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ABSTRACT

Decomposing the wavelet transform in lifting steps allows a
simpler implementation of the transform filters and provides
the flexibility necessary to satisfy other requirements, e.g.,
generating non-linear integer-to-integer wavelet transforms.
The paper presents a flow-graph approach to the lifting
factorization that gives a better insight to the main features of
single-phase and two-phase wavelet transform representations.
On this basis, truly loss-less signal compression algorithms
using integer wavelet transform can be devised..

1. INTRODUCTION

Lossless compression schemes with multi-functionality
support play a key role in medical image storage, retrieval
and transmission, when fast  interactive handling of large
data sets over networks with limited and/or variable
bandwidth is required, and when the option of
decompression without distortion has to be retained. The
analysis of the basic compression methods reveals that the
embedded coding techniques based on the discrete
wavelet transform fulfil the most important requirements
for medical image compression. Moreover, the definition
of a "medical" profile for JPEG2000 and the decision of
DICOM [1] to join the efforts of the JPEG committee [2,
3]are turning wavelet based compression techniques into
good candidates for a widely accepted standard within the
medical community. Several coding techniques [4]
featuring multi-functionality support, able to produce a
compressed lossless embedded data stream that allows the
progressive refinement of the decompressed image or of a
certain set of user-defined regions of interest, have
recently been developed based on the integer-to-integer
wavelet transforms [6-8]. In medical imaging the lost of
any information when processing or transmitting an
image is not acceptable because minute image details
might be essential to signal a pathological state. Standard
wavelet compression techniques [6] cannot reconstruct the
lossless version of the original image, even when loss-less
in principle and when retaining all the coefficients of the
wavelet transform, because these coefficients are
generated as real (floating point) numbers. Coding rounds
up or down the wavelet coefficients to integers, so that
losses result. The alternative is the use of the lifting

scheme to generate truly loss-less non-linear integer-to-
integer wavelet transforms [7-9].

By using a signal flow-graph approach, the paper presents
the lifting scheme as a simple and flexible tool for
constructing pairs of forward and inverse wavelet
transforms that can be adjusted to acquire various desired
features while retaining the basic property to perfectly
reconstruct the initial signal. In particular, the lifting
scheme largely simplifies obtaining integer-to-integer true
wavelet transform.

2. PERFECT RECONSTRUCTION
CONDITION

Figure 1 shows the single-phase and the equivalent two-
phase analysis step of a wavelet multiresolution
representation of a signal [6, 8, 13-16].
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Figure 1. Equivalent single- and two-phase wavelet
analysis steps

In the two-phase wavelet analysis, the low resolution--
fL(z) and detail -- fB(z) components of the signal are
expressed in terms of the even -- fe(z) and odd -- fo(z)
components, by the relation:
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is the transposed of the analysis two-phase matrix [13-
15].
Similarly, for the synthesis step, the even and odd
components of the signal are restored in terms of the low
resolution and detail components with the relation:
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is the transposed of the synthesis two-phase matrix, dual

to )(
~ 1−zTP .

Figure 2 shows the equivalence of the single- and two-
phase synthesis steps.
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Figure 2. Equivalent single- and two-phase wavelet
synthesis steps

The perfect reconstruction condition results in a natural
form for the two-phase scheme:
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To obtain FIR analysis and synthesis filters, )(zP and

)(
~

zP must contain only Laurent polynomials, so that
kzCz =)(detP . By dividing  )(e zg and )( o zg  with

)(det zP , it can be arranged that ,1)(det =zP  or

.1)()()()( eooe =− zgzhzgzh (6)

Consequently, the analysis filters can be expressed in
terms of the synthesis filters by the relations:
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3. PRIMAL AND DUAL LIFTING STEPS
The lifting scheme [10-13] allows to change one of the
analysis or synthesis filters, keeping unchanged its
complementary filter and conserving the perfect
reconstruction condition. In the following, a pair of filters

