
A DESIGN METHODOLOGY OF BUFFER-MEMORY ARCHITECTURES FOR FFT
COMPUTATION

Sheng-Ju Ku† and Chin-Liang Wang†‡

†Institute of Communications Engineering, National Tsing Hua University
‡Department of Electrical Engineering, National Tsing Hua University

Hsinchu, Taiwan 30013, Republic of China
phone: + (886) 3-5742567, fax: + (886) 3-5751787, email: clwang@ee.nthu.edu.tw

ABSTRACT
Memory-based architectures have received great attention for sin-
gle-chip implementation of the fast Fourier transform (FFT). Basi-
cally, they can be roughly categorized as single-memory design,
dual-memory design, and buffer-memory design. Among them, the
buffer-memory design can balance the trade-off between memory
size and control circuit complexity. In this paper, we present a de-
sign methodology of buffer-memory architectures for the radix-2
decimation-in-frequency FFT algorithm that can effectively reduce
the needed memory. As compared to previous related works, the
designs derived from the proposed methodology can reach the
same throughput performance with a smaller memory size. These
designs are rather attractive for long-length FFT applications, such
as very-high-rate digital subscriber lines and digital video broad-
casting.

1. INTRODUCTION
The discrete Fourier transform (DFT) is a very important tool or
building block in areas of digital signal processing and communi-
cations. It has been adopted in some standards for modern wire-
line/wireless applications, such as very-high-rate digital subscriber
lines (VDSL) [1] and digital video broadcasting (DVB) [2]. In
these DFT applications, the transform length N is large. To meet
the real-time requirements, it is necessary to develop dedicated fast
Fourier transform (FFT) processors.

The FFT architectures based on radix-2n algorithms can be divided
into two categories: pipeline-based designs (see, for example, [3]
and [4]) and memory-based designs (see, for example, [5]-[9]). In
the pipeline-based designs, there is one radix-r butterfly unit (BU)
and a local buffer at each stage of the signal flow graph (SFG) for
the radix-r FFT algorithm. These designs can compute one trans-
form sample per clock cycle and are suitable for very high
throughput applications. However, they may consume a large chip
area when the transform length N is very large. The memory-based
designs usually adopt one radix-r BU to compute all the radix-r
butterfly computations of the SFG and the corresponding architec-
tures can be roughly categorized as three types: single-memory
design [5], dual-memory design [6], and buffer-memory design [7]-
[9]. Among these designs, the single-memory approach requires the
least amount of memory, i.e. N words, but involves the most com-
plicated control circuitry. On the contrary, the dual-memory
method has the simplest control circuit design, but it needs the
largest memory size of 2N words. In contrast, the buffer-memory
design can balance the trade-off between memory size and control
circuit complexity, where a buffer is located between the subtrac-

This work was supported by the National Science Council of the Republic of
China under Grants NSC 92-2213-E-007-072 and NSC 93-2213-E-007-097.

tion branch of the BU and the main memory to prevent memory-
access-conflict. For existing buffer-memory designs based on the
radix-2 decimation-in-frequency (DIF) FFT algorithm, the work of
[7] has a total memory size of 1.5N words, a throughput of one
transform sample per log2N+1clock cycle, and 50% utilization
efficiency in BU. The improved work presented in [8] doubles the
throughput and BU utilization efficiency of those in [7], but with
more memory of 2.5N words. As compared to the work of [8], the
design of [9] decreases the total memory size to be 1.25N words
with the same throughput and BU utilization efficiency. However,
the critical path of this design includes one RAM read, one com-
plex multiplier, one complex adder, and five 2-input MUX delays.
It is longer than those of the previous two which include one RAM
read, one complex multiplier, and three 2-input MUX delays.

In this paper, we propose a methodology to effectively reduce the
buffer size and thus the total memory size of buffer-memory archi-
tectures for realizing the radix-2 DIF FFT algorithm. The designs
based on the proposed methodology have the same throughput per-
formance (in terms of the number of samples per clock cycle) as [9]
and the same critical path as that in [8]. Dependent on the main
memory partition, the needed buffer size ranges from 1 to 0.125N
words; the more partition the main memory, the smaller buffer size
with more cost in routing and control circuitry the design will in-
volve. Finally, a design example of N=1024 with a total memory
size of 1.125N words is given to verify the effectiveness of the pro-
posed methodology, where the main memory is divided into four
N/4-word banks.

2. THE RADIX-2 DIF FFT ALGORITHM
The N-point DFT is defined by

1

0

N

nk
k n N

n
X x W

−

=

= ∑ k = 0, 1, 2, …, N-1 (1)

where WN=exp(-j2π/N), called the twiddle factor, and the transform
length N is assumed to be a power of two. In the radix-2 DIF FFT
algorithm, the output sequence Xk will be divided into even- and
odd-numbered samples and (1) can be reformulated as

()
()2 1

2 2 2
0

N
ns

s n n N N
n

X x x W
−

+
=

= +∑ (2)

()
()2 1

2 1 2 2
0

N
n ns

s n n N N N
n

X x x W W
−

+ +
=

= −∑

s = 0, 1, 2, …, (N/2)-1 (3)

Equations (2) and (3) show that an N-point DFT can be decomposed
into two N/2-point DFT’s. Similarly, these two N/2-point DFT’s can
be further decomposed into four N/4-point DFT’s. This kind of
decomposition process can be repeated until N/2 2-point DFT’s are
attained. At the rth stage of decomposition, there are 2r-1 m-point
DFT’s, where r =1, 2, …, log2N and m=N/2r-1.

