to forward elimination
of the variables, and the last two steps correspond to backward elimination. The
notation “Ri ↔ Rj” denotes interchange of the ith and the jth rows, “cRi → Ri”
denotes multiplication of the ith row by a nonzero scalar c, and “cRi + Rj → Rj”
denotes addition of c times the ith row to the jth row. Note that after the operation
R2 ↔ R3 at the second step above, R2 and R3 denote the current second and third
rows.

The following three types of operations on the rows of the augmented matrix are
involved in the elimination process.

I: Interchange any two rows

II: Multiply any row by a nonzero scalar

III: Add any scalar multiple of a row to another row

These operations performed on the rows of a matrix are called elementary row

operations. An m× n matrix B is said to be row equivalent to an m× n matrix
A if it can be obtained from A by a finite number of elementary row operations.
Clearly, to every elementary row operation there corresponds an inverse elementary
row operation of the same kind. For example, the inverse of adding c times the ith row
to the jth row is to add −c times the ith row to the jth row. If B is obtained from A
by a single elementary row operation, then A can be restored from B by performing
the inverse operation. Thus if B is row equivalent to A, then A is row equivalent
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to B, and we say that A and B are row equivalent.8 Two m × n systems of linear
equations are said to be equivalent if their augmented matrices are row equivalent.
Two equivalent systems either have the same solution(s), or are both inconsistent.
We have already used this fact in Example 1.8 to find the solution of a system. Below
we consider another example.

Example 1.9

Find the value of the parameter q such that the system







1 1 −1 2 0
2 2 −2 3 2

−1 −1 3 −4 2
1 1 2 1 −1

















x1

x2

x3

x4

x5











=







−1
−3

3
q







(1.15)

is consistent, and then find all solutions.
We first associate x1 with the first equation and eliminate it from the last three

equations. The operations involved in the elimination of x1 are represented by elementary
row operations on the augmented matrix as







1 1 −1 2 0 −1
2 2 −2 3 2 −3

−1 −1 3 −4 2 3
1 1 2 1 −1 q







−2R1 + R2 → R2

R1 + R3 → R3

−R1 + R4 → R4

−→







1 1 −1 2 0 −1
0 0 0 −1 2 −1
0 0 2 −2 2 2
0 0 3 −1 −1 q + 1







At this point we observe that incidentally x2 is also eliminated from the last three
equations. We then continue with the elimination of the next variable, x3, which appears
in the third and fourth equations, and must be associated with one of them. We associate
x3 with the third equation and interchange the second and third equations. The rest of
the elimination process is straightforward, and is summarized below.

R2 ↔ R3

−(3/2)R2 + R4 → R4

−→







1 1 −1 2 0 −1
0 0 2 −2 2 2
0 0 0 −1 2 −1
0 0 0 2 −4 q − 2







↓ ↓ ↓

2R3 + R4 → R4

−→







1 1 −1 2 0 −1
0 0 2 −2 2 2
0 0 0 −1 2 −1
0 0 0 0 0 q − 4







(1.16)

8An equivalence relation defined on a set S, denoted ≡, is a reflexive, symmetric and transitive
relation among the elements of S. That is, for all a, b, c ∈ S, a ≡ a, if a ≡ b then b ≡ a, and if a ≡ b
and b ≡ c then a ≡ c. In this sense, row equivalence is indeed an equivalence relation on F

m×n.
An equivalence relation partitions S into disjoint subsets, called equivalence classes, such that every
element of the set belongs to one and only one equivalence class and any two equivalent elements
belong to the same equivalence class. Hence row equivalence partitions F

m×n into equivalence classes
such that any two matrix in the same equivalence class can be obtained from each other by a finite
sequence of elementary row operations.
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−R3 → R3

−2R3 + R1 → R1

2R3 + R2 → R2

−→







1 1 −1 0 4 −3
0 0 2 0 −2 4
0 0 0 1 −2 1
0 0 0 0 0 q − 4







↓ ↓ ↓

(1/2)R2 → R2

R2 + R1 → R1

−→







1 1 0 0 3 −1
0 0 1 0 −1 2
0 0 0 1 −2 1
0 0 0 0 0 q − 4







(1.17)

In the above sequence of elementary row operations, steps leading to (1.16) corre-
spond to forward elimination of the variables associated with the columns marked by
arrows, and those leading to (1.17) correspond to scaling of the equations and backward
elimination of the same variables.

The last equation associated with the augmented matrix in (1.17) is

0 · x1 + 0 · x2 + 0 · x3 + 0 · x4 + 0 · x5 = q − 4

from which we observe that if q 6= 4 then the system is inconsistent as this equation is
never satisfied. On the other hand, if q = 4 then this equation is a trivial identity 0 = 0
for any choice of the variables, and can be discarded. Then using the first three equations
we express the variables associated with the marked columns of the augmented matrix
in terms of the others as

x1 = −1 − x2 − 3x5

x3 = 2 + x5 (1.18)

x4 = 1 + 2x5

From (1.18) we see that we can choose the variables x2 and x5 arbitrarily, and
calculate x1, x3 and x4 from these relations to obtain a solution. Letting x2 = c1 and
x5 = c2, where c1, c2 ∈ R are arbitrary, and calculating x1, x3 and x4 from (1.18), we
obtain the solution in parametric form as

x1 = −1 − c1 − 3c2

x2 = c1

x3 = 2 + c2

x4 = 1 + 2c2

x5 = c2

or equivalently, as











x1

x2

x3

x4

x5











=











−1
0
2
1
0











+ c1











−1
1
0
0
0











+ c2











−3
0
1
2
1











(1.19)

Note that we could obtain (1.18) and hence the solution in (1.19) from the augmented
matrix in (1.16) by back substitution of the marked variables.
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Unlike the system in (1.7), which has the unique solution given in (1.11), the system
in (1.15) is either inconsistent (if q 6= 4) or has infinitely many solutions as given in
(1.19). For example,

x =











−1
0
2
1
0











and x =











1
1
1

−1
−1











are two solutions corresponding to the choice of the arbitrary constants as (c1, c2) = (0, 0)

and (c1, c2) = (1,−1), respectively.

