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ABSTRACT

The median filter isaspecial case of nonlinear filter used for
smoothing signals. Since the output of the median filter is
always one of the input samples, it is conceivable that cer-
tain signas could pass through the median filter unaltered.
These signals, invariant to further passes of the median fil-
ter, define the signature of afilter and are referred to as root
signals. Thisrepresentsthe convergence property of median
filters. The convergence behavior of different schemes of re-
cursive median filters, and algorithms for image processing
using these filterswill be studied.

1. INTRODUCTION

Since Tuckey suggested thestandard median filter for smooth-
ing statistical time series [1], this concept has been widely
studied. By repeating the median filtering, the root signal,
which is invariant to further filtering, is found. The exis-
tence of root signalsisafundamenta property of median fil-
ter, used in characterizing these nonlinear filters.

Frequency analysisand impul seresponse have no mean-
ingin median and recursive median filtering: theimpulsere-
sponse of arecursive median filter iszero. Asaresult, new
toolshad to be devel oped to analyze and characterize the be-
havior of these nonlinear filters, deterministically and statis-
tically[2], [3], [4]. By associating the nonlinear operation of
median filteringwith alinear cost function, in[5] wasshown
that median filtering is an optimization process in which a
two-term cost function is minimized.

To computethe output of al1-D medianfilter, an odd num-
ber of sampleva uesareranked, andthe median valueisused
as the filter output. If the filter’s window length is N =
2k 4 1, thefiltering procedure is given by:

Y(n) =medX(n—k),..., X(n), .., X(n+ k)],
D
where X(n) and Y (n) are theinput and the output sequences,

respectively. It is reasonable to assume that the signal is of
finitelength, consisting of samples from X (0) to X (L —1).

To be able to filter the outmost input sample, when parts of
thefilter’ swindow fall outsidetheinput signal, theinput sig-
nal is appended to the required size by replicating the out-
most i nput sampl e as many times as needed. Thisisthenon-
recursivemedian filter. If the point X(n) isreplaced withthe
output of the median filter before shifting the window to the
next position, we obtaintherecursive median filter. The out-
put of the recursive filter is given by:

Y(n)=medY(n—k),...,Y(n—=1),X(n),..., X(n+ k()z])

Recursive median filtersuse a so previoudly filtered val -
ues astheir inputs. In this case thefiltering operation is per-
formed’in-place’, so that the output of thefilter replaces the
oldinput value, beforethefilter window ismoved to the next
position. With the same amount of operationsrecursive fil-
terscan usually providebetter smoothing capability than non-
recursive filters, at the expense of increased distortion. Re-
cursive median filters have stronger noise attenuation capa-
bilitiesthan their nonrecursive version, and a faster conver-
gence. In [6] simple proofs of the convergence properties
of median filters and the idempotent property (reduction to
aroot after one pass) of recursive median filtersare given.

An upper bound of the number of filter passesfor median
filtering afinitelength signal toarootis (L —2)/2, whereL
isthe length of the input sequence. This bound isindepen-
dent of the window width of the filter. A more tight bound
is3(L —2)/[2(k + 2)], where N = 2k + 1 isthefilter’s
window width.

For image processing appli cations, two-dimensional me-
dian filters have been used with success. In[7] a new ap-
proach for designing the recursive median filter for image
processing applications was introduced. The original sig-
nal replaces the output of the previous passin the middle of
the operation window. The convergence of this improved
recursive median filter within a finite number of iterations
was proven. Thisnew scheme of recursivemedian filter pro-
vides an improved M SE performance over the standard re-
cursivemedian filter. Inthispaper we further investigatethe
possibility of using partial replaces of the old input value at



thefilter’soutput, before moving the window to the next po-
sition. We show that even better M SE performances could
be attained by different recursive median filtering schemes.
Proofsof the convergence of these recursive median filtering
schemes are a so given.

2. CENTERWEIGHTED MEDIAN FILTERS

An immediate generalization of the median filter and ama:
jor subclass of stack filters are the weighted median (WM)
filters[6], [8]. The standard median filter has a better noise
attenuation than any WM filter, regardless of the noise dis-
tribution. But, in order to preserve small details, WM filters
can be the solution.

