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ABSTRACT
The ALS algorithm, used to fit the PARAFAC model, some-
times needs a large number of iterations before converging.
The slowness in convergence can be due to the large size of
the data, or to the presence of degeneracies, etc. Several me-
thods have been proposed to speed up the algorithm, some of
which are compression [3], and Line Search [2]. In this pa-
per, after a description of PARAFAC, we will present a novel
method for speeding up the algorithm that shows better re-
sults in simulations compared to the existing methods, espe-
cially in the case of degeneracy. The paper gives an applica-
tion of the method to blindly identify the mixing matrix of an
Under-Determined Mixture (UDM), but it can be applied to
any N-way decomposition problem.

1. INTRODUCTION

PARAFAC can be seen as a generalization of the two-way
factor analysis to multi-way data. It was first introduced by
Harshman in 1970 [8] based on the principle of parallel Pro-
portional Profiles (PP) proposed by Cattell in 1944 [5]. The
PP principle states that if two (or more) different two-way
models are described by the same set of loading vectors and
only proportions or weights change from one model to the
other, then those loading vectors lead to a new model which
is unambiguous with respect to (w.r.t.) rotation [2]. In other
words, suppose that the matrix X1 can be modeled as :

X1 = a1b
T
1 c11 +a2b

T
2 c12 + ...+aFb

T
F c1F (1)

a f and b f (1 ≤ f ≤ F) being the columns of matrices A

and B. And suppose that another matrix X2 can be mod-
eled using the same set of loading vectors only in different
proportions described by ci j :

X2 = a1b
T
1 c21 +a2b

T
2 c22 + ...+aFb

T
F c2F (2)

Then, we can build a combined model ;

Xk = ADiag{C(k, :)}BT,k = 1,2 (3)

which can be alternatively written as : Xi jk = å f Ai f B j fCk f .
The trilinear model is also known as CANDECOMP
for CANonical DECOMPosition introduced by Caroll and
Chang in 1970 [4]. The three-way PARAFAC model is
very popular in psychometrics and chemometrics where it
was first used along with its extension to higher orders [8]
[4][12]. It also finds applications in the signal processing
area [11] [6] [7]. While the two-way model suffers a rota-
tional indeterminacy that yields an infinite set of solutions,
the PARAFAC model enjoys a uniqueness property under

simple conditions summarized in the Kruskal theorem [10],
hence its importance. Many algorithms propose a solution
to fit the PARAFAC model, one of which is the Alternating
Least Square (ALS) algorithm. The convergence of ALS
was found to be very slow in some cases, typically when the
size of the data is very large, or when two factors are almost
collinear. Compression [3] and Line Search [2] are some of
the solutions proposed to cope with the problem of slow con-
vergence. We focus in this paper on the Line Search solution
and present a novel method for speeding up ALS, that shows
very good performance in terms of the number of iterations.

2. MODEL AND NOTATION

We consider the three-way PARAFAC model of expression
(3). This model can be written in a compact form using the
Khatri-Rao product � (column-wise Kronecker product) :

X
(I×JK) = A(C�B)T (4)

where matrices A, B, and C are matrices of size I×F , J×F,
and K×F , and X

(I×JK) is the matrix of size I× JK obtained
by unfolding the tensor X of size I× J×K in the first mode.
There exist several algorithms that fit the PARAFAC model.
We focus on the most famous among all : the ALS algorithm.
ALS consists of estimating one of the three matrices at each
step by minimizing in the Least Square sense the error :

¡ =‖ X
(I×JK) −A(C�B)T ‖2

F (5)

where ‖ • ‖F is the Frobenius norm. With matrices B and C

fixed to initial values, the estimate of A in the Least Square
sense is given by :

Â = X
(I×JK)(Z+

a )T (6)

where Za = C�B and (+) is the Moore-Penrose pseudo-
inverse. We estimate matrices B and C in an equivalent way,
with Zb = A�C and Zc = B�A, and repeat the same steps
until a convergence criterion is reached. Typically when the
error ¡ exhibits, between two iterations, a change smaller
than a predefined threshold, which varies depending on the
data. For simple data it can be set to 10−6 for example, but it
should be smaller for difficult data, 10−10 for example.

