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ABSTRACT

This paper describes an implementation of Bayesian
change point detection for extracting transients captured
from radio transmitter transmissions. When a radio
transmitter is activated, it goes through a relatively short
transient phase during which the signals generated by the
unit have characteristics that can be unique. If these turn-
on transients can be separated, they can be analyzed to
identify the radio transmitter.

In this study, radio transmissions from 30 different radio
transmitters were analyzed by using an experimental set-
up. The estimated transient starting point is compared to
the visually observed starting point. The probabilistic
automatic segmentation algorithm has been found to be
effective in detecting turn-on transients in the presence of
noise.

1. INTRODUCTION

When a radio transmitter is engaged for transmission after
the push-to-talk button is pressed, it is observed that its
transient behavior, i.e., RF power and carrier frequency
changing towards their nominal values, can exhibit unique
features. These transients have been attributed to a variety
of sources such as phase-lock-loop systems, modulator
subsystems, RF amplifiers, antenna characteristics, switch
and relay characteristics. Transient state duration depends
on the make and model of a transmitter and can last from a
few microseconds to tens of milliseconds. The analysis
and classification of radio transmitters have been reported
in [1]-[8].

The transient signals were acquired from the discriminator
output of a communication receiver. Recording of
transient data requires triggering information to indicate
the beginning of the transient. The squelch signal of the
receiver was used as a marker for this purpose. The
problem with this approach is that there is an inherent
delay between the onset of the actual transient and the
trigger event. The capture system has to be continuously
recording the received signal so that when a trigger is
detected a portion of the pre-trigger samples is saved with
the transient data.

The recorded transient signal contains ambient channel
noise, which is followed by the start of a radio
transmission similar to that shown in Figure 1. Due to the

non-stationary nature of transmitter transients, though, the
task of separating the transient from the channel noise is
very difficult. It involves finding the exact time when the
ambient channel noise, which is correlated to some
unknown degree, ceases and the transient begins.
However, despite being completely deterministic, many
transients exhibit characteristics similar to noise due to
their high degree of irregularity. Thus, to some extent, we
are left with the problem of separating noise from noise
with a different degree of correlation.

Figure 1.  Transmission signals from two different radio
transmitters showing the channel noise and the turn-on transients

Detecting the turn-on transient is then reduced to the
determination of the transition point from noise to signal.
This problem can be thought of as a change point
detection problem because the signal statistics abruptly
change after the transition point. The problem of detecting
and estimating the location of change points in data is
fundamental to many areas of data analysis such as quality
control [9], navigation system monitoring [10], seismic
data processing [11], speech signal segmentation [12] and
edge detection in images [13]-[14].

Although there is a rough indication of the position of the
change point from the squelch output of the receiver, more
accurate determination of this point is required since it
affects the performance of the transmitter identification
system.



                 Figure 2. Experimental setup used for data acquisition.

  2. EXPERIMENTAL SETUP

Radio transmission data used in this work were acquired
by using the experimental setup shown in Figure 2. This
setup was composed of two parts: the transmitter and the
receiver.

The transmitters used in this experiment were installed in a
vehicle approximately 350 meters away from the receiving
location. The need for a human operator to key these
transmitters was eliminated by using a pulse generator and
relay arrangement to automatically control the push-to-talk
lines of each radio. Using this set-up, test transmissions
approximately 0.5 seconds in duration were repeated at 1
second intervals, i.e., the transmitter on for 0.5 seconds
and then off for the next 0.5 seconds. A list of the
transmitters used in this work is given in Table 1.

At the receiving location, a ICOM R-7100 receiver was
used which was modified to access the squelch and
discriminator signals. Both the discriminator output and
the squelch signal of the receiver were recorded on a
digital audio tape (DAT). The recordings from the DAT
recorder were later digitized by a 16-bit personal computer
sound card at a sampling rate of 44100 samples/sec.

Table 1. Transmitters used in the experiment.

Make                      Model                Output Power (W)

Force                       CMH350                       35

Icom                        IC251A                         30

Motorola                 MCX100                       27

Motorola                 MT500                           5

Motorola                 SHA-274                        5

Motorola                 HT1000                         4.8

Motorola                 Visar                              4.0

Kenwood                TH25AT                        0.1

Yeasu                      FT208R                         0.8

Figure 3. Digitized waveforms from the receiver. Top trace is
the discriminator output, bottom trace is the squelch signal.

Figure 3 shows the digitized waveforms from the receiver.
The top trace is the discriminator output and the bottom
trace is the recorded squelch signal, which is a binary
signal. The DAT recorder and analog to digital conversion
subsystem have a combined low frequency cut-off of 10
Hz, and the shape of the recorded squelch waveform is
due to the bandwidth of the recording and digitization
equipment.

