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ABSTRACT
Using Mutual Information (MI) minimization is very com-
mon in Blind Source Separation (BSS). However, it is known
that gradient descent approaches may trap in local minima of
MI in constrained models. In this paper, it is proposed that
this problem may be solved using a ‘poor’ estimation of the
derivative of MI.

1. INTRODUCTION

Blind Source Separation (BSS) is the problem of retrieving
some statistically independent source signals from mixtures
of them, when there is no information about the sources or
about the mixture. This problem had been extensively under
study since mid 80’s[1], and there are currently quite a lot of
algorithms for solving it (see for example [2] and [3]).

Let �� �s1� � � � �sN�
T and �� �x1� � � � �xN�

T be the vector
of sources and observations, respectively. Then for linear in-
stantaneous mixtures, ����, where� is the unknown mix-
ing matrix. Since the sole information about the source sig-
nals is their statistical independence, one approach for source
separation is estimating a separating matrix �, which trans-
forms again, through � � ��, the observations into statis-
tically independent outputs (�). Hence the method name:
Independent Component Analysis (ICA). It is well known
[4] that this transformation results in source separation up to
trivial indeterminacies of scale and permutation of sources.

In BSS, the independence of the outputs cannot be sim-
plified to decorrelation (second-order independence). In
other words, output decorrelation (which is usually called
Principal Component Analysis or PCA) does not insure
source separation. However, it is well known [5] that PCA
leaves just a ‘rotation’ to be estimated. Dividing the ICA
task into these two stages (i.e. PCA or prewhitening and then
a rotation) has been used in many ICA algorithms [2, 5].

Consider now the two sources and two sensors case, and
suppose that the prewhitening has been already done. Then
the outputs y1 and y2 are related to the sources by:

�
y1 � cos�θ �s1� sin�θ �s2
y2 � sin�θ �s1 � cos�θ �s2

(1)

For solving the ICA problem, the angle θ which results in
independent outputs has to be estimated.

One approach to measure the statistical independence of
outputs is to use their mutual information I���. Then, the
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separation algorithm is based on using gradient based ap-
proaches for minimizing I���. If, for simplicity of notations,
and also for explicitly indicating the dependence of I��� to
θ , we define F�θ � � I��� and f �θ � � F ��θ � � d I����d θ ,
then the source separation algorithm is:

θ � θ �μ
d I���

d θ
or θ � θ �μ f �θ � (2)

Minimizing mutual information (MI) of outputs (using
gradient based methods) has been used in many ICA algo-
rithms for different kinds of mixtures [6, 7, 8, 4]. This ap-
proach has several advantages over other BSS approaches,
including: 1) It is shown [5] that for linear instantaneous
mixtures it results in an asymptotically Maximum Likelihood
(ML) estimation of source signals; 2) Contrary to some inde-
pendence criteria (like 4th order cross-cumulants) it has no
approximation, that is, it vanishes if and only if the outputs
are statistically independent. Consequently, it can be used for
separating more complicated mixtures (e.g. non-linear mix-
tures); 3) It may result in a unifying approach for separating
different kinds of separable models [6].

Although it is shown that Mutual Information has no lo-
cal ‘minima’ [6], it is seen that in a constrained model like
(1), I��� has local minima with respect to θ [9]. Conse-
quently, without some precautions, the ICA algorithms based
on mutual information minimization by steepest descent ap-
proaches are not reliable.

In this paper, we are going to present an approach for
avoiding local minima in (2) by using ‘poor’ estimation of
d I����d θ . The main idea is that in practice, we cannot use
the algorithm (2), because f �θ � � d I����d θ is not known
and it must be estimated from the data. Consequently, the
practical algorithm is:

θ � θ �μ f̂ �θ � (3)

where f̂ �θ � is an estimation of d I�d θ . Then, although we
know that (2) has local minima, it is possible that (3) has no
local minima, depending on the estimation method of d I

d θ .
To summarize, we are going to present in this paper, an

estimation method for f �θ � � d I���d θ , which does not re-
sult in a accurate estimation of f �θ �, but results in an algo-
rithm (3) for which is guaranteed to have no local minima.

2. PRELIMINARY ISSUES

2.1 Gradient of Mutual Information

The following theorem can be easily proved by using a gen-
eral expression for the gradient of MI [10]. However, be-
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Figure 1: a) Mutual Information versus θ , b) Its derivative
with respect to θ .

cause of lack of space, the proof has been omitted here.

Theorem 1 In model (1), the gradient of I��� with respect
to θ is given by:

f �θ � �
d I���

d θ
� E

�
y1ψ2�y2�� y2ψ1�y1�

�
(4)

where ψi�yi� is the score function of yi, defined by:

ψi�yi���
d

d yi
ln pyi

�yi� ��
p�yi
�yi�

pyi
�yi�

(5)

in which pyi
�yi� stands for the Probability Distribution Func-

tion (PDF) of yi.

