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ABSTRACT
A two-step procedure for zoom-factor and rotation angle
estimation, based on the use of Zernike moments, is proposed
in this paper, according to which the zoom-factor is estimated
in the first step as a precondition for the estimation of the
rotation angle in the second step. The experimental results
show that the proposed method is robust in respect of the
variety of images and to additive noise and has potential
applicability to real-life video sequences involving camera
rotation and camera zoom.

1. INTRODUCTION
Because of the insensibility of their magnitudes to rotation, the
use of Zernike moments in pattern recognition has been
studied extensively in the last decades [1], [2], [3]. It has
recently been shown that this property of Zernike moments
could be effectively used to reliably estimate the rotation angle
of objects in some robot applications [4], i.e. when a robot arm
has to manipulate objects on a conveyor belt. In such cases, the
robot must first recognize the object, regardless of its
orientation angle, and then to estimate its rotation angle for
manipulation.

However, as it is shown in this paper, Zernike
moments could be used for the estimation of the zoom-factor
as well.  An estimator of the rotation angle and the zoom-factor
can be effectively applied in machine vision tasks when
objects having different orientations and being viewed from
different distances should be picked up by a robot, or in motion
estimation tasks when scenes with both zoom and rotation are
considered.

A situation with involving both zoom and rotation
could be treated as follows: the zoom-factor is estimated in the
first step, and then the estimation of the rotation angle is done
in the second step. Since a convenient procedure for the
estimation of the rotation angle is already given in [4] , the
emphasis in this paper is put on the estimation of the zoom-
factor. Once the zoom-factor is estimated, in order to estimate
the rotation angle one can almost straightforwardly apply the
estimation procedure given in [4].

2. ZERNIKE MOMENTS

The Zernike moments of order n and repetition m,
Znm(ρ,θ), of a grey-scale image, f(ρ,θ), are defined inside the
unit circle of the (ρ,θ) polar coordinate system, as follows:
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are the complex-conjugates of the Zernike basis images, and
Rnm(ρ) are the radial polynomials, defined as:
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In (3), n and m are integers, with n ≥ m≥ 0 and n - m is even.

A. Zernike Moments of Zoomed and Rotated Images

 Let f1(ρ,θ) be an image known over the unit disk.
Let f2(r,θ), be its shrunken and rotated version, known over a
disk with radius 1/a, a ≥ 1. Then the following equation is
valid for r ≤ 1/a:

f1(ar,θ  + α) = f2(r,θ)              (4)

Now, let us denote the Zernike moments of order n and

repetition m of the image f1(ρ,θ) with Znm
( )1 :
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and let us introduce the following notation regarding the image
f2(r,θ):
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Then, from (4)-(6), we have:
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where:
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In case of rotation only, i.e. for a = 1, from (5) to (8)
the following property of the Zernike moments can be easily
shown:

αjm
nmnm eZZ )1()2( = ; n ≥ m ≥ 0 (9)

However, when zooming is also involved, in order to
have computationally simple relations, we have to restrict the



analysis to Zernike moments having the same order as
repetition, i.e., to the cases when n = m. For n = m,  from (4)-
(8), we have the following property of the Zernike moments:
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It should be noted here that in (10) and (11) )1(
nnZ  and ),2( a

nnZ

are to be calculated over different sampling grids, the one used

for ),2( a
nnZ  being the finer of the two.

From a computational point of view it is much better

to apply the sampling grid of ),2( a
nnZ  for the calculations of

)1(
nnZ , too. When )1(

nnZ  and ),2( a
nnZ  are calculated using the

sampling grid of ),2( a
nnZ , relation (11) has to be rewritten in the

following manner:
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We shall use relation (12) for the estimation of the
zoom-factor a.

3. ZOOM-FACTOR ESTIMATION

Having two known images, f1(ρ,θ) and f2(ρ,θ),
related according to (4) by an unknown zoom-factor a, and an
unknown rotation angle α, we want to obtain a good estimate,
â , for the unknown value of a, and then to use â  to obtain a

good estimate α̂ for the unknown rotation angle α.