Sometimes the convergence needs a very large number of
iterations. Choosing good starting values can help on reach-
ing the global minimum very quickly. But when the array
has large dimensions, or when one dimension is very large
compared to the other ones, initialization techniques do not
solve the problem of slowness. The slowness of convergence
also occurs when two factors are almost collinear. In [3] Bro



proposes to compress the data in a smaller space so that the
dimensions of the new array are reduced, thus reducing the
complexity of ALS. Line Search was also proposed to speed
up the convergence [9] [2]. This solution is discussed in the
next section.

3. LINE SEARCH

It was noticed through simulations that, when the conver-
gence is slow, there exist cycles of convergence defined by
a unique direction. Within a given cycle, the loading factors
evolve in the same direction to the final solution of that cycle.
The following cycles exhibit the same senario. The conver-
gence within the cycle can take several iterations. To limit
the number of iterations of a given cycle, Harshman and Bro
propose to extrapolate. They propose to predict the value of
the loading factors a certain number of iterations ahead by
computing a kind of linear regression :

A
(new) = A

(it−2) + RLS(A
(it−1) −A

(it−2)) (7)

A
(it−1) is the estimate of matrix A obtained in the ALS ite-

ration (it − 1), and A
(new) is the matrix that will be used in

the itth iteration instead of A
(it−1). (A(it−1) −A

(it−2)) de-
fines the direction of the cycle. Matrices B

(new) and C
(new)

are obtained in an equivalent way using the same relaxation
factor RLS. Of course, extrapolation should be very simple
and does not have sense if it requires more time than the cor-
responding iterations. This is the case when RLS is given a
fixed value ( between 1.2 and 1.3 ) [8], or is set to it1/3 [2].

At every iteration it, the ”new” loading factors are used
to compute the error :

¡ (new) =‖ X
(I×JK) −A

(new)(C(new) �B
(new))T ‖2

F (8)

If ¡ (new) ≥ ¡ (it−1) this means that we went too far in the ex-
trapolation because RLS is too large. RLS is decreased from
it1/n to it1/(n+1) (n is set to 3 at the beginning of the simu-
lation), and we take the loading factors of iteration (it − 1)
instead of the ”new” ones. However, if ¡ (new) < ¡ (it−1) acce-
leration is accomplished and we gain some iterations.

Line Search is applied after few iterations of the ALS al-
gorithm in order to wait for the system to stabilize. In [1]
”few” is set to 6 but it could be higher depending on the
data. The relaxation factor RLS is defined for iteration (it)
by : RLS = it1/n, with n fixed to 3 at the beginning of the sim-
ulation. When the acceleration fails several times (5 times
in [1]), RLS is decreased to it1/(n+1) and A

(it−1), B(it−1), and
C

(it−1) are used to update the loading factors of the current
iteration (it) instead of A

(new), B
(new), and C

(new) respec-
tively.

The fact that RLS has a small value would suggest that
the acceleration is not very efficient. This is not true since
the effect of RLS is re-conducted from one iteration to the
other, leading in final to a noticeable reduction of the num-
ber of iterations as shown in figure 3. The model used in
the simulation is exposed in section 5. The number of ite-
rations necessary to reach convergence decreases from more
than 10000 to 4907. However, it is still high. Therefore, it
is of great interest to look for a novel method to reduce the
time consumption of ALS significantly.

4. ENHANCED LINE SEARCH (ELS)

The idea of the Enhanced Line Search (ELS) consists of
seeking the optimal relaxation factor RLS that leads to the
final solution of a given cycle in only one step. For iteration
(it), let’s define G

(it)
a = A

(it−1) −A
(it−2) as the direction of

the cycle for loading matrix A. G
(it)
b and G

(it)
c are defined

equivalently. Instead of fixing RLS in expression (7), we look
for the optimal triplet (Ra,Rb,Rc) that minimizes :

¡ ELS =‖X
(I×JK) − (A(it−2) + RaG

(it)
a )

