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ABSTRACT

The median filter is a special case of nonlinear filter used for
smoothing signals. Since the output of the median filter is
always one of the input samples, it is conceivable that cer-
tain signals could pass through the median filter unaltered.
These signals, invariant to further passes of the median fil-
ter, define the signature of a filter and are referred to as root
signals. This represents the convergence property of median
filters. The convergence behavior of different schemes of re-
cursive median filters, and algorithms for image processing
using these filters will be studied.

1. INTRODUCTION

Since Tuckey suggested the standard median filter for smooth-
ing statistical time series [1], this concept has been widely
studied. By repeating the median filtering, the root signal,
which is invariant to further filtering, is found. The exis-
tence of root signals is a fundamental property of median fil-
ter, used in characterizing these nonlinear filters.

Frequency analysis and impulse response have no mean-
ing in median and recursive median filtering: the impulse re-
sponse of a recursive median filter is zero. As a result, new
tools had to be developed to analyze and characterize the be-
havior of these nonlinear filters, deterministically and statis-
tically [2], [3], [4]. By associating the nonlinear operation of
median filtering with a linear cost function, in [5] was shown
that median filtering is an optimization process in which a
two-term cost function is minimized.

To compute the output of a 1-D median filter, an odd num-
ber of sample values are ranked, and the median value is used
as the filter output. If the filter’s window length is N =
2k + 1, the filtering procedure is given by:

Y (n) = med[X(n � k); :::; X(n); :::; X(n+ k)];
(1)

where X(n) and Y(n) are the input and the output sequences,
respectively. It is reasonable to assume that the signal is of
finite length, consisting of samples fromX(0) toX(L�1).

To be able to filter the outmost input sample, when parts of
the filter’s window fall outside the input signal, the input sig-
nal is appended to the required size by replicating the out-
most input sample as many times as needed. This is the non-
recursive median filter. If the point X(n) is replaced with the
output of the median filter before shifting the window to the
next position, we obtain the recursive median filter. The out-
put of the recursive filter is given by:

Y (n) = med[Y (n� k); :::; Y (n� 1); X(n); :::; X(n+ k)]:
(2)

Recursive median filters use also previously filtered val-
ues as their inputs. In this case the filtering operation is per-
formed ’in-place’, so that the output of the filter replaces the
old input value, before the filter window is moved to the next
position. With the same amount of operations recursive fil-
ters can usually provide better smoothingcapability than non-
recursive filters, at the expense of increased distortion. Re-
cursive median filters have stronger noise attenuation capa-
bilities than their nonrecursive version, and a faster conver-
gence. In [6] simple proofs of the convergence properties
of median filters and the idempotent property (reduction to
a root after one pass) of recursive median filters are given.

An upper bound of the number of filter passes for median
filtering a finite length signal to a root is (L�2)=2, where L
is the length of the input sequence. This bound is indepen-
dent of the window width of the filter. A more tight bound
is 3(L � 2)=[2(k + 2)], where N = 2k + 1 is the filter’s
window width.

For image processing applications, two-dimensional me-
dian filters have been used with success. In [7] a new ap-
proach for designing the recursive median filter for image
processing applications was introduced. The original sig-
nal replaces the output of the previous pass in the middle of
the operation window. The convergence of this improved
recursive median filter within a finite number of iterations
was proven. This new scheme of recursive median filter pro-
vides an improved MSE performance over the standard re-
cursive median filter. In this paper we further investigate the
possibility of using partial replaces of the old input value at



the filter’s output, before moving the window to the next po-
sition. We show that even better MSE performances could
be attained by different recursive median filtering schemes.
Proofs of the convergence of these recursive median filtering
schemes are also given.

2. CENTER WEIGHTED MEDIAN FILTERS

An immediate generalization of the median filter and a ma-
jor subclass of stack filters are the weighted median (WM)
filters [6], [8]. The standard median filter has a better noise
attenuation than any WM filter, regardless of the noise dis-
tribution. But, in order to preserve small details, WM filters
can be the solution.