We shall restrain the estimation procedure within a
reasonable range of expected zoom-factors, amin ≤ a ≤ amax, and
will then proceed as follows.

For a given value of n, we calculate )1(
nnZ . Then,

using the same sampling grid as for )1(
nnZ , we calculate  ),2( k

nnZ

for the whole range of expected zoom-factors and construct the
following quotient function:
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Figure 1 shows four such quotient functions of an
image obtained for four different values of n.

Before we proceed with the explanation of the
proposed procedure, there is a need for a brief discussion on
the properties of qn(k).   

Let kr denote the value of k for which qn(kr) = 1.
Theoretically, provided the range of expected zoom-factors is
correctly set, by inspecting the point at which qn(kr) = 1, one
could expect to obtain the exact value of a, because relations
(12) and (13) imply a = kr. As an example, see q3(k) in Fig. 1.

However, it is possible to have qn(ki) = qn(kj) = qn(kk)

=… =  1 for ki ≠ kj ≠ kk … The main cause for this is that, for a
given n, it is possible to have:
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for values of k ≠ a, even under ideal conditions, because it is
quite possible for two different images to have identical
projections onto a common basis image. Namely, f1(ρ,θ) for ρ
≤ 1 is in general different than f2(ρ,θ) for ρ ≤ 1/k ≠ 1/a. Thus
this situation is inherent to the very problem and can not be
prevented neither theoretically, nor practically. Of course, one
of the solutions of (14), in case of multiple solutions, should
correspond to kr ≅ a. Let us denote the solution kr ≅ a as the
true solution, and all other solutions as false ones. Experiments
have shown that the false solutions, when they exist, are
randomly spread along the k-axis, and that they occur at
different values of k  for different values of n. See, for
example, q2(k) and q14(k) in Figure 1.

Because of round-up errors and noise, and in cases
when the sampling grid, although appropriately chosen with
respect to the spread of the spatial spectrum of f1(ρ,θ), is too
coarse with respect to the spread of the spatial spectrum of
f2(ρ,θ), the value of the true solution could be slightly altered.
We assume that the distribution for different values of n of the
values for the true solution is a Gaussian one with zero mean
and unknown variance.

The reasons causing variations of the true solution
could in certain cases also cause the case when qn(k) ≠ 1 for
amin ≤ k ≤ amax, even though the range of expected zoom-
factors was correctly set. See, for example, q6(k) in Figure 1.
Experiments have shown, though, that the occurrence of this
situation depends in a random manner on the value of n.

Having in mind the aforesaid considerations, in the
proposed procedure for the estimation of the zoom-factor, we
calculate a set of moments with increasing values of n and
create a family of quotient functions. We then determine all
possible solutions of qn(k) = 1 for all n. For each such solution
a Gaussian probability density function is then constructed,
with the value of the solution as its mean. All probability

Fig.1  Four quotient functions for an image:
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density functions could have the same variance. Then a total
probability density function is constructed as a sum of all
individual pd-functions. Finally, the value  kM, for which the
maximum of the total pdf occurs, is taken to be the estimate of
the zoom-factor a, â  = kM.

One might think that computing ),2( k
nnZ  for all k

within the range amin ≤ k ≤ amax would be computationally a
rather complex task. Fortunately, this is not the case. We start

by computing the necessary set of Zernike moments ),2( k
nnZ  for

the highest value of k = amax. Having the values of the set
),2( maxa

nnZ , all we need in order to obtain the set ),2( k
nnZ  for the

next lower value of k is to perform the calculations only for the
pixels that belong to the outer ring on the (ρ,θ)-plane having an
inner radius equal to 1/amax and a thickness of 1 pixel, and to

add then the results to ),2( maxa
nnZ . This procedure is repeated for

all other lower values of k until k = amin is reached. Thus, the
overall computational complexity is equivalent to the

calculation of the sets )1(
nnZ  and ),2( mina

nnZ .