(
(C(it−2) + RcG

(it)
c )� (B(it−2) + RbG

(it)
b )

)T
‖2

F (9)

The optimal solution is obtained when we jointly mini-
mize ¡ ELS w.r.t. the three different factors Ra, Rb, and Rc. In
this case the problem consists of resolving a system of three
polynomials in three unknowns which leads to a high numer-
ical complexity. Solutions with less complexity are obtained
by taking only two unknowns, or the same factor for all the
matrices R = Ra = Rb = Rc. Some of the possible optimiza-
tions are listed below :

• (Ra,Rb,Rc) that gives the optimal solution

• (R,R,Rc) where we use the same factor for A and B and
we minimize ¡ ELS w.r.t. two variables R and Rc

• (R,R,R) where we use the same factor for all matrices

• R(Rb,Rc) where we use the relaxation factor of Line
Search R = it1/3 for matrix A, and minimize (9) w.r.t.
Rb and Rc

• R(R,R) which is the same as R(Rb,Rc) with Rb = Rc

• R,R(R) where we optimize only w.r.t. to Rc

In order to make sure that extrapolation makes sense and
requires less time than the corresponding iterations needed
to reach the final solution of the cycle, we compute the com-
plexity for each method and compare them. Let’s take opti-
mization (R,R,R) as an example. At each ALS iteration the
following steps are performed :

1. Compute optimal relaxation factor R by minimi-
zing expression (9). To do so, derive (9) w.r.t. R, and
root the obtained polynomial of degree 5 in one unknown

2. Compute the new loading factors as in (7) and com-
pute the corresponding error ¡ new given by expression (8)

3. Use A
(new), B

(new), and C
(new) as starting values for

the PARAFAC iteration instead of A
(it−1), B

(it−1), and
C

(it−1), and estimate the first loading factors Â as shown
in (6)

4. Perform step 3. to estimate each of the remaining loading
factors B̂ and Ĉ

One (ALS+ELS) iteration corresponds to about (F +
8F2)(JK + IK + IJ)+ 3FIJK + 11F3 + 3F2 + FIJK + 53 =
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Figure 1: Gap between estimated and actual loading matrix
A using ALS with Line Search and ELS with optimizations
(R,R,R) and (R,R,Rc) for q = p /60.

2240 multiplications, when I = 2, J = 3, K = 3, and F = 3.
Details of complexity computation can be found in the ap-
pendix. Without ELS, ALS requires (F + 8F2)(JK + IK +
IJ)+ 3FIJK + 11F3 + 3F2 = 2061 multiplications.

When the ALS convergence is quick, say less than 1000
iterations, ELS is not of great help. However, when the con-
vergence is very slow ELS makes the difference as it does
not require much more time than ALS alone. When the di-
mensions of the N-way array are very large and of order O(I)
(F << I), both complexities are equivalent to O(FIN). This
is also the case when one dimension I0 is very large com-
pared to the other ones as both algorithms require O(I0) per
iteration.

It is worth noting that ¡ (new) is always smaller than
¡ (it−1) when we use optimal values for Ra, Rb, and Rc as
it is the case for the first three optimizations. However, when
we use a fixed relaxation factor as in Line Search, ¡ (new) can
exceed ¡ (it−1), which means that the acceleration may fail.
This can explain the fact that ELS performs better than ALS
with Line Search. Some of the possible ELS optimizations
have been implemented. Computer results show that ELS is
very attractive.

5. COMPUTER RESULTS

In figures 1 and 2 we report the impact of ELS on ALS in
the case of two Factor Degeneracy (2FD), where two of the
loading factors are almost collinear such that the contribu-
tion of only one of them is considered [2]. The presence of
2FDs slows down the convergence and can lead to the occur-
rence of intervals called swamps, where the loss function ¡
needs a large number of iterations in order to exhibit a very
little decrease. We consider the three-way PARAFAC model
of expression (3) with :

A =

(
1 cos(q ) 0
0 sin(q ) 1

)
(10)
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Figure 2: Loss function ¡ as a function of the number of
iterations for ALS with Line Search, and ELS with optimiza-
tions (R,R,R) and (R,R,Rc) for q = p /60.