The output of the WM filter of window size N = 2k+1
associated with the integer weightsw

�k; :::wk is given by:

Y (n) = med[w
�k�X(n � k); � � � ;

w0�X(0); � � � ; wk�X(n + k)]; (3)

where the symbol � is used to denote duplication, i.e.,

n�x = x; � � � ; x| {z }
n times

: (4)

Center weighted median (CWM) filters are a subclass of
WM filters which combines the simplicity of median filters
with some of the design freedom of WM filters. For these fil-
ters only the center sample in the window has a weight larger
than one. All other weights are equal to one. The CWM
filters are the simplest WM filters and the easiest to be de-
signed and implemented. A CWM filter of window width
N = 2k + 1 is defined as:

Y (n)p = med[X(n� k); � � � ; p�X(n); � � � ; X(n+ k)]:
(5)

After the center is weighted, the filter is effectively 2k + p
long, with p = 2m�1 smaller than or equal to k (otherwise
the filter would be reduced to the identity filter). Different
values of p produce different CWM filters. When p = m =
1 the median filter is obtained, which has the convergence
property. When m = k, it has been shown that when k > 1,
the resulting 1-D filter is idempotent.

A CWM filter is completely specified by two parame-
ters: the window size and the center weight. In general, the
longer the window size of a CWM filter, the better noise at-
tenuation ability the filter has. CWM filter can be designed
to possess good noise attenuation and preserve small details.

In contrast to recursive median filters, which are idem-
potent, the recursive WM filters usually are not. All the re-
cursive CWM filters corresponding to a WM filter make an
arbitrary input signal to converge to a root signal.

3. THRESHOLD DECOMPOSITION

In [9] a powerful tool called threshold decomposition for an-
alyzing rank order based filters was introduced. Using this
technique, the analysis of these filters is reduced to studying
their effects on binary signals. The importance of the thresh-
old decomposition arises from the fact that binary signals are
much easier to analyze than multi-valued signals.

Threshold decomposition of a signal vector fX(n)g M-
valued, where the samples are integer-valued, 0 � X(i) <
M ; 0 � i < L means decomposing it into M-1 binary sig-
nal vectors X1(n); X2(n); :::; XM�1(n), according to the
following rule:

Xm = Tm(X(n)) =

�
1 if X(n) � m
0 otherwise.

(6)

This thresholding scheme can be applied to any signal
that is quantized to a finite number of arbitrary signals. The
original multi-valuedsignal samples X(n) can be reconstruc-
ted from the threshold levels by adding them:

X(n) =
M�1X
m=1

Xm(n): (7)

Applying a recursive median filter to an M-valued sig-
nal is equivalent to decomposition the signal to M-1 binary
thresholdsignals, filtering each binary signal separately with
the corresponding binary recursive median filter, and then
reversing the decomposition.

The binary sequence f0, 1g of fXm(n) g is transferred
into f-1, 1g binary sequence of f Zm(n) g by Zm(n) =
2Xm(n)� 1. For the recursive median filtering of a binary
sequence fZm(n)g, the output of the filter is given by:

Om(n) =

�
+1 if S(n) � 0
�1 otherwise,

(8)

where

S(n) =
NX

j=�N

Zm(n+ j): (9)

4. DIFFERENT RECURSIVE MEDIAN FILTERING
SCHEMES

It is known that in the case of 2-D signals the recursive me-
dian filters are not necessarily idempotent [3]. Thus, in order
to find the root signal, it is necessary to apply the recursive
median filter iteratively. For the recursive median filter, at
each iteration for every point of the image we have to com-
pute the output of the filter:

Om
t (n) = med[Om

t�1(n � k); :::Om
t�1(n); :::; O

m
t�1(n+ k)];

(10)



where the subscript t represents the iteration index. The re-
cursive median filtering is a sequential process and the noise
influence at his output will be accumulated. To alleviate such
an undesirable effect it may be useful to encourage the filter
output to resemble the original signal. The recursive median
filtering is an optimization operation in which the output of
the filter is always set to the minimum of a cost function of
the output state of the filter [5]. The first recursive median
filtering scheme is obtained when the output of the filter at
each iteration for every point of the image is computed with:

Om
t (n) = med[Om

t�1(n � k); � � � ; Om
t�1(n� 1);

Zm(n); Om
t�1(n+ 1); � � � ; Om

t�1(n+ k)]: (11)

So, in this case, instead of using the output of the previous
pass, the value from the middle of the window of the filter
is replaced by the original signal. The obtained filter is con-
vergent to a root signal within a finite number of iterations
[7].