Example 1.9 outlines a general procedure to determine whether a given system is
consistent and to find solutions when it is consistent. It is based on transforming the
coefficient matrix A into a simple form by performing elementary row operations on
the augmented matrix. We now give a precise definition of what we mean by a simple
form.

An m × n matrix R is said to be in row echelon form if it has the following
characteristics.

i) First r rows of R are nonzero, and the remaining m− r rows are zero for some
0 ≤ r ≤ m.

ii) The first nonzero element in each of the first r − 1 rows lies to the left of the
first nonzero element in the subsequent row. (If r = 0 or r = 1 this item does
not apply.)

The number of nonzero rows, r, is called the row rank of R. The first nonzero
element of each of the first r rows is called the leading entry of its row, and the
column which contains the leading entry of the ith row is called the ith basic column.
Thus, if 1 ≤ i < p ≤ r, then the ith basic column lies to the left of the pth basic
column. Note that this requirement is equivalent to R having all zero elements below
a jagged diagonal defined by the leading entries.

A matrix R in row echelon form is said to be in reduced row echelon form if
it satisfies the following additional conditions.

iii) Each leading entry is a 1.

iv) The ith leading entry is the only nonzero element in the ith basic column.

For example, the matrices

R1 =









0 1 −1 2 −4
0 0 1 −3 0
0 0 0 0 1
0 0 0 0 0









and R2 =









1 −2 0
0 0 2
0 0 0
0 0 0









are in row echelon form with r(R1) = 3 and r(R2) = 2, and the matrix

R3 =





1 −3 0 1
0 0 1 −2
0 0 0 0
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is in reduced row echelon form. As further examples, the reader can check that the
coefficient matrix associated with the augmented matrix in (1.16) is in row echelon
form, and the coefficient matrix associated with the augmented matrix in (1.17) is in
reduced row echelon form.

An algorithm to bring a given m × n matrix into reduced row echelon form by
means of elementary row operations is given in Table 1.1. The algorithm, which is
known as Gaussian elimination, simply imitates the steps involved in Example 1.9.

Table 1.1: Gaussian Elimination Algorithm

1. Set r = 0

[ Forward Elimination ]

2. For j = 1 : n

3. Find r < p ≤ m such that apj 6= 0. If none, increment j

4. r ← r + 1

5. jr ← j

6. If p > r, Rp ↔ Rr

7. For i = r + 1 : m

8. µij ← aij/arj

9. Ri ← Ri − µijRr

10. End

11. End

[ Backward Elimination ]

12. For p = r : 2

13. Rp ← (1/apjp
)Rp

14. For i = 1 : p− 1

15. Ri ← Ri − aijp
Rp

16. End

17. End

18. R1 ← (1/a1j1)R1

The algorithm returns the reduced row echelon form of A written over A, the rank
of the reduced row echelon form (r), and the column indices of the basic columns
(j1, . . . , jr). In steps 1-11, forward elimination is performed and A is brought to
a row echelon form. The nonzero element apj found in Step 3 of the algorithm is
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called a pivot element of the jth column. After incrementing r in Step 4, the pivot
element is brought to the (r, j)th position by a row interchange in Step 6 (if it is not
already there), and it becomes the leading entry of its row. In steps 7-10, the pivot
element is used to nullify the elements below it. In steps 12-18, leading entries are
normalized to unity and A is brought into reduced row echelon form by means of
backward elimination.9

Whether a system of linear equations is consistent can be determined from the
reduced row echelon form of the augmented matrix of the system. If it is consistent,
all solutions can be obtained in parametric form by choosing the non-basic variables
arbitrarily and expressing the basic variables in terms of the non-basic variables.
(The basic and non-basic variables are the unknowns corresponding to the basic and
non-basic columns of the coefficient matrix.)

As illustrated in Example 1.9, the general form of the solution is

x = φp + c1φ1 + · · ·+ cνφν = φp + φc

where ν = n − r is the number of non-basic variables. φp and φc are called a
particular solution and the complementary solution, respectively. Obviously,
when r = n, i.e., when there are no non-basic variables that can be chosen arbitrarily,
then the complementary solution does not exist. The significance of particular and
complementary solutions is studied in the next section.

Depending on the choice of the pivot element, Gaussian Elimination may produce
different matrices in row echelon form at the end of step 11. However, upon completion
of the algorithm, we end up with a unique matrix in reduced row echelon form. In fact,
uniqueness of the reduced row echelon form is not specific to Gaussian elimination,
but is a result of the fact that any given matrix A is row equivalent to a unique
reduced row echelon matrix, which we define as the reduced row echelon form of A.
In other words, independent of the algorithm used, if a finite sequence of elementary
row operations on A results in a reduced row echelon matrix R, then R is the unique
reduced row echelon form of A.10 Consequently, all matrices which are row equivalent
to A have the same reduced row echelon form, which can be interpreted as a convenient
representative of its equivalence class.

The row rank of a matrix, denoted r(A), is defined to be the row rank of its
unique reduced row echelon form. Thus all row equivalent matrices have the same
row rank. From the reduced row echelon form we deduce that if A is m×n, then not
only r(A) ≤ m but also r(A) ≤ n.

Example 1.10

In Example 1.9 we obtained a row echelon form of the coefficient matrix in (1.15) as in
(1.16). A different row echelon form of the same matrix can be obtained by choosing
different pivots as







1 1 −1 2 0
2 2 −2 3 2

−1 −1 3 −4 2
1 1 2 1 −1







9Some books use the term “Gaussian elimination” to refer to the forward elimination process
only, and call the complete algorithm in Table 1.1 the Gauss-Jordan algorithm.

