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1. INTRODUCTION

Texture segmentation is an important task in image process-
ing. The objective is to assign the same value to those pixels
in an image which belong to the same texture. This is usu-
ally calledpixel-classification. There exist two fundamental
approaches to solve this task.
The first and most general approach we callclassification
orientedby which we mean that the actual labeling is done
by some general classifier, i.e. maximum-likelihood. As
these classifiers require some feature vector as input, there
has to be such a vector for each pixel. By this we not only
get some segmentation but we can also identify every tex-
ture with respect to the database used to train the classifier.
The problem with this approach is that usually the compu-
tational costs will be high foreachimage to be classified, as
they are determined primarily by the costs of calculating the
feature vector for each pixel. These costs may be reduced
by using pruning algorithms, but if a single feature relies on
the calculation of several image transformations like in [2]
or in [4], the performance gain may be small.
In this paper we consider the case that we know which tex-
ture combination will appear in an image. A different ap-
proach may be used for this problem which we calltrans-
formation oriented. By this we mean to find a transforma-
tion adapted to a particular texture combination allowing a
segmentation of the image by applying some threshold al-
gorithm (i.e. as in [3]) on the transformed image.
Our approach therefore consists of three parts: (1) Building
a database of texture descriptions, (2) automatic configura-
tion of an appropriate segmentation algorithm for a given
texture combination (this is not a particular image, nor any
image at all), and (3) segmentation of a particular image.
The intention is that the expensive part is Step 1 and has to
be done only once for each texture. Step 2 can be performed
quickly and has to be done only once for each texture com-
bination in question. Step 3 finally is very cheap and con-

sidered to be used with several images containing the same
texture combination.
This paper is organized as follows: In the next section we
give an outline of our approach. This consists of an ideal-
ized texture model with an appropriate segmentation strat-
egy. To realize step 1 described above we need a texture
description, which is exact for the idealized model and ap-
proximative for real textures. It is presented in section 2.1.
For step 2 we give two alternative configuration algorithms
shown in section 4. step 3 is finally described in section 5.
Finally we discuss the results in section 6.

2. SEGMENTATION APPROACH

Each texture segmentation approach implies a model of the
texture. In this section we first present ourtexture model,
for which we then describe thesegmentation strategy.

2.1. Texture Model

Though we deal with gray-scale textures we use a simpli-
fied binary texture model which motivated the segmenta-
tion strategy. This is possible because the gray-scale trans-
formations (opening and closing with flat structuring ele-
ments1) from which the discrimination sequence is build
can be viewed as an approximation of the respective binary
morphological operation. The results show that this approx-
imation is sufficient for the configuration algorithm.
A texture in our model consists of a squared homogenous
lattice, as shown in fig. 1. Parameters are thedistanceand
thewidth of the lines. In the example the two textures have
very different the line distances but their line widths don’t
differ much in the .
For the four-step configuration algorithm described in sec-
tion 4.2 this model is extended to a rectangular lattice.

1In the remaining paper we abbreviatestructuring elementby SE.



Figure 1: Example of the texture model showing a fine texture surrounded by a coarse texture (left). Result of application of
opening (middle) followed by a closing (right).

2.2. Segmentation Strategy

The general task is to discriminate regions whose textures
belong to one of two classes within one image. The fi-
nal decision shall be made by thresholding. The task of
the (morphological) operator sequence is then (a) to empha-
size one texture, (b) to suppress the other texture and (c) to
smooth all areas. Condition (c) ensures that the threshold
operation generates complete (homogenous) masks for the
textured regions and that the histogram is bi-modal, which
allows for automatic threshold selection from histogram.
First we illustrate this strategy for atwo-step sequence with
one tructuring element typeusing figure 1 as an example:
The first operation (a closing with a square SE which fits
within the big squares but not within the small squares) ho-
mogenizes one texture as much as possible while leaving
the other one unchanged. Thesecondoperation (an open-
ing with a square SE wider than the lines of the outer tex-
ture) then removes the texture left unchanged by the first
operation. To assign the desired pixel values (surrounding
texture coded by pixel value ‘1’) the whole image has to be
inverted after the second step. This inversion operation has
to be generated by the configuration algorithm, too.
From the gray-scale case the final binary image is calcu-
lated by thresholding using the threshold obtained from the
images histogram by Otsu’s algorithm [3].
In the case of afour-step sequence with orthogonal lin-
ear SEsthe strategy becomes more complicated, as the ho-
mogenization of the textures will normally be done bytwo
operations : Thefirst operation homogenizes one texture as
much as possiblein one direction, while leaving the other
one unchanged. Thesecondand third operation then re-
move the texture left unchanged by the first operation. Fi-
nally the fourth operation completes the homogenization
started with the first operation using the same type of op-
eration (opening or closing), but with the orthogonal SE.