In order to analyze the relationship between the trigger
event and the onset of the transient, 100 transmissions
from each of 30 different transmitters were made. For each
of these transmissions, the turn-on transient starting point
was determined visually. The distance between the squelch
trigger and the visually determined turn-on transient
starting point was calculated. The histogram of the
distance between trigger signal and the onset of the
transmitter is plotted for all transmissions in Figure 4. This
plot shows that, on average, the squelch trigger occurs
approximately 800 samples after the onset of the transient.
But the standard deviation of this distribution is
sufficiently high that an accurate determination of the
starting point of the transient is required.
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Figure 4. Histogram showing the relation between the onset of
the transmitter and the squelch trigger

3. METHOD

The transmission data can be modeled as:

d
u i m

v m i N
i

i

i
�

� � �

� � � �

�
�
�

�

�

1

2

1

1

                             

                            
 

where

u N p u e

u

~ ( , ) ( )0
1

2
1
2

1
2

2

2

1
2

�

��

� ,  �
�

v N p v e

v

~ ( , ) ( )0
1

2
2
2

2
2

2

2

2
2

�

��

� ,  �
�

� � � �1 2 1
2

2
2, ,  ,   are mean values and variances before

and after the change point respectively, N  is the number
of data points and m is the change point. u  and v are
assumed to be Gaussian for the sake of mathematical
simplicity. In choosing this model, we assume that the
mean and the variance of the signal change abruptly after
the change point m.

Derivation of the formula for the a posteriori probability
of a simple step change point detector can be found in
[15]. The same mathematical manipulations with minor
modifications are used in the detection of the turn-on
transient.

The likelihood function is the probability of realizing the
data given the value of the parameters, the signal model
and the noise statistics. By denoting the specific choice of
signal model and noise statistics as M and signal model
parameters and noise parameters as � , we may write:
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where }     { 2121 m������ in our case. The data are

assumed to consist of the signal with added independent
identically distributed (i.i.d.) noise with different statistics
in each segment. In this case the likelihood function takes
a particularly simple form and is identical to the joint
density of the residuals that can be written as:
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The Bayesian approach relies on Bayes’ theorem for
describing the learning process, by which prior
information is updated in the light of new data as given by:
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where p M( | )� is the a priori probability density that

contains all knowledge of the values of the parameter prior
to observing the data. p d M( | ) is called the Bayesian

evidence and it is a normalizing factor. The term

p d M( | , )�  summarizes the state of knowledge about the

values of the parameters after the data are observed.

The a priori probabilities of the location parameters like
mean and change point can be written as below [16]:
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For the scale parameters (like variance, which is a measure
of scale or magnitude as its name suggests), the a priori
density is given due [17]:
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After the marginalization of the nuisance parameters (i.e.,
parameters that are of no interest), the a posteriori
probability of the change point can be found as:

p m d M
m N m

m N m
S S({ }| , )

( )
( ) ( )�

�

� � �1 1

2

1

2
1 2� �

where S d
m

di i
i

m

i

m
m

1
2 2

11

1

21
� �
�



�

�

�
�

��

�

�� ( )           and

S d
N m

di
i m

N

i
i m

N
m N

2
2

1 1

2

1

21
� �

�

�



�

�

�
�

� � � �

� �

� �( ) .

4. RESULTS

Although the squelch trigger signal does not give a very
good estimate for the change point, it provides a window
in which to search for the change point. A 200 sample
wide rectangular window that is offset by 800 samples
prior to the start of the squelch trigger was created which
defines the span of the search area. The method is to test
each point in the time series as a potential change point
using the expression p({m}|d,M).

As an example; the time series representation of
discriminator signal inside the search window and the
corresponding probability density is given in Figure 5.
This figure shows that probability density has a peak
around the change point. The inferred start of the transient



position, corresponding to the maximum a posteriori
probability density, is sample=115.

Figure 5. Windowed discriminator samples and calculated a
posteriori probability density.

The resulting histogram of the detection error, which is the
difference between the visually observed value and the
estimated value, is plotted in Figure 6. This histogram
shows that the mean error is about 10 samples and the
standard deviation of the detection error is about 30
samples. The range of this error allows detection of the
transient in less than 10 samples on the average, which is
approximately equal to 25 microseconds at the sampling
rate of 44100 samples/sec.

Figure 6. Histogram of the detection error.

5. DISCUSSION

In this work, a change model is used based on the
assumption that the distributions before and after the
change point are Gaussian and that the noise is
uncorrelated. This assumption allows one to find the a
posteriori probability of the change point analytically. In
other cases, where the Gaussian assumption does not hold,
we would need to solve the marginalization integrals by
some numerical means such as Markov Chain Monte
Carlo (MCMC) [18]-[19].

Another assumption was that there was only one change
point in the transmission data. This is not always the case
as illustrated in Figure 7. These multiple changes can be
caused by frequency variations exceeding the transmitter
and receiver IF bandwidths. The number of change points
in the current data set is observed to be in the range of 1 to
3 although most of the transmitters have only one change.
Assumption of more that one change point complicates the
problem because the number of change points is an
unknown and has to be estimated [20]-[21].

Despite the multiple change points the Bayesian detection
technique was successful in estimating the start of the
transients for the transmitters tested in this paper.

Figure 7. Turn-on transient that has more than one change point.
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