This approach is extended by choosing different positions
and several points inside the filter’s window to be replaced
by the original signal, instead of the outputs of the previous
passes. At each step of the filtering process, the following
function is minimized:

E(Om(n)) = �
X
j1

Om(n)Om(n+ j1)

�
X
j2

Om(n)Zm(n+ j2); (12)

where j1 + j2 = 2k + 1 and j2 represents the number
of the points from the original signal that replace the values
from the filter’s window. The first term gives a measure of
the smoothness of the filtering process, and the second one
measures the discrepancy between the filter output and the
original signal.

In the case of the recursive median filter, each point of
the signal is sequentially visited and the output is updated
before moving to the next position. For the whole process,
the following function will be minimized:

E = �

LX
n=1

X
j1

Om(n)Om(n+ j1)

�

LX
n=1

X
j2

Om(n)Zm(n+ j2): (13)

Because the process is sequential and at any time only one
output is changed, the changes of the function E from one
’global’ step to another are given by:

�E = �Om(n)S(n): (14)

The value of �E is less than or equal to zero (from (8)), so
after a finite number of iterations,E will reach its minimum
and the filtered signal will be reduced to a root.

Notice that j2 cannot take values greater than 2k; other-
wise, the recursive process became meaningless. If j2 = 1
the only replacement takes place in the middle of the win-
dow of the filter. The equation (11) is obtained.

For the other extreme case j2 = 2k, all values except the
middle of the window of the filter are replaced with the orig-
inal signal. At the second stage, the value for �Oi(n) will
be zero, even in the 2-D case, so the obtained filter structure
is idempotent. This appears because at the second stage we
have:

Ot+1(n) = Ot=0(n) = med[Z(n � k); � � � ; Z(n+ k)]:
(15)

In this case, the filtering scheme is given by:

Om
t (n) = med[Zm(n� k); � � � ; Zm(n� 1);

Om
t�1(n); Z

m(n+ 1); � � � ; Zm(n + k)]: (16)

5. EXPERIMENTAL RESULTS

In order to objectively evaluate the performances of these
new filtering schemes, we have used the Lena image cor-
rupted by impulsive noise. The image considered contained
256x256 pixel values with 8 bits resolution per pixel. In all
cases, a 3x3 window was used and the threshold decompo-
sition technique was applied. The scanning order was line
by line. The results were similar when a column by column
scanning was used.

For the simulations we have considered five different fil-
tering schemes for recursive median and CWM filters. In all
plots with continuous line without markers the traditional re-
cursive median and CWM filters were represented. The fil-
tering scheme given by (11) is marked with a circle and the
one given by (16) with a star. An intermediate simulation,
which replaces all the corners of the window of the filter with
the original signal is marked with a cross. In order to elim-
inate as much as possible the discrepancy between the filter
output and the original signal, the positions of the replace-
ments were varied during the filtering process, depending on
the actual local value of the corruption. The results for this
simulation are marked with a triangle. The best results were
obtained in this case.

Figure 1 presents the computed Mean Square Error (MSE)
and Mean Absolute Error (MAE) for different recursive me-
dian filtering schemes. In Figure 2 the computed MSE and
MAE for the same recursive median filtering schemes, but
with a central weight of value p = 3 are presented.

6. CONCLUSIONS

In this paper some recursive median filtering schemes for
image processing were introduced. The convergence prop-
erties of these filtering schemes were studied. The results
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Figure 1: Performance evaluation results.

of the simulations illustrate the improving of the MSE and
MAE performances over the traditional methods.
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Figure 2: Performance evaluation results for CWM.
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