2.2 Local minima of the algorithm (2)

We know that F�θ �, and hence the algorithm (2) may contain
local minima [9]. Consider first the following example:

Example 1. Let the sources s1 and s2 have bi-modal
Gaussian density:

ps1
�s� � ps2

�s� �
1
2

�
N�s ;1�0�3��N�s ;�1�0�3�

�
(6)

where N�x; μ �σ� � 1�
2πσ 2 exp� �x�μ�2

2σ 2 � represents the Gaus-

sian density with mean μ and variance σ 2. Then, from (1)
the PDF’s of y1 and y2 can be obtained, and from there
F�θ � � I��� and its derivative ( f �θ �) can be theoretically
computed. Figure 1 shows the plot of F and f versus θ for
0 � θ � π

2 . It is seen in this figure that F�θ � has a local
minimum at θ � π

4 .
Figure 1.b shows that f �θ � has 3 zeros in the interval

0 � θ � π
2 . However, it is important to note that all these ze-

ros are not the stationary (or stable) points of the algorithm
(2), because f ��θ � is negative at θ � θ1 and θ � θ2. Conse-
quently, a small deviation in θ around the point θ � θ1 (or
θ � θ2) in algorithm (2) results in moving in the same direc-
tion, and going farther. In fact, θ � θ1 and θ � θ2 correspond
to local maxima of F�θ �, and not local minima. On the other
hand, θ � π

4 is a stationary point of the algorithm (2) because
f �π

4 � � 0 and f ��π
4 �� 0.

The above example clarifies the fact that the stationary
points of the algorithm (2) are the points for which f �θ � � 0
and f ��θ �� 0.

2.3 Estimating the gradient of MI

Unlike example 1, the distributions of the sources are not
usually known in BSS. Consequently, f �θ � cannot be com-
puted exactly using (4) and it must be estimated from the

data (i.e. output samples). From Theorem 1, f �θ � can be
estimated by:

f̂ �θ � � Ê
�

y1ψ̂2�y2�� y2ψ̂1�y1�
�

(7)

where ψ̂i�yi� is an estimation of the score function of yi, and
Ê stands for the estimation of the expected value by averag-
ing throughout all data samples.

There are several methods for estimating score functions
already used in BSS literature. Consider for example the fol-
lowing estimation methods:

Histogram estimation. In this approach, the output
PDF’s are first estimated by a simple histogram. Then, ap-
proximating the derivative in (5) by a difference, a simple
histogram estimation for ψi is obtained.

Kernel estimation. Having observations �y1�y2� � � � �yN�
from a random variable y, the kernel estimation of its PDF is
given by [11]:

p̂y�y� �
1
N

N

∑
k�1

K

�
y� yk

h

�
(8)

where K��� is a ‘kernel’ (i.e. the PDF of a random variable
with zero mean and unit variance), and h is the bandwidth
of the estimator (a too small bandwidth results in a very
‘noisy’ estimated PDF, a too large bandwidth results in a
PDF which is roughly the same as the kernel itself). Using
this estimator for PDF of y, the score function is estimated
by ψ̂y�y� ��p̂�y�y��p̂y�y�.

Polynomial estimation. It is well known [12] that under
very mild conditions, for a function f ���, we have:

E
�

f �y�ψy�y�
�
� E

�
f ��y�

�
(9)

where ψy��� is the score function of the random variable y.
This equation provides a basis to design Minimum Mean
Square Error (MMSE) estimators for ψy. Let for example
ψy�y� be estimated as a linear combination of the functions
k1�y��k2�y�� � � � �kN�y�:

ψ̂y�y� �w1k1�y��w2k2�y�� � � ��wNkN�y���
T �y�� (10)

where � � �w1� � � � �wN�
T and ��y� � �k1�y�� � � � �kN�y��. In

this equation, � must be determined such that the mean
square error E

�
�ψy�y�� ψ̂y�y��2

�
be minimized. From the

principal of orthogonality [13], E
�
��y�

�
ψy�y�� ψ̂y�y�

��
,

which using (9) becomes:

E
�
��y��T �y�

�
� � E

�
���y�

�
(11)

This equation determines the optimum �, without the need
of knowing ψy. For example, if we choose k1�y� � 1, k2�y� �
y, k3�y� � y2 and k4�y� � y3, we will have a 3rd order polyno-
mial estimation of the score function. For a symmetric ran-
dom variable y, py�y� is an even function, and hence ψy�y� is
odd. Consequently, we can choose k1�y� � y and k2�y� � y3,
which results in the following estimator for ψy:

ψ̂y�y� � w1y�w2y3� (12)

Solving (11) for this simple case, the coefficients w1 and w2
of the above estimator are given by:

w1 �
Ey6�3�Ey4��Ey2�

�Ey2��Ey6�� �Ey4�2 � w2 �
3�Ey2�2�Ey4

�Ey2��Ey6�� �Ey4�2

(13)
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Figure 2: a) Theoretical derivative of MI with respect to θ ,
b) Its histogram estimation, c) Its kernel estimation, d) Its
polynomial estimation.