3. STEP 1: TEXTURE DESCRIPTION

The configuration algorithms need a quantitative descrip-
tion of each texture, which allows for an interpretation with
respect to the operations to be used in the configured se-
quence.
This description is computed only once for each texture and
stored in a database to be used by the configuration algo-
rithms when a discrimination transformation for a particular
texture combination is requested.
As we use morphological openings and closings, granu-
lometries and anti-granulometries offer themselves as a de-
scription.
To ease and unify the handling of granulometries and anti-
granulometries we introduce thecomplete granulometry
(c.g.) by

�s =

�
"jsjÆjsj , s 2 Z, s < 0
Æs"s , s 2 Z; s � 0

(1)

with erosion"s of sizes and dilationÆs, respectively. By
this the sign(s) encodes opening and closing.
To get a compact representation for the c.g. for eachs we
reduce�s(X) (which is an image) to a vector of 2 scalars.
Traditionally themean�s = �(�s(X)) is used as a mea-
sure, giving thepattern spectrum, which characterizes the
size distribution. As we need also some information on
the threshold separability we use as a second parameter the
standard deviation�s = �(�s(X)). By this we character-
ize each image by thecomplete range spectrum�s��s (see
fig. 2 for an example).
In [5] the use of the real histograms was examined, too, but
it did not lead to better results while introducing other prob-
lems, especially with textures having spike-like histograms.



4. STEP 2: CONFIGURATION

In this section we present two configuration algorithms:
One fortwo-step sequences with fixed SE typeand one for
four-step sequences with orthogonal linear SEs.

In general the approach is the the same: The first operation
is found using the range-spectrum defined in section 3 and
a comparison criteria presented below. Then the resulting
spectrum has to be (very) coarsely estimated so that again
a discrimination criteria can be applied and so on. The es-
timation can only be coarse as it is based on the idealized
texture model from sect. 2.1.

4.1. Two-Step Sequences with fixed Structuring Ele-
ment Types

In this approach we use a two-step sequence with the same
SE type at every step. To compensate the latter restriction
we calculate three sequences, one for each of the 3 SEs
square, horizontal line, vertical line. The results of the
application of these sequences are weighted by some esti-
mated quality factor and linearly combined before thresh-
olding. It consists of the following steps:

For each SE type

1. Calculate measuresctex1 andctex2 for the change of
the texture after application of an operator of sizes
(see also fig. 2):

amax(s) = �a(s) + �a(s)

amin(s) = �a(s)� �a(s)

u(s) = min (amax(s); amax(0))�

max (amin(s); amin(0))

c(s) =

8><
>:

u(s)�u(so)
u(0)�u(so)

, so � s < 0

1 , s = 0
u(s)�u(sc)
u(0)�u(sc)

, 0 < s � sc

(2)

2. From the the indexi of

i : max
i
jctex1(i)� ctex2(i)j (3)

obtain the first operator (sign(i) encodes opening or
closing andjij is the size of the SE).

3. Do a (very) coarse estimation of the spectra of the tex-
tures after the 1st operator has been applied by treat-
ing the spectrum of the texture which has changed
less (i.e.�tex1 at size 30) as unchanged and ‘holding’

that of the other texture (i.e.�tex2):

�b(s) = �tex1(s) , �b(s) = �tex1(s)

�c(s) =

8>>>><
>>>>:
�tex1(s) for

(
so � s < i if i < 0

i < s � sc if i > 0

�tex1(i) for

(
so � s < i if i < 0

i < s � sc if i > 0

�b(s) = : : : (4)

4. Find the second operator at indexj of

D(s) = min (�b(s) + �c(s); �d(s) + �d(s)) �

max (�b(s)� �c(s); �d(s)� �d(s))

d(s) = j�b(s)� �c(s)j �D=

(max (�b(s) + �c(s); �d(s) + �d(s))�

min (�b(s)� �c(s); �d(s)� �d(s)))

j : max
j
jctex1(i)� ctex2(i)j (5)

d(j) is the overall quality measure used for weighting
on step 3 of the segmentation algorithm (sect. 5).

5. Look if the resulting image has to be inverted.
This depends on which texture is mainly influenced
by the first operation. It can be determined from
sign((�b(s) + �c(s))� (�d(s) + �d(s))).
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Figure 2: Parameters of therange-spectrum(� � �). The
overlapping of the range-spectra of two textures is the cen-
tral discrimination measure.



4.2. Four-Step Sequences with Orthogonal Linear
Structuring Elements

We now extend the configuration approach presented in the
previous section to a four-step sequences with orthogonal
linear SEs (i.e. horizontal and vertical lines). The main dif-
ference is that now thetypeof the SEs has to be determined,
too.