10We shall prove this fact in Chapter 4.
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R3 ↔ R1

2R1 + R2 → R2

R1 + R3 → R3

R1 + R4 → R4

−→







−1 −1 3 −4 2
0 0 4 −5 6
0 0 2 −2 2
0 0 5 −3 1







R3 ↔ R2

−2R2 + R3 → R3

−(5/2)R2 + R4 → R4

−→







−1 −1 3 −4 2
0 0 2 −2 2
0 0 0 −1 2
0 0 0 2 −4







2R3 + R4 → R4

−→







−1 −1 3 −4 2
0 0 2 −2 2
0 0 0 −1 2
0 0 0 0 0







(1.20)

However, if we perform backward elimination on the matrix in (1.20) we end up with
the same matrix in (1.17). This illustrates the uniqueness of the reduced row echelon
form.

Observe that both row echelon forms in (1.16) and (1.20) as well as the reduced row

echelon form in (1.17) have the same row rank, r = 3, which is the row rank of the

coefficient matrix in (1.15).

Example 1.11

While computing the reduced row echelon form of a matrix by hand, simplifying the
matrix as much as possible before selecting the pivot element may help avoid dealing
with complex numbers or fractions. Consider the matrix

[

1 + i i i
2 + i 1 + i 1 + 2i

]

A straightforward application of the Gaussian elimination algorithm requires that
either (2+i)/(1+i) times the first row be subtracted from the second row or (1+i)/(2+i)
times the second row be subtracted from the first row at the first step. Subsequent
steps require similar operations with complex numbers. However, much of the complex
arithmetic can be avoided at the expense of more row operations as

[

1 + i i i
2 + i 1 + i 1 + 2i

]

−R1 + R2 → R2

−→

[

1 + i i i
1 1 1 + i

]

R1 ↔ R2

−R1 + R2 → R2

−→

[

1 1 1 + i
i −1 + i −1

]

−iR1 + R2 → R2

−→

[

1 1 1 + i
0 −1 −i

]

−R2↔ R2

R1 − R2 → R1

−→

[

1 0 1
0 1 i

]
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* 1.5 Solution Properties of Linear Equations

Suppose that the m× n system in (1.3) is transformed into

Rx = d (1.21)

by elementary row operations, where R is the reduced row echelon form of A. Let
r(A) = r(R) = r.

We first consider the general case where r < min{m, n}.
Partitioning the rows of R into two groups consisting of the nonzero and zero rows,

(1.21) can be written as
[

F
O

]

x =

[

p

q

]

(1.22)

where F is an r× n matrix consisting of the nonzero rows of R, O is the (m− r)× n
zero matrix, and p and q are the corresponding blocks of d.

Observe that if x̃ is obtained from x by reordering its components and F̃ is ob-
tained from F by the same reordering of its columns, then (1.22) is equivalent to

[

F̃
O

]

x̃ =

[

p

q

]

(1.23)

In particular, let the reordering of the components of x be such that the basic variables
(corresponding to the basic columns of F ) occupy the first r positions, and the non-
basic variables occupy the last n− r positions. That is,

x̃ =

[

u

v

]

where u contains the basic variables, and v contains the non-basic variables. Since
the jth basic column of F contains all 0’s except a 1 in the jth position, the basic
columns of F make up the matrix Ir. Hence, F̃ is of the form

F̃ = [ Ir H ]

where H consists of the non-basic columns of F . With F̃ and x̃ partitioned this way,
(1.23) can be written as

[

I H
O O

] [

u

v

]

=

[

p

q

]

(1.24)

Referring to the system in Example 1.9, (1.22) corresponds to









1 1 0 0 3
0 0 1 0 −1
0 0 0 1 −2
0 0 0 0 0





















x1

x2

x3

x4

x5













=









−1
2
1

q − 4









(1.25)

which can be written down from the augmented matrix in (1.17). The basic variables
are x1, x3 and x4, and the non-basic variables are x2 and x5. Reordering the variables
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so that the basic variables appear before the non-basic variables, and performing the
same reordering on the columns of the coefficient matrix, (1.25) becomes









1 0 0 1 3
0 1 0 0 −1
0 0 1 0 −2
0 0 0 0 0



















x1

x3

x4

x2

x5











=









−1
2
1

q − 4









(1.26)

which is in the form of (1.24).
From (1.24) we immediately observe that if q 6= 0, then the system (1.21), and

therefore, the system (1.3) are inconsistent. This happens if and only if the row rank
of the augmented matrix [A b ] is larger than the row rank of the coefficient matrix
A (see Exercise 1.34). Thus we obtain our first result: If r[ A b ] > r, then the system
(1.3) is inconsistent.

On the other hand, if q = 0, that is, if r[ A b ] = r, then discarding the last m− r
trivial equations, (1.24) is reduced to

[ I H ]

[

u

v

]

= u + Hv = p (1.27)

which can be rewritten as

u = p−Hv = p− v1h1 − · · · − vνhν (1.28)

where ν = n − r and hi are the columns of H . Equation (1.28) specifies the basic
variables in terms of the non-basic variables, which can be chosen arbitrarily. Letting
v1 = c1, . . . , vν = cν , where c1, . . . , cν are arbitrary constants, we express v as

v =







c1

...
cν






= c1e1 + · · ·+ cνeν

where ei is the ith column of Iν . Then u is obtained from (1.28) as

u = p + c1(−h1) + · · ·+ cν(−hν)

Hence we obtain the following general expression for the solution in terms of the
renamed variables.