The output of the WM filter of window size N = 2k + 1
associated with the integer weightsw_y, ...wg isgiven by:

Y (n) = med[w_OX (n — k), -,
we0X(0), -+, wpOX(n + k)], 3)

where the symbol ¢ isused to denote duplication, i.e.,

nOr =z, -, x. 4
N —’

n times

Center weighted median (CWM) filters are a subcl ass of
WM filterswhich combines the simplicity of median filters
with some of thedesign freedom of WM filters. For thesefil-
tersonly the center sampleinthewindow hasaweight larger
than one. All other weights are equal to one. The CWM
filters are the simplest WM filters and the easiest to be de-
signed and implemented. A CWM filter of window width
N = 2k + 1 isdefined as:

V(n)" = med[X(n— k), ,p0X(n),- -+, X(n+ k).
(5)

After the center is weighted, the filter is effectively 2k + p
long, withp = 2m — 1 smaller than or equal to k (otherwise
the filter would be reduced to the identity filter). Different
values of p produce different CWM filters. When p = m =
1 the median filter is obtained, which has the convergence
property. When m = k, it has been shownthat when k& > 1,
theresulting 1-D filter is idempotent.

A CWM filter is completely specified by two parame-
ters: the window size and the center weight. In general, the
longer the window size of aCWM filter, the better noise at-
tenuation ability thefilter has. CWM filter can be designed
to possess good noi se attenuation and preserve small details.

In contrast to recursive median filters, which are idem-
potent, the recursive WM filters usually are not. All there-
cursive CWM filters corresponding to a WM filter make an
arbitrary input signal to converge to aroot signal.

3. THRESHOLD DECOMPOSITION

In[9] apowerful tool called threshold decompositionfor an-
alyzing rank order based filters was introduced. Using this
technique, theanalysis of thesefiltersisreduced to studying
their effectson binary signals. Theimportance of thethresh-
old decomposition arisesfromthefact that binary signalsare
much easier to analyze than multi-valued signals.

Threshold decomposition of asignd vector { X' (n)} M-
valued, where the samples are integer-valued, 0 < X (i) <
M;0 < i < L means decomposing it into M-1 binary sig-
na vectors X! (n), X?(n), ..., X¥~1(n), according to the
following rule:

m_ m 1 ifX(n)>m
X7 =T7(X () = { 0  otherwise ©)
This thresholding scheme can be applied to any signa
that is quantized to afinite number of arbitrary signals. The
origina multi-valued signal samples X(n) can bereconstruc-

ted from the threshold levels by adding them:

X(n) = Z_:Xm(n) (7

Applying a recursive median filter to an M-valued sig-
nal is equivalent to decomposition the signal to M-1 binary
thresholdsignals, filtering each binary signal separately with
the corresponding binary recursive median filter, and then
reversing the decomposition.

The binary sequence {0, 1} of { X" (n) } istransferred
into {-1, 1} binary sequence of { Z™(n) } by Z7(n) =
2X"™(n) — 1. For therecursive median filtering of abinary
sequence {Z™ (n) }, the output of thefilter is given by:

my | 41 ifS(n)>0
0™ (n) _{ -1 otherwise, ®
where
N
S)= Y Z"(n+j). ©)
j=—N

4. DIFFERENT RECURSIVE MEDIAN FILTERING
SCHEMES

Itisknown that in the case of 2-D signalsthe recursive me-
dianfiltersare not necessarily idempotent [3]. Thus, inorder
tofind theroot signd, it is necessary to apply the recursive
median filter iteratively. For the recursive median filter, at
each iteration for every point of theimage we have to com-
pute the output of the filter:

07 (n) = med[O}",(n — k), .07, (n), .., OF%(n + k)],
(10)



where the subscript ¢ represents theiteration index. The re-
cursive median filtering isa sequentia process and the noise
influenceat hisoutput will beaccumulated. Toalleviatesuch
an undesirable effect it may be useful to encourage thefilter
output to resembletheorigina signal. Therecursive median
filtering is an optimization operation in which the output of
the filter isalways set to the minimum of a cost function of
the output state of the filter [5]. The first recursive median
filtering scheme is obtained when the output of the filter at
each iteration for every point of theimageis computed with:

O;"(n) = med(Of (n — k), -+, O (n — 1),
Zm(n)’ ;n—l(n"i'l)a"'a ;n—l(n"i'k)] (11)

So, in this case, instead of using the output of the previous
pass, the vaue from the middle of the window of the filter
isreplaced by the original signa. The obtained filter iscon-
vergent to aroot signal within afinite number of iterations
[7].