1. For each SE: Calculate the optimal operation by us-
ing eq. 2 and the resulting quality by using eq. 5.

2. Use the operation with greater quality asfirst opera-
tion of the sequence.

3. Estimate the resulting spectra:

(a) For the same SE type as at the first step: Esti-
mate like at step 3 of the previous algorithm.

(b) For the orthogonal SE type: Instead of holding
the spectrum which has changed more (like in
the previous case) ‘mix’ it (independently for�
and� ) with the (original) spectrum of the or-
thogonal SE type. Mixing of a functionx(s)
(x 2 f�; �g) with a functiong(s) (‘guide’ – at-
tractsx) into a functiony(s) is done by

gn(s) = max(0; g(s)� g(0) + x(0))

w11(s) =

������
gn(s)� g(0)

max
so�s<0

g(s)� min
so�s<0

g(s)

������
w12(s) =

����gn(s)� x(s)

g(0)

����
w11(s) =

������
gn(s)� g(0)

max
0<s�sc

g(s)� min
0<s�sc

g(s)

������
w22(s) =

����gn(s)� x(s)

g(0)

����
w(s) =

(
:7w11(s) + :3w12(s) , so � s < 0

:7w21(s) + :3w22(s) , 0 < s � sc

y =

(
max(x+ w � (gn � x);min(x; g)) , so � s < 0

min(x + w � (gn � x);max(x; g)) , 0 < s � sc

4. Find thethird operation of the sequence from these
spectra using the criteria from step 4 of the previous
algorithm.

5. Estimate the spectrum after the second operation: The
SE of thethird operation will always be orthogonal to
the SE of the second operation. The spectrum which
has changed more after application of the second op-
eration is ‘held’ (like before), the other one is kept
unchanged.

6. Find thesecondoperation of the sequence from these
spectra like on step 4.

7. The SE of thefourth operation is always orthogonal
to the SE of the first operation. Thus it is found from
the original spectrum using the same criteria as on
step 2.

8. Finally inversion has to be done if at any of the steps
1 to 3 inversion appeared to be necessary.

5. STEP 3: SEGMENTATION

To segment a particular image using a sequence generated
by one of the algorithms from section 4 we have first to
distinguish, which configuration algorithm was used:

1. Two-step sequence according to sect. 4.1:
Actually for each of three SE types a sequence has
been calculated, together with a quality measure.
Each of them has to be applied and the results have
to linearly combined using their quality measures.

2. Four-step sequence according to sect. 4.2:
One sequence has been calculated which has to be
applied.

The following operations are the same in both cases: His-
togram equalization, determination of the threshold by
Otsu’s algorithm [3] and its application to the transformed
image. The ‘first’ texture will always be coded by a ‘1’ and
the ‘second’ texture by a ‘0’.

6. RESULTS

The algorithms have been tested using 7 textures from the
Brodatz album [1] and 6 synthetical textures in all possi-
ble combinations. Image sizes were 512x512 pixel, each
texture had its histogram expanded to the full 8bit range.
Granulometries and anti-granulometries were calculated up
to 100x100 pixel SE size.
As an example fig. 3 (left) shows two Brodatz textures and
fig. 3 (right), fig. 6 show the result of the application of the
generated sequences.
There are certainly cases in which the algorithms do not find
a proper segmentation sequence though it exists. The reason
is mostly that the chosen texture description does not reflect
changes to structures which occupy only a small part of the
image’s volume (i.e. the removal of the surrounding texture
by an opening). Normalization like in eq. 2 can compensate
this only partially. The development of better features, i.e.
based on concurrence-matrices like in [4] is promising.
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Figure 3: Example: Original imageX (left). Plot of the spectra (� � �) for square SE. ResultY of the sequence
Y = invert((X � square(33)) Æ square(26)) (right)

6.1. Two-Step Sequence

The spectra (for a square SE) are shown together in fig. 3
(middle). Figure 3 (right) shows the result after the applica-
tion ofY = invert(X �square(29)Æsquare(26)) which was
generated for the square-SE by the algorithm described in
section 4.1. Classification by threshold will be very good.

6.2. Four-Step Sequence

The spectra (for the vertical SE) are shown together in fig. 4
and fig. 5 shows the estimated spectra for the horizontal SE.
The result of the application of the sequenceY = invert(X�
hor line(51) Æ vert line(39) Æ hor line(90) � hor line(86))
(fig. 6) is even better than that of the two step sequence.
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Figure 4: Plot of the spectra (�� �) for the vertical SE.
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Figure 5: Plot of the estimated spectra for the horizontal SE.
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Figure 6: ResultY of the sequenceY = invert(X �
hor line(51) Æ vert line(39) Æ hor line(90) � hor line(86))