[

u

v

]

=

[

p

0

]

+ c1

[

−h1

e1

]

+ · · ·+ cν

[

−hν

eν

]

(1.29)

or in more compact form as

x̃ = φ̃p + c1φ̃1 + · · ·+ cνφ̃ν = φ̃p + φ̃c (1.30)

where

φ̃p =

[

p

0

]

and φ̃i =

[

−hi

ei

]

, i = 1, . . . , ν
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Reversing the reordering and using the original names for the variables, the solution
above is expressed as

x = φp + c1φ1 + · · ·+ cνφν = φp + φc (1.31)

where c1, . . . , cν are arbitrary constants.
To illustrate expressions (1.30) and (1.31) we refer to the system in Example

1.9 again, which has been simplified to (1.26). We first observe that the system is
consistent if and only if q = q − 4 = 0, in which case r[ A b ] = r(A) = 3. Assuming
so and discarding the last equation, we rewrite (1.26) in the form of (1.28) as





x1

x3

x4



 =





−1
2
1



− x2





1
0
0



− x5





3
−1
−2



 (1.32)

Now letting x2 = c1, x5 = c2, (1.32) gives the solution in the form of (1.30) as












x1

x3

x4

x2

x5













=













−1
2
1
0
0













+ c1













−1
0
0
1
0













+ c1













−3
1
2
0
1













(1.33)

where

φ̃p =













−1
2
1
0
0













, φ̃1 =













−1
0
0
1
0













, φ̃2 =













−3
1
2
0
1













(1.34)

Finally restoring the original order of the variables we get the solution in (1.19), which
has the form of (1.31).

Having studied the general case, we now consider other possible cases.
If r = m < n, then (1.24) is already in the form of (1.27) with r[ A b ] = r(A) = m.

Thus the system is consistent, and the solution is given by (1.31).
If r = n < m, then (1.24) is reduced to

[

I
O

]

x =

[

p

q

]

(1.35)

Again, the system is consistent if and only if q = 0, or equivalently, if and only if
r[ A b ] = r(A) = n. In this case, (1.35) is further reduced to

x = p (1.36)

which displays a unique solution.
Finally, if r = m = n, then the system is consistent, and has a unique solution

given in (1.36).
The solution expression in (1.31) consists of two parts: The first part, φp, is fixed

and is due to the right-hand side of the system. If b = 0, that is, if the system is
homogeneous, then p = 0, and therefore, φp = φ̃p = 0. The second part, φc, exists



1.5 Solution Properties 27

if and only if r < n. If r = n, then φc = 0, and x = φp would be the unique solution.
(As a consequence, if the system is homogeneous and if r = n, then the only solution
is the null solution x = 0.)

Since φp = 0 when b = 0, we conclude that when r < n

φc = c1φ1 + · · ·+ cνφν

is a nontrivial solution of the associated homogeneous system

Ax = 0 (1.37)

Since it contains ν arbitrary constants, φc defines a family of solutions of (1.37).
For every fixed choice of the arbitrary constants we get a member of this family. In
particular, each φi is a member of this family, φ1 corresponding to the choice c1 =
1, c2 = · · · = cν = 0, φ2 corresponding to the choice c1 = 0, c2 = 1, c3 = · · · = cν = 0,
etc. These solutions have the property that none of them can be expressed in terms
of the others, and are said to be linearly independent. This follows from the fact
that each ei contains a single 1 at a different position, so that no ei can be expressed
in terms of the others. Then the same must be true for φ̃i, and therefore, for φi.
The reader should examine the expressions for φ̃1 and φ̃2 in (1.34) to verify this
fact. The significance of the solutions φi being linearly independent is that they can
not be combined to simplify φc, which implies that for every choice of the arbitrary
constants c1, . . . , cν we get a different solution of the homogeneous equation (see
Exercise 1.39).11

Like φc, the expression in (1.31) also defines a family of solutions of the non-
homogeneous system in (1.3). Any member of this family, obtained by assigning fixed
values to the arbitrary constants c1, . . . , cν is called a particular solution. A simple
particular solution is obtained by choosing c1 = · · · = cν = 0 to be

x = φp

The second part of the expression in (1.31), φc, is called a complementary solution

of (1.3), because by adding to φp any member of the family defined by φc, we obtain
another particular solution of (1.3).

Finally, we note that since any solution of (1.3) must satisfy (1.28), it must be
of the form in (1.31). In other words, the family characterized by the expression in
(1.31) contains all solutions of (1.3). For this reason, we call this expression a general

solution of (1.3).

11The concept of linear independence will be discussed in Chapter 3. For the time being it suffices
to know that if φi were not linearly independent, then one of them, say the kth one, would be
expressed in terms of the others as

φk =
∑

i6=k

αiφi

Then φc would reduce to

φ =
∑

i6=k

(ci + ckαi)φi =
∑

i6=k

c′iφi

containing only ν − 1 arbitrary constants, and one degree of freedom would be lost.
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Thus we not only showed that the system is consistent if r[ A b ] = r(A), but also
gave a systematic procedure to find a general form of the solution. We summarize
these results as a theorem.

Theorem 1.1 Let A be an m× n matrix with r(A) = r.

a) The homogeneous linear system Ax = 0 is consistent, and

i. if r = n, then the only solution is the trivial solution x = 0,

ii. if r < n, then there exist ν = n − r linearly independent solutions
φ1, . . . ,φν , and x = c1φ1 + · · ·+ cνφν is a solution for every choice of
the arbitrary constants c1, . . . , cν ∈ R.

b) The non-homogeneous system Ax = b is consistent if and only if r[ A b ] = r,
in which case

i. if r = n, then there exists a unique solution x = φp,

ii. if r < n, then x = φp + c1φ1 + . . . + cνφν is a solution for every choice
of the arbitrary constants c1, . . . , cν ∈ R, where ν = n − r, φp is any
particular solution, and φ1, . . . ,φν are the linearly independent solutions
of the associated homogeneous system.