B =




3

√
2cos(q ) 0

0 sin(q ) 1
0 sin(q ) 0



 (11)

and C is the identity matrix of size 3×3. The collinearity is
controlled through variable q . We take q = p /60 in figures
1 and 2. The first and the second columns of each of the
matrices A and B are almost collinear as q is very close to
zero q ' 0.052.

We notice from figures 1 and 2 that ELS speeds up the
convergence as the number of necessary iterations decreases
from 8664 to about 1300 when using ELS with optimization
(R,R,Rc).

As already pointed out in the abstract, we propose an ap-
plication of ELS to blindly identify a mixing matrix of an
UDM. We use ELS to accelerate ALESCAF, the algorithm
proposed in [7] for the Blind Channel Identification based
on the characteristic function in an UDM. Using notations of
[7], ALESCAF leads to a four-way PARAFAC model :

T
(P×KP2) = A(D�A�A)T (12)

Tensor T contains the third derivatives of the joint charac-
teristic function of the observations computed at K points of
the grid W . Matrix D is obtained from the independence pro-
perty of the sources and its entries are defined as :

Dkn = y (3)
n (å

q
Aqnuq[k]) (13)

where 1 ≤ k ≤ K and 1 ≤ n ≤ N. A is the channel matrix of
size 2×3 to be identified.

We use the ALS implementation proposed by Andersson
and Bro in [1] and replace the Line Search procedure by the
six optimizations of ELS shown in figure 3. The three sour-
ces are BPSK and we generate an ”infinite block” of data by
taking all the 23 possible combinations of {−1, 1}. Noise is
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for (P,N) = (2,3), with algorithm ALESCAF.

not taken into account, and we take 5000 as the maximum
number of iterations.

In figure 3 we report the gap between estimated and ac-
tual mixing matrix for six optimizations of ELS and compare
them with ALS with Line Search and non accelerated ALS.
The figure shows one more time that ELS is very useful for
speeding up the convergence since the number of iterations
needed to reach convergence decreases from 4200 when us-
ing ALS with Line Search, to 2900 when using optimization
RLS(R,R,R) of ELS.

6. CONCLUDING REMARKS

We presented ELS, a novel method for accelerating the ALS
algorithm used to fit the PARAFAC model, and we compared
it with existing methods. Simulations showed that ELS is
very attractive especially in the case of 2FDs where it made
the number of iterations decrease by a factor 6. The applica-
tion of ELS to the Blind Channel Identification in an UDM
also showed very good results as ELS speeded up the con-
vergence.

In future works, noise will be taken into account and a
wider class of data blocks will be considered. Simulations
will be run with large data size to confirm that ELS is even
more attractive in large dimensions.

7. APPENDIX

During one iteration of the ALS algorithm the following ope-
rations are performed (we first estimate matrix Â) :

1. Compute the Khatri-Rao product to obtain matrix Z
a.

This costs FJK multiplications

2. Compute Z
+
a by reduced SVD of Za, which requires

7JKF2 + 11
3 F3 multiplications

3. Estimate the factor loading Â as shown in expression
(6), which requires IJKF + JKF2 + F2 multiplications

The previous steps are performed for each of the three load-
ing factors, then the global ALS iteration requires (F +
8F2)(JK + IK + IJ)+ 3FIJK + 11F3 + 3F2multiplications.
The complexity generated by ELS is FIJK + O((2N − 1)3)
when we choose optimization 3 for a three-way PARAFAC
model (N=3).

In general, for a N-way array of size I1 × I2 × ...× IN
the complexity of ALS when all the dimensions are of the
same order O(I) is : 11

3 NF3 + NF2 + NFIN + 8NF2IN−1 +

NF I2(1−IN−2)
1−I . Thus ELS requires FIN + O((2N −1)3) mul-

tiplications. Then, both ALS and (ALS+ELS) requires
O(FIN) multiplications when the dimensions are large and
are of the same order O(I). O(I0) multiplications are needed
when one dimensions I0 is very large compared to the other
dimensions.
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