Thisapproach isextended by choosing different positions
and severa pointsinside the filter’swindow to be replaced
by the original signal, instead of the outputs of the previous
passes. At each step of the filtering process, the following
functionis minimized:

Z 0™ (n

V27 (0 + §2), (12)

YO™ (n 4+ j1)

_Z()m

where j1 + j2 = 2k + 1 and j2 represents the number
of the pointsfrom the original signal that replace the values
from the filter’swindow. The first term gives a measure of
the smoothness of the filtering process, and the second one
measures the discrepancy between the filter output and the
origind signal.

In the case of the recursive median filter, each point of
the signal is sequentialy visited and the output is updated
before moving to the next position. For the whole process,
the following function will be minimized:

ZZOm YO™ (n 4+ j1)

n= 1]1
—ZZOm V27 (0 + §2). (13)
n=1 j2

Because the process is sequentia and at any time only one
output is changed, the changes of the function £ from one
"global’ step to another are given by:

AE = AO™(n)S(n). (14

Thevaueof AFE islessthan or equa to zero (from (8)), so
after afinitenumber of iterations, £ will reach its minimum
and thefiltered signal will be reduced to aroot.

Noticethat j2 cannot take values greater than 2k; other-
wise, the recursive process became meaningless. If j2 = 1
the only replacement takes place in the middle of the win-
dow of thefilter. The equation (11) is obtained.

For the other extreme case j2 = 2k, al valuesexcept the
middl e of thewindow of thefilter are replaced with the orig-
inal signal. At the second stage, the value for AO;(n) will
be zero, evenin the 2-D case, so the obtained filter structure
isidempotent. This appears because at the second stage we
have:

Oi41(n) = Or=o(n) = med[Z(n — k), -, Z(n+ k)].
(15
In this case, thefiltering scheme is given by:
O;n(n) = med[Zm(n - k)a e aZm(n - 1)a

T_l(n),Zm(n+1),~~~,Zm(n—i—k)]. (16)

5. EXPERIMENTAL RESULTS

In order to objectively evauate the performances of these
new filtering schemes, we have used the Lena image cor-
rupted by impulsive noise. The image considered contai ned
256x256 pixel values with 8 bits resolution per pixel. Inal
cases, a 3x3 window was used and the threshold decompo-
sition technique was applied. The scanning order was line
by line. The results were similar when a column by column
scanning was used.

For thesimulationswe have considered five different fil -
tering schemes for recursive median and CWM filters. Inal
plotswith continuouslinewithout markersthetraditional re-
cursive median and CWM filters were represented. Thefil-
tering scheme given by (11) is marked with acircle and the
one given by (16) with a star. An intermediate simulation,
whichreplacesall the cornersof thewindow of thefilter with
the origina signal is marked with a cross. In order to elim-
inate as much as possiblethe discrepancy between thefilter
output and the original signa, the positions of the replace-
mentswere varied during thefiltering process, depending on
the actual local value of the corruption. The resultsfor this
simulation are marked with atriangle. The best resultswere
obtained in this case.

Figurel presentsthe computed M ean Square Error (M SE)
and Mean AbsoluteError (MAE) for different recursive me-
dian filtering schemes. In Figure 2 the computed M SE and
MAE for the same recursive median filtering schemes, but
with a central weight of value p = 3 are presented.

6. CONCLUSIONS

In this paper some recursive median filtering schemes for
image processing were introduced. The convergence prop-
erties of these filtering schemes were studied. The results
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Figure 1. Performance evaluation results.

of the simulationsillustrate the improving of the MSE and
MAE performances over the traditional methods.
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