The analysis above shows that existence and uniqueness of solution of a given
system of linear equations cannot be deduced from the number of equations (m) and
the number of unknowns (n) alone. Indeed, Example 1.9 illustrates that if a system
contains more unknowns than equations that does not necessarily imply that the
system has a solution. The converse is not true either: A system that contains more
equations than unknowns may still have a solution as we illustrate by the following
example.

Example 1.12

Check if the system

x1 − 2x2 + 3x3 = 11
−x1 + 3x2 − 2x3 = −11
2x1 − 3x2 + 5x3 = 18
−x1 + x2 − 2x3 = −7

is consistent, and if so, find the solution.
We form the augmented matrix and simplify it as described below.







1 −2 3 11
−1 3 −2 −11

2 −3 5 18
−1 1 −2 −7







R1 + R2 → R2

−2R1 + R3 → R3

R1 + R4 → R4

−→







1 −2 3 11
0 1 1 0
0 1 −1 −4
0 −1 1 4







2R2 + R1 → R1

−R2 + R3 → R3

R2 + R4 → R4

−→







1 0 5 11
0 1 1 0
0 0 −2 −4
0 0 2 4







−(1/2)R3 → R3

−5R3 + R1 → R1

−R3 + R2 → R2

−R3 + R4 → R4

−→







1 0 0 1
0 1 0 −2
0 0 1 2
0 0 0 0
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From the last augmented matrix we find that the given system is consistent, and has
a unique solution

[

x1

x2

x3

]

=

[

1
−2

2

]

Although a system that contains more equations than unknowns may be consis-
tent, the reader should not expect to come across such systems often. Indeed, unless
the elements of A and b are somehow related, such a system will almost always be
inconsistent (see Exercise 1.38). However, certain problems lead to systems with more
equations than unknowns, which, by the nature of the problem, are consistent (see
Exercise 1.46).

1.6 Numerical Considerations

Computers use limited space to represent numbers, that is, they have finite precision.
This may lead to numerical errors in evaluating expressions that involve operations
with several numbers. Anyone who tries to evaluate the expression

(1/3) · 3− 1

with a hand calculator would probably get an answer like 1 × 10−6 or 1 × 10−12

depending on the precision of the calculator, instead of the exact answer 0. The
reason is that the number 1/3 cannot be represented exactly by the calculator (no
matter how many digits are used), so that when it is multiplied with 3 the result will
be slightly different from 1, hence the difference from 1 slightly different from zero. If
the result of these operations is later used in other expressions, the errors accumulate,
possibly reaching unacceptable levels.

Since operations with matrices involve many successive operations with scalars (as
in the case of Gaussian elimination), one should be alert about numerical errors that
might result from a sequence of such operations, and try to avoid them as much as
possible.

Example 1.13

Consider the linear system

−0.001 x1 + 1.000 x2 = 1.000
1.000 x1 + 1.000 x2 = 2.000

Eliminating x1 from the second equation we obtain

−0.001 x1 + 1.000 x2 = 1.000
1001. x2 = 1002.

from which we obtain the exact solution

x2 =
1002

1001
= 1 +

1

1001
, x1 =

1000

1001
= 1 − 1

1001

Now suppose we try to solve the same system using a calculator that can represent
numbers with three significant digits only. If we proceed with eliminating x1 as above,
we obtain the system

−0.001 x1 + 1.000 x2 = 1.000
1000. x2 = 1000.
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because both 1001 and 1002 are represented as 1000. in our calculator. We then obtain

x2 = 1.000 , x1 = 0.000

which is far from being a solution.
What happened is that the information in the second equation was lost when the first

equation is multiplied by 1000 and added to the second. That is why the “computed”
solution above satisfies the first equation but not the second.

Fortunately, however, the problem can be overcome simply by interchanging the
equations. Gaussian elimination applied to the reordered system

1.000 x1 + 1.000 x2 = 2.000
−0.001 x1 + 1.000 x2 = 1.000

produces

1.000 x1 + 1.000 x2 = 2.000
1.000 x2 = 1.000

in the calculator, from which the solution is computed as

x2 = 1.000 , x1 = 1.000

The “computed” solution is acceptable now.

The situation in the above example is similar in nature to computation of

(1/3) · 3− 1

Just like rephrasing this expression as

(1 · 3)/3− 1

eliminates the error, reordering the equations before applying Gaussian elimination
reduces error to an acceptable level. The error in the first attempt originates from
choosing a very small pivot at the first step, which results in a very large multiplier
that erases the information in the second equation. Reordering the equations leads
to a choice of a larger pivot that does not cause a significant loss of information.
This strategy (of picking as large a pivot as possible among the candidates) is called
partial pivoting.

Although pivoting can handle many difficult situations, there are problems that
are inherently “bad”, and error is unavoidable.

Example 1.14

The system

[

0.9900 0.9800
0.9800 0.9700

] [

x1

x2

]

=

[

1.970
1.950

]

(1.38)

has the exact solution

xe =

[

1.000
1.000

]
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Gaussian elimination with four-digit floating-point arithmetic reduces the augmented
matrix to

[

0.9900 0.9800 | 1.970
0.0000 −0.0001 | .0000

]

The reduced system has the solution

xc =

[

1.990
.0000

]

which is nowhere near the exact solution. Interchanging the equations as in the previous
example is of no use; we end up with a similar erroneous result.