4. ROTATION ANGLE ESTIMATION

When the zoom-factor is estimated, the estimation of
the rotation angle is done following the procedure proposed in
[4], applied on:
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5. EXPERIMENTAL RESULTS

Simulation experiments were performed with 87
random chosen 8 bits/pixel grey-scale images with a resolution
of 640×480 pixels. These were down-scaled, using bilinear
interpolation, with four different zoom-factors: a = 1.05, 1.1,
1.15 and 1.2. This image set was then used to test the proposed
procedure for zoom-factor estimation. The corresponding
algorithm was implemented in Matlab. Gaussian probability
density functions with different variances were tried, but best
results were achieved  with σ2 = 0.001 and those are the ones
that are presented in this paper.

Figure 2 illustrates how the obtained average errors
fluctuate depending on the size of the set of used Zernike
moments, Σn. Figure 3 shows the dependence of the errors'
variances on the size of the set of Zernike moments.

In Figures 2 and 3, Σn = 0 denotes that just the
Zernike moments of order and repetition 0 were used, whereas,
for instance, Σn = 5 means that a set containing all Zernike
moments of order and repetition 0 up to order and repetition 5
was used. The four shown curves correspond to the four zoom-
factor values used in the tests.

As it could be seen, the amplitudes of the
fluctuations of both the average error and the error variance are
significant only for the lowest set sizes Σn, and then drop to
quite lower values for Σn ≥ 8.

Table 1 gives the obtained average error, error
variance, maximal error and maximal error on the unit circle
expressed in pixels for the whole image test set in the case

when Σn = 20 was used, for all tested values of a.

 a = 1.05 a = 1.1 a = 1.15 a = 1.2
Average
error

-2.1×10-4 -2×10-4 -3.9×10-4 -2.7×10-4

Error
variance

5.6×10-8 5×10-8 7.5×10-8 2.2×10-7

Maximal
error

5×10-4 5×10-4 5×10-4 2.4×10-3

Maximal
error in
pixels

0.12 0.12 0.12 0.58

Table 1  The average error, error variance , maximal error
              and maximal error in pixels on the unit circle for four
              different values of zoom-factor

Experiments were also performed with Gaussian
zero mean noise added to the zoomed images, but with an
image set size of 30 and for just one value of the zoom-factor.
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Fig.2  Fluctuations of the average error εAV with the
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Table 2 shows the results for different SNR levels.

SNR [dB] 30 20 10
Average error -2.1×10-4 -2.5×10-4 -1.9×10-4

Error variance 3.1×10-8 5.2×10-7 4.1×10-5

Maximal error 2×10-4 9×10-4 0.0114
Maximal error in
pixels

0.048 0.216 2.736

Table 2  The average error, error variance , maximal error
              and maximal error in pixels on the unit circle
              for three different SNR levels in the case of a = 1.1

6. CONCLUSION

In this paper we propose a new and robust method of
estimating the zoom-factor of an image using the magnitude
information of Zernike moments whose orders are equal to
their repetitions.

A number of simulation experiments were performed
over a set of randomly chosen images and very good results
were obtained. The results of the simulations on noise-free
images exhibit an average error of the order of 10-4 when set
size Σn was chosen large enough (over 8). This is equivalent to
a maximal error at the top or the bottom of the image frame of
0.24 pixels. In the worst individual case the maximal error
reached 0.58 pixels, a value that can still be considered as very
good.

The simulation experiments that were performed on
noisy images showed that the method gives good values for the
error variance and the maximal error when the SNR level is
equal or higher than 20 dB. Although the error variance and
maximal error exhibit an increase for two orders of magnitude
when the SNR level is 10 dB, the average error remains at the
same order of magnitude.  

The fact that the proposed method performed well on
a randomly chosen set of noise-free and noisy images indicated
its robustness and applicability to real-world situations. Indeed,
the proposed method was tried on a quite small set of
consecutive frames from video sequences containing true
camera zoom action. On the grounds of the results obtained in
these tries we can conclude that in order to obtain good results
in real-life video sequences, the essential thing is to
compensate all translational motion prior to the application of
the proposed zoom-factor estimation method.
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