3. THE MAIN IDEA

The main idea of the paper comes from the following exper-
iment:
Experiment. For the sources of Example 1, and for y1 and
y2 defined by (1), we have estimated f �θ � � d I����d θ from
(7) and the score functions (using 100 data samples) using
the three estimators of Section 2.3. The result is shown in
Fig. 2. As it is seen in this figure, kernel estimator provides
a better estimation of score function compared to the others.

Now consider the polynomial estimator. At a first glance,
one may decide to not use this estimator: it has not enough
degree of freedom (since it is based on a 3rd order polyno-
mial) to follow the variations of f �θ �, and hence it does not
provide a very satisfactory estimation of it. However, a closer
look at this estimator, reveals a surprising property: because
of the limited degree of freedom, f̂ �θ � has just one zero in
the interval 0 � θ � π

2 , and the slope of f̂ �θ � at this point
is negative, consequently it is not a stationary point of the
algorithm (3).

To summarize, although polynomial estimator does not
provide a very good estimation of dI�dθ , it results in a lo-
cal minimum free version of the algorithm (3). Recall that
our main goal, too, was not obtaining a good estimation of
dI�dθ , it was separating the sources. In fact, here, this ‘poor’
estimation of dI�dθ is highly better, since it automatically
solves the problem of local minima.

This leads us to the following idea: use the algorithm (3),
along with polynomial estimation of f �θ �. Then the separa-
tion algorithm is free of local minima.

However, Fig. 2 is only for the source distribution of Ex-
ample 1. Does the above result remain valid for any source
distribution? The next section states that for the case in which
the sources have the same distribution, the answer is positive.

4. THE MAIN THEOREM

In Section 2.3, we saw that for estimating the score function
of a symmetric random variable using 3rd order polynomi-
als, we can use polynomials of the form w1y�w2y3. This

is justified by the fact that for a symmetric random variable,
py�y� is even, and hence ψy�y� is odd.

However, here we propose to use the same estimator, i.e.
the polynomials of the form w1y�w2y3, for estimating the
score functions of the outputs of the system (1), either for
symmetric sources or for asymmetric sources. Note that for
asymmetric sources, ψi��� is no more odd, and hence esti-
mating it by a polynomial of the form w1yi �w2y3

i does not
provide a ‘good’ estimation of the score function. But, we
are not seeking a ‘good’ estimation of score functions, our
main objective is to have a source separation algorithm. The
next theorem, which is the main theorem of the paper, shows
that such an approach provide a source separation algorithm
(based on MI minimization) which is free of local minima.

Theorem 2 If the sources s1 and s2 have the same distribu-
tion (and non-binary), and if the output score functions are
estimated using polynomials of the form w1y�w2y3, and are
applied for estimating f �θ � from (7), then the algorithm (3)
is free of local minima.

To prove this theorem, we first need to define the follow-
ing notations.

Definition 1 For a zero mean random variable y, we define:
a) κy � E

�
y4
�
�3E

�
y2
�2

.

b) λy � E
�

y2
�

E
�

y6
�
�E

�
y4
�2

.

Note that κy is in fact the 4th-order cumulant of y.

Lemma 1 For any random variable y, λy � 0. Moreover, the
equality holds only for binary random variables.

Proof: The Cauchy inequality implies that for any random
variables z and t:

E�z2�E�t2� � E�z t�2 (14)

where the equality holds only where t � kz (for a constant
k). For z � y and t � y3, (14) becomes λy � 0. Moreover,
the equality holds only for the case y3 � ky, which implies
y2 � k, that is, where y is a binary random variable.