Suppose we did not know the exact solution, and wanted to check the “computed”
solution xc by substituting it into the original system. We would get

[

0.9900 0.9800
0.9800 0.9700

] [

1.990
.0000

]

=

[

1.970
1.950

]

which is the same as the right-hand side of (1.38) up to the fourth significant digits.
What is more interesting is that when we evaluate Ax for

x1 =

[

6.910
−4.970

]

and x2 =

[

−4.870
6.930

]

which are totally unrelated to each other and to the exact solution, we get

Ax1 =

[

1.970
1.949

]

and Ax2 =

[

1.970
1.951

]

which differ from the right-hand side of (1.38) only in the fourth significant digit. Ap-

parently, our check is not reliable.

The numerical difficulties encountered in the solution of the system in (1.38) stem
from the fact that the lines described by the equations of the system are almost
parallel. Although they intersect at a point whose coordinates are specified by the
exact solution xe, the points with coordinates defined by xc, x1 and x2 are not far
from these lines either. Unfortunately, the problem is inherent in the system, and no
cure (other than increasing the precision) is available. Such systems are said to be
ill-conditioned.

1.7 Exercises

1. Study the tutorial in Appendix D. Experiment with MATLAB, and learn

(a) how to input a real and a complex matrix,

(b) basic matrix operations (addition, multiplication, transposition),

(c) how to create special matrices (identity matrix, zero matrix, diagonal matrix,
etc.),

(d) how to construct a partitioned matrix from given blocks and how to extract a
submatrix from a given matrix,

(e) how to create and execute an M-file.
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2. Let

A =

[

1 2 3
4 5 6
7 8 9

]

, x =

[ −1
−1

2

]

, y =

[

1
1
1

]

(a) Compute xtx, yty, xxt, yyt, xty, ytx, xyt, yxt, Ax, xtA, Ay, ytA, xtAx,
xtAy, ytAx and ytAy.

(b) Use MATLAB to find the products in part (a).

(c) Compute tr (A), tr (xxt), tr (xyt), tr (yxt), tr (yyt).

3. Show, by an example, that AB = AC does not imply that B = C.

4. (a) Show that if A ∈ F
m×n and B ∈ F

n×m then tr (AB) = tr (BA).

(b) Show that if x,y ∈ F
n×1 then

tr (xy
t) =

n
∑

i=1

xiyi

5. (a) Show that ApAq = Ap+q = AqAp.

(b) Use MATLAB to verify the result in part (a) for

A =

[

1 −2
2 3

]

and several p and q.

6. Let A, B ∈ R
n×n. Determine under what condition

(A + B)2 = A2 + 2AB + B2

7. Show that if A = diag [ d1, . . . , dn ], then Ak = diag [ dk
1 , . . . , dk

n ].

8. (a) Prove that the product of two lower (upper) triangular matrices is also lower
(upper) triangular.

(b) Verify the result in part (a) by computing the product of two arbitrarily chosen
3 × 3 upper triangular matrices using MATLAB .

9. If A, B and C are 100 × 2, 2 × 100 and 100 × 10 matrices, would you compute the
product ABC as (AB)C or as A(BC)? Why?

10. Show that the matrices

A =

[

In O
C In

]

and B =

[

In O
D In

]

commute.

11. Find a general expression for An for the A matrix in Exercise 1.10.

12. Let

A =

[

0 i
i 0

]

(a) Obtain a general formula for An.

(b) Verify your formula by calculating An for n = 2, 3, 4, 5 using MATLAB.
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13. Let

A =

[

0.8 0.3
0.2 0.7

]

(a) Use MATLAB to compute A5 and A10. Would you expect An to blow up or
converge to a finite limit matrix as n → ∞?

(b) Use MATLAB to compute An for n = 1, 2, . . . until the maximum element in
absolute value of An − An−1 is smaller than a sufficiently small number, say
10−6.

14. Let A = B + iC, where B, C ∈ R
n×n. Show that A is Hermitian if and only if B is

symmetric and C is skew-symmetric. State and prove a corresponding result for A to
be skew-Hermitian.

15. What can you say about the diagonal elements of a Hermitian and a skew-Hermitian
matrix?

16. Show that AhA is a Hermitian matrix for any A ∈ C
m×n. State and prove a corre-

sponding result for A ∈ R
m×n.

17. Let ei denote the ith column of In.

(a) Interpret the products

e
t
iei , e

t
iej , eie

t
j , e

t
iA , Aej , e

t
iAej

(b) Use MATLAB to verify your interpretation by calculating the above products
for the A matrix in Exercise 1.2 and for i, j = 1, 2, 3.

18. Let

Qn =













0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0













n×n

(a) Obtain a general expression for Qk
n, k = 1, . . . , m ≥ n.

(b) Use MATLAB to verify your result for n = 4 and k = 1, . . . , 5.

19. Let A ∈ R
m×n, B ∈ R

n×m and Qn be as in Exercise 1.14.

(a) Express AQk
n in terms of the columns of A.

(b) Express Qk
nB in terms of the rows of B.

(c) Construct the matrices Q5, A = [ 10i+j ]3×5 and B = [ 10i+j ]5×4 in MATLAB,
and calculate AQk

5 and Qk
5B for k = 1, . . . , 5.

20. Let A be a 10 × 4 matrix partitioned into its columns as

A = [ a1 a2 a3 a4 ]

and let Q be such that

AQ = [a4 a3 a1 a2 ]

(a) Find Q

(b) Find AQ25 in terms of the columns of A
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21. For each of the following (A,b) pairs find the reduced row echelon form of the aug-
mented matrix by hand, and check your result using the MATLAB command rref.
Using the reduced row echelon form of the augmented matrix determine if the system
Ax = b is consistent, and if so, find the general solution.