  ),( gh is called complementary if the corresponding two-

phase matrix )( zP  has the determinant one, i.e.,

1)( det =zP . From (5) it results that, if the pair of filters

  ),( gh is complementary, so are the filters  )~,
~

( gh . Figure 3

shows the two phase representation of a primal lifting
step which maintains the complementarity of the filters
and the perfect reconstruction condition.
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Figure 3. Primal lifting step in the two-phase wavelet
multiresolution representation

The new synthesis and analysis two-phase matrices are:
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so that, for any Laurent polynomial )(zs :

1)( det)( det ==′ zz PP  and 1)(
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~
 det ==′ zz PP .

A dual lifting step is shown in Figure 4.
The modified two-phase matrices are given by:
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multiresolution representation.

so that again, for any Laurent polynomial )(zt ,.

1)( det)( det ==′ zz PP  and 1)(
~
 det)(
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 det ==′ zz PP .

4. LIFTING FACTORIZATION
Consider a pair of complementary filters (h, g). According
to (6), 1)()()()()(det eooe =−= zgzhzgzhzP ,so that

the Laurent polynomials )(e zh and )(o zh are relatively

prime. Thus, the Euclid algorithm gives

( ) pKzzhzh =)(),(GCD oe , i.e., a monomial. Using the

non-uniqueness of the division on the ring of Laurent
polynomials, the quotients can be chosen to reduce the
GCD to a constant K, to obtain the factorization:
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If )( )( eo zhzh > , the first quotient is zero: 0)(1 =zq .

We will consider n = even; if n = odd we multiply h(z)

with z, and g(z) with z
-1
, so that n becomes even, without

changing det P(z) = 1. Given the low-pass filter h(z) and
using the factorization (12), a complementary g(0)(z) can
be obtained by taking:
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The last factor is taken to ensure 1)(det )0( =zP  for n =

even. A pair of successive factors can be rewritten:
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so that relation (13) becomes:


























=


























=

∏ 











∏ 











=

=

−

K

K

zt

zs

K

K

zq

zq
z

n

i i

i

n

i i

i

1
0

0
 

1)(

01

10

)(1

1
0

0
 

1)(

01

10

)(1
)(

2

1

2

1 2

12)0(P

(15)

which factors ( )z)0(P  in 2
n  pairs of primal and dual

lifting steps, followed by a scaling. An additional primal
lifting step (8) can always be included to bring g(0)(z) to
the original complementary filter g(z):
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It results that a two-phase matrix corresponding to any
pair of complementary filters (f, g) that define a wavelet
multiresolution representation can always be factored into
m = n/2 +1 pairs of primal and dual lifting steps, followed
by a scaling:
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where sm(z) = K2 s(z) and tm(z) = 0. The Laurent
polynomials si(z), ti(z), for i = 1,..., m-1=n/2, result from
applying Euclid algorithm to the pair of Laurent
polynomials )(e zh and )(o zh .

The decomposition of P(z) into lifting factors given by
relation (17) generates the ladder structure of the two-
phase flow-graph shown in Figure 5, which corresponds
to a synthesis step of the wavelet multiresolution
representation.
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Similarly, the dual two-phase matrix is factored as:
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to which corresponds an analysis step of the wavelet
multiresolution representation described by the two-phase



flow-graph shown in Figure 6 that has a mirror ladder
structure with respect to the flow-graph in Figure 5.
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Figure 6. Lifting factor decomposition of an analysis
step of a wavelet multiresolution representation.