Proof of Theorem 2: Let pk �E
�

yk
1

�
and qk � E

�
yk

2

�
de-

note the k-th order moments of y1 and y2, respectively. Then

from (1) and using the fact E
�

sk1
1

sk2
2

	
� 0, where k1 � 1 or

k2 � 1, and after doing a few calculations we obtain:
���
��

p2 � q2 � m2
p4 � q4 �

1
2

�
3m2

2�m4

�
sin2�2θ ��m4

p6 �� 5
2 m2

3 sin3�2θ �� 3
4

�
5m4m2�m6

�
sin2�2θ ��m6

q6 �
5
2 m2

3 sin3�2θ �� 3
4

�
5m4m2�m6

�
sin2�2θ ��m6

(15)
Now, let ψ1 and ψ2, the score functions of y1 and y2, be

estimated as ψ̂1�y1� � v1y1�v2y3
1 and ψ̂2�y2��w1y1�w2y3

1.
Combining these equations with (1) and (4), and after doing
some calculation, we obtain:

f̂ �θ � ��
1
4

κ�v2�w2�sin�4θ � (16)

where κ � κs1
� κs2

� m4� 3m2
2. From (13), the optimum

values for v2 and w2 are:

v2 �
3p2

2� p4

p2 p6� p2
4

��
κy1

λy1

� w2 �
3q2

2�q4

q2q6�q2
4

��
κy2

λy2

(17)



Using these values, (16) is written as:

f̂ �θ � �
1
4

κ�
κy1

λy1

�
κy2

λy2

�sin�4θ � (18)

Now, from (15) and after some calculations, we obtain κ y1
�

κy2
� p4�3p2

2 �
1
2

�
2� sin2�2θ �

�
κ , consequently:

f̂ �θ � �
κ2�2� sin2�2θ �

�
�λy1

�λy2
�sin�4θ �

8λy1
λy2

(19)

Also, from (15):

λy1
��

κ2

4
sin4�2θ ��

5
2

m2m2
3 sin3�2θ � (20a)

�

�
3
4

m4m2
2�

3
4

m2m6�m2
4

�
sin2�2θ ��m2m6�m2

4

λy2
��

κ2

4
sin4�2θ ��

5
2

m2m2
3 sin3�2θ � (20b)

�

�
3
4

m4m2
2�

3
4

m2m6�m2
4

�
sin2�2θ ��m2m6�m2

4

Since the sources are assumed to be non-binary, λ y1
�λy2

�

0. Moreover, 2� sin2�2θ � is always positive. Consequently,
from (19), f̂ �θ � � 0 if and only if sin�4θ � � 0. Therefore,
the only zeros of f̂ �θ � in the interval 0 � θ � π

2 are θ � 0 ,
θ � π�2, and θ � π�4. Substituting (20) in (19) and doing
some tedious calculations, it is obtained:

f̂ ��0� � f̂ ��
π
2
� � 2

�m4�3m2
2�

2

m2m6�m2
4

� 2
κ2

λ
(21)

where λ �m2m6�m2
4, and:

f̂ ��
π
4
� �

κ2�m2
4�9m2

2m4�9m4
2�m2m6�

4
�

λy1

��
θ� π

4

��
λy2

��
θ� π

4

� (22)

From (21), f̂ ��0� � 0 and f̂ ��π
2 � � 0. Consequently, θ � 0

and θ � π�2 are the only stationary points of the algorithm
(3), which result in source separation.

To show that θ � π�4 is not an stationary point of this
algorithm, from Section 2.2, we must show that f̂ ��π

4 � � 0.
From (22), the sign of f̂ ��π

4 � is the same as m2
4� 9m2

2m4 �

9m4
2�m2m6, which can be written as ��λ �9m2

2�m4�m2
2��.

However, writing the Cauchy inequality (14) for z � s 2 and
t � 1, shows that m4 � m2

2. Consequently, ��λ �9m2
2�m4�

m2
2��� 0, which proves the theorem.

Remark 1. In Theorem 2 and its proof, it is implicitly as-
sumed that there are enough data samples to insure a very
good estimation of the expectation operation (E ��).
Remark 2. Note that in the proposed approach (applying
3rd order estimation of score functions for BSS), we have ex-
cluded binary sources. In fact, the score function of a binary
random variable cannot be estimated as (12), because from
(13) and Lemma 1, the coefficients of such an estimator will
be infinity.
Remark 3. From (19), if κ � 0 then f̂ ��θ � � 0, �θ . This
is compatible with the well known fact that BSS is not pos-
sible for Gaussian sources (for which 4-th order cumulants
vanish).

5. CONCLUSION

In this paper, we showed that a ‘poor’ estimation of the gradi-
ent may have advantages in a steepest descent gradient algo-
rithm. Indeed, when BSS is achieved by a MI minimization
algorithm, a poor estimation of score functions based on 3rd
order polynomials avoids the existence of local minima.

The main theorem of the paper (Theorem 2) was stated
and proved just for two sources with identical distributions.
When the distribution of the sources are different, we have by
now, neither a proof, nor a counter-example. This will restrict
the usefulness of the result of the paper. However, the main
point of the paper is the possibility of solving the problem
of local minima through ‘poor’ estimation of the gradient of
the cost function. The extension of the result to more general
cases is currently under study.
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