(a) A =

[

2 −1 1
−1 −1 −6

5 −3 1

]

, b =

[

1
2
3

]

(b) A =

[

1 2 3
−1 −2 −4

2 4 7

]

, b =

[

0
−1

1

]

(c) A =

[

5 −6 1
2 −3 1
4 −3 −1

]

, b =

[

4
1
5

]

(d) A =

[

1 0 2 −1
1 4 2 7
2 −2 4 −6

]

, b =

[

3
7
4

]

(e) A =

[

2 −4 −3 −4
−1 2 2 3

1 −2 −1 −1

]

, b =

[

0
1
1

]

(f) A =







1 −1 2 1
2 1 −3 −1
4 −1 1 1
1 2 −5 −2







, b =







1
2
3
1







(g) A =











1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1











, b =











1
2
1
0

−1











(h) A =







1 + i 0 −i 1
0 1 0 −1

−i −1 + i 1 1
1 i 1 − i 2







, b =







0
0
0
i







22. Attempt to solve the linear systems in Exercise 1.21 by using the MATLAB command
x=A\b, and interpret the results.

23. Find the value of the scalar p such that the system

[

1 −2 3
2 −4 7
1 −2 4

][

x1

x2

x3

]

=

[

0
1
p

]

is consistent, and then find the general solution.

24. Repeat Exercise 1.23 for the system







2 −1 1
−1 −1 −6

5 −3 1
1 −2 p







[

x1

x2

x3

]

=







1
2
3
4
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25. For the following pair, determine all values of the constants p and q such that the
system Ax = b has (a) no solution, (b) infinitely many solutions, (c) a unique solution.

A =

[

1 −1 2
4 −3 2

−2 −1 p

]

, b =

[

1
0
q

]

26. Determine geometrically if the following systems are consistent, and if so, find their
solutions.

(a)
x1 − x2 = 1
x1 + x2 = 5
x1 − 3x2 = 3

(b)
x1 − x2 = 1
x1 + x2 = 5
x1 − 3x2 = −3

27. Write the equation of a straight line passing through the points (x1, y1) 6= (x2, y2) in
the xy plane. Hint: A straight line in the xy plane is described by an equation of the
form ax + by + c = 0 in the most general case. Translate the problem into solving a
system of two linear equations in the unknowns a, b and c.

28. Consider a square pyramid with base vertices at v1 = (0, 0, 0), v2 = (2, 0, 0), v3 =
(2, 2, 0) and v4 = (0, 2, 0), and the tip at v0 = (1, 1, 1) in the x1x2x3 space. Write
equations of the four planar faces of the pyramid and obtain the solution of the 4 × 3
system consisting of these equations. Is the answer what you expect?

29. Write a MATLAB program to implement the Gaussian Elimination Algorithm in Table
1.1, and save it for your future use. Use your program to obtain the row echelon and
reduced row echelon forms of the matrices in Exercise 1.21.

30. Find the reduced row echelon form of the augmented matrix in (1.16) if q 6= 4.

31. Let the m × n matrix A have rank r < m and the reduced row echelon form
[

R
O

]

where R is r × n and O is (m − r) × n. Find the rank and the reduced row echelon
form of

B =

[

A
A

]

32. (a) Define elementary column operations on a matrix by imitating the definition
of elementary row operations.

(b) Give a precise definition of column equivalence of matrices.

(c) Define column echelon form and reduced column echelon form of a matrix.

(d) Define column rank of a matrix.

33. (a) Explain how the Gaussian Elimination algorithm of Section 1.4 can be modified
to obtain the reduced column echelon form of a matrix.

(b) Show that the reduced column echelon form of a matrix A is the transpose of
the reduced row echelon form of At.
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34. Let r(A) = r and

[ A b ] −→ [ R d ] =

[

F p

O q

]

where R is the reduced row echelon form of A. Clearly, r[ A b ] = r if and only if
q = 0. Find the reduced row echelon form of the augmented matrix and its rank when
r[ A b ] 6= r.

35. (a) Construct the matrices

A=eye(3)+ones(3,3);b=[2;0;2]

in MATLAB, and solve the equation Ax = b by using your Gaussian elimination
algorithm and also by the MATLAB command x=A\b.

(b) Repeat (a) for

A=eye(3)+i*ones(3,3);b=[0;-2;-1+i]

36. Calculate the total number of multiplication/division operations required to solve an
n × n system by Gaussian elimination, assuming that a pivot can be chosen at every
step. Include in your calculation divisions by 1, but exclude multiplications with 0.
Hint: Consider the loop consisting of steps 7-10 of the Gaussian elimination algorithm
applied to the augmented matrix. Elimination of xr from each of the remaining n −
r equations requires 1 division to find the multiplier µir at Step 8, and n − r + 1
multiplications to modify the ith row at Step 9. Thus the loop requires (n−r)(n−r+2)
multiplications/divisions, and the whole forward elimination process requires

n−1
∑

r=1

(n − r)(n − r + 2)

such operations. Calculate the operations required by backward elimination similarly,
and then find closed form expressions for the sums.

37. Repeat Exercise 1.36 if forward and backward substitutions are performed simultane-
ously, and explain why forward elimination followed by backward elimination is more
efficient (in terms of the number of multiplication/division operations) than simulta-
neous elimination.

38. Use MATLAB command M=rand(5,4) to generate a 5 × 4 augmented matrix M =
[ A b ] with random elements. Use either the MATLAB code written in Exercise 1.29
or MATLAB’s build-in function rref to compute the reduced row echelon form of M ,
and determine if the associated system Ax = b is consistent. Repeat several times.

39. Let {φ1, . . . ,φν } be given set of column vectors. Show that if

a1φ1 + · · · + aνφν = b1φ1 + · · · + bνφν

for two different ordered sets of scalars (a1, . . . , aν) and (b1, . . . , bν), then at least one
of φi can be expressed in terms of the others. This shows that if {φ1, . . . ,φν } is
linearly independent then different choices of the arbitrary constants c1, . . . , cν in the
expression

φc = c1φ1 + · · · + cνφν

yield different vectors.