5. CONCLUSIONS AND SUMMARY

The paper uses a signal flow-graph approach to present
the factoring of wavelet transforms using the lifting
scheme. The implementation advantages and the better
insight offered by the two-phase analysis and synthesis
steps are stressed. The lifting scheme is a simple and
flexible tool for constructing pairs of forward and inverse
wavelet transforms that can be adjusted to acquire various
desired features while retaining the basic property to
perfectly reconstruct the initial signal. Beside the
increased flexibility, which makes possible to obtain
reversible non-linear wavelet transforms, lifting allows:
(1) fast implementation - by making optimal use of
similarities between high and low pass filters, the
necessary number of flops can be reduced to half, (2) fully
in-place calculation - by gradually replacing the original
image with its transform, the need for an auxiliary
memory can be avoided and the hardware implementation
can be simplified, (3) simple inverse transform, of the
same computational complexity as the forward one - the
inverse transform being composed of the inverse
elementary operations of the forward one, taken in
reversed order.
An important application of the lifting scheme is to
generate non-linear integer-to-integer wavelet transform,
which are essential for true lossless compression methods
[10-16].

6. REFERENCES

[1] R. P. Lewis, “President’s page: developing standards for
the digital age: the Dicom project,” J. Amer. Coll. Cardiol.,
28, 1996, 1631-1632.

[2] G. K. Wallace, “The JPEG still picture compression
standard,” Comm. ACM, 34, 1991, 30-44.

[3] H. Kongji and B. Smith, “Lossless JPEG codec. Version
1.0,” June 1994. http://www.cs.cornell.edu/Info/Projects/
multimedia/Projects/LJPG.html.

[4] K. H. Tzou, “Progressive image transmission: a review and
comparison of techniques,” Opt. Eng., 26, 1997, 581-589.

[5] S. Mallat, A theory for multiresolution signal
decomposition: the wavelet representation, IEEE Trans.
Pattern Anal. Mach. Intell., 11, 1989, pages 674-693,.

[6] W. Sweldens, “The lifting scheme: a custom design
construction of biorthogonal wavelets,” Journal of Appl.
and Comput. Harmonic Analysis, vol. 3, 1996, pages 186-
200.

[7] S. Dewitte and J. Cornelis, “Lossless integer wavelet
transform,” IEEE Signal Processing Letters, 4, 1997, pages
158-160.

[8] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.
Yeo, “Wavelet transforms that map integers to integers,”
Technical Report, Dept. of Mathematics, Princeton
University, 1996.

[9] I Daubechies and W. Sweldens, “Factoring wavelet
transforms into lifting steps,” preprint, Bell Laboratories,
Lucent Technologies, 1996.

[10] A. Munteanu, J. Cornelis, P. Cristea, “Wavelet Lossless
Compression of Coronary Angiografic Images”, IEEE
Computers in Cardiology, Lund, Sweden, 1997, vol.24,
pages 601-604.

[11] A. Munteanu, P. Cristea, J. Cornelis, “Wavelet lossless
coding and progressive transmission of medical images”,
HPCN’98 , ITIS’98, Amsterdam, The Netherland, April 21
-23, 1998.

[12] A. Munteanu, J. Cornelis, P. Cristea, “Wavelet lossy and
lossless image compression techniques - use of the lifting
scheme, 5th International Workshop on Systems, Signals
and Image Processing  IWSSIP’98, Zagreb, Croatia, June 3-
5, 1998, pages 12-19.

[13] P. Cristea, J. Cornelis, A. Munteanu, “Progressive lossless
coding of medical images”, Future Generation Computer
Systems, Elsevier, vol. 14, no. 1-2, June 1998, pages 23-
32.

[14] P. Cristea, A. Munteanu, A. Bezerianos, D. Alexopoulos,
“A new quantization algorithm for wavelet compression of
Medical Images”, High Performance Computing and
Networking Medical Imaging Workshop, Joint Research
Centre, Ispra, Varese, Italy, September 25-27, 1996.

[15] P. Cristea, "Customising the wavelet transform by use of
the lifting scheme", Symposium on Advanced Topics in
Electrical Engineering'98 - ATEE'98, Bucharest, December
5-6, 1998, pages 177-186.

[16] P. Cristea, "Lifting decomposition of the wavelet
transform", Rev.Roum.Sci.Techn.-Électrotechn.et Énerg.,
vol. 43, 4 , Bucharest, 1999.