40. Show that if a linear system has two distinct solutions then it has infinitely many
solutions. Hint: Let x = φ1 and x = φ2 be two distinct solutions of Ax = b, and
consider A(φ1 − φ2).
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41. Suppose that

x = φp + c1φ1 + · · · + cνφν

is the general solution of Ax = b and that x = ψ is a particular solution of Ax = c.
Find the general solution of

Ax = 2b − c

42. Consider the system
[

0.19 0.18
0.18 0.17

] [

x1

x2

]

=

[

0.74
0.70

]

(a) Find the exact solution.

(b) Show that Gaussian Elimination with 3-digit floating point arithmetic results in
an inconsistent system.

(c) Solve the system by using 4-digit floating point arithmetic.

(d) Solve the system by using 5-digit floating point arithmetic.

43. Repeat Exercise 1.42 for the system
[

0.820 0.528
0.730 0.470

] [

x1

x2

]

=

[

0.340
0.300

]

44. Consider the system

x1 + 2 x2 − x3 = 1
x1 + x2 + ε x3 = −1
x1 + ε x2 + x3 = −1

where ε is smaller than the precision of a calculator (that is, the calculator can represent
ε alone, but rounds 1 + ε to 1).

(a) Find the exact solution of the system.

(b) Show that, independent of the choice of the pivot elements, Gaussian elimination
implemented on the calculator fails to produce a solution.

(c) Rewrite the equations in terms of new variables z1 = x1, z2 = x1 + x2, z3 =
x1 + x3. Can you solve the resulting system with the same calculator?

45. Find all possible values of s such that the system
[

s 1 0
0 s 1
0 1 s

]

x = 0

has a nontrival solution.

46. (Application) Consider the resistive electrical network shown in Figure 1.2(a), where v1

and v2 are the voltages supplied by external sources. The problem is to determine the
voltages across and currents through all components of the network using Kirchoff’s
voltage and current laws and the voltage/current relations of the resistors. Kirchoff’s
voltage law states that the algebraic sum of the voltages across components that form
a closed circuit is zero, and the current law states that the algebraic sum of currents
through components that form a cut-set (a hypothetical line that separates the network
into two disjoint parts) is zero. For convenience in identifying the circuits and cut-sets
of the circuit, we associate with it a directed graph as shown in Figure 1.2(b), where
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4 5

(b)(a)

Figure 1.2: A resistive network

each edge corresponds to a component. Direction of the edges are assigned arbitrarily
with the convention that if a current flows in the assigned direction then it has a
positive value, and that if the voltage across the component drops in the assigned
direction then it has a positive value. The voltage/current relation of a resistor is
v = Ri.

(a) Identify all circuits in the network, and write the circuit equations (relating the
voltages of the components in the circuit) using Kirchoff’s voltage law. Hint:
There are three circuits.

(b) Identify all cut-sets in the network, and write the cut-set equations (relating the
currents of the components in the circuit) using Kirchoff’s current law. Hint:
There are six cut-sets.

(c) Use circuit and cut-set equations together with the voltage/current equations of
the resistors to obtain a linear system in which all voltages and currents except
v1 and v2 appear as unknowns to be solved in terms of v1 and v2.

(d) Solve the linear system you obtained above for the specific values v1 = 30V ,
v2 = 60V , R3 = 6KΩ, R4 = 2KΩ, R5 = 6KΩ. Show that although there
are more equations than unknowns, the system is consistent and has a unique
solution.

(e) Show that the solution above is independent of the value of R4.

(f) Apparently not all the circuit and cut-set equations are independent (i.e., some of
them can be obtained from the others, and are, therefore, redundant). Show that
only two of the three circuit equations and only three of the six cut-set equations
are independent. (Thus, together with the three voltage/current equations of
the resistors, there are eight equations in eight unknowns.)

47. (Application) The diagram in Figure 1.3 shows the major pipelines of the water distri-
bution network of a town, where q1 and q2 denote the supply flow rates (in thousand
m3/sec) into the network from two reservoirs, and q3 and q4 the outflow rates from
the network to town. It is assumed that no water is stored anywhere in the network,
so that q1 + q2 = q3 + q4. The variables fi associated with each pipe denote the flow
rate in the direction arbitrarily assigned to the pipe. (Thus a negative value indicates
that the flow is in the reverse direction.)

(a) Obtain a linear system in the variables fi by equating the inflow rate at each
node to the outflow rate.

(b) Obtain a general solution of the system obtained in part (a). How many variables
can be chosen arbitrarily?
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Figure 1.3: Water distribution network

(c) Suppose that the pipes have a limited capacity so that −F ≤ fi ≤ F , where
F = 18. Obtain a region in the parameter space of arbitrary parameters that
appear in the general solution in which every combination of the parameters
gives a solution that satisfy the capacity constraints.

(d) Find F such that the system has a unique solution. Find also the corresponding
solution.

48. (Application) Figure 1.4 shows a planar structure consisting of two rigid pieces pinned
to each other and to two fixed supports on the ground. Let α1 and α2 denote the
interior angles of the pieces with the horizontal, and let the weights W1 and W2 of the
pieces be represented as downward forces acting at their midpoints. The problem is
to find the forces on the supports. Let Fix and Fiy, i = 1, 2, 3, denote the horizontal
and vertical components of the reaction forces on the pin joints. Since each rigid piece
is in equilibrium, the net horizontal and vertical force as well as the net torque acting
on each piece is zero.

(a) Write three equations for each piece to describe the equilibrium conditions to
obtain a linear system of a total of six equations in the six unknowns Fix and
Fiy , i = 1, 2, 3. Hint: Use the geometry of the structure.

(b) Solve the system formulated in part (a) to find the forces on the supports in
terms of W1, W2 and α1, α2.
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Figure 1.4: Rigid planar structure
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