3. THE DESIGN METHODOLOGY FOR BUFFER-
MEMORY DESIGNS OF FFT PROCESSOR

A buffer-memory design for FFT processor adopts a main memory
to store the input data and the temporary results during the FFT
computation, and a buffer to temporarily store the results from the
subtraction branch of the BU for avoiding the memory-access-
conflict of reading/writing two data from/to the same memory block,
simultaneously. What is the minimum size of the required buffer for
a buffer-memory design? To find the solution, we first assume that
for a buffer-memory design of the radix-2 N-point DIF FFT algo-
rithm the main memory consists of two N/2-word memory banks,
R1 and R2, and the DFT input data xi and x(i+N/2) are respectively
stored in the address i of R1 and R2, where i= 0, 1, 2, ..., (N/2)-1.
After the butterfly operations at the first stage of the SFG, the results
from the addition and subtraction branches of the BU will form the
input data of the two decomposed N/2-point DFT’s at the second
stage, respectively. To avoid the memory-access-conflict, the two
input data for each butterfly of the N/2-point FFT algorithm must be
stored into different memory banks so that they can be read out
simultaneously. Hence, for each decomposed N/2-point DFT we
should store one half input data into R1 and the other half into R2.
Let each memory bank consist of two parts, the first half (FH) and
the second half (SH), which include the addresses 0 ~ (N/4)-1 and
N/4 ~ (N/2)-1, respectively. For simplicity of read/write addresses
generation, we allocate the FH of R1 and R2 to one decomposed
N/2-point DFT, and the SH of R1 and R2 to the other one. Without
loss of generality, we use Fig. 1, a SFG of the 8-point radix-2 DIF
FFT algorithm, to illustrate the memory arrangement for the butter-
fly operations. In Fig. 1, a pair of crossing lines represents a butter-
fly operation and the white node at the intersection represents the
adder/subtractor of the BU. The upper and lower lines at the right
hand side of a white node indicate the adder and subtractor outputs
of the BU, respectively. The black node at a horizontal line terminal
represents a storage location and the symbol above it indicates the
address in a memory module. For example, R1[2] means in the
address 2 of memory bank R1 and B[0] means in the address 0 of
the buffer. The symbol below a horizontal line shows the twiddle
factor that will be multiplied by the data stored at the address indi-
cated by the left black node. From Fig. 1, we find that the sites of
the FH of R2 (i.e., address 0 and 1) and the SH of R1 (i.e., address 2
and 3) at the SFG are exchanged after the butterfly operations of the
first stage. This kind of memory arrangement will be referred to as
the “half memory swapping strategy”. However, this memory ar-
rangement will cause memory-access-conflict because the two out-
puts of a butterfly computation will be stored into the different
halves of the same memory bank, simultaneously. Hence, a buffer is
inserted between the subtraction branch of the BU and the main
memory, and the minimum required buffer is one half of a memory
bank, i.e., N/4 words (two words for Fig. 1). The “half memory
swapping strategy” can be also applied to the other decomposed
DFT’s of the SFG, as shown at the second stage of Fig. 1.

There is one drawback for the above memory arrangement: The
second N/2-point DFT of the second stage can not be executed until
the N/4 buffered data of the first N/2-point FFT have been multi-
plied by the twiddle factors and written back to R1. This will pro-
long the execution time and degrade the BU utility efficiency. This
drawback can be solved by dividing the main memory into two pairs

of N/4-word memory banks and each pair of banks are responsible
to one N/2-point DFT computation at the second stage. This new
memory arrangement for the 8-point DIF FFT algorithm is shown in
Fig. 2. The operations of the two decomposed N/2-point DFT can be
overlapped to increase both of the throughput rate and the BU utili-
zation. We can easily derive that at the rth stage of the SFG, if the
input data of an N/2r-1-point decomposed DFT are sequentially
stored in four different memory banks for a buffer-memory design
that adopts the half memory swapping strategy, the minimum
needed buffer size is (N/2r-1)/4= N/2r+1 words, where r= 1, 2, 3, ...,
log2N-1. It is clear that the minimum buffer size decided at a given
stage is applicable to the later stages.

The needed buffer size can be further reduced if the in-placement
strategy is also adopted in the buffer-memory designs. Let the main
memory consist of four N/4-word banks and the first half DFT input
data are stored in the FH of the four banks, sequentially. The second
half DFT input data are accessed from the external input buffer and
sent to the BU directly for the butterfly computation of the first
stage. After the butterfly executions of the first stage, the results
from the addition branch of the BU are directly written back to the
FH of the four memory banks by using the in-placement strategy.
The results from the subtraction branch, which will be sequentially
stored into the SH of the four banks, should be buffered first for
avoiding the memory-access-conflict and the minimum needed
buffer is N/8 words. The N/8-word buffer is also valid for the de-
composed N/2-point DFT's at the second stage, where the half
memory swapping strategy is adopted. Fig. 3 shows the SFG of the
8-point FFT which uses the new memory arrangement. Similarly,
we can derive that the required buffer will be decreased to N/16
words if the main memory is divided to eight N/8-word memory
banks, where the first two stages of FFT adopt the in-placement
strategy and the half memory swapping strategy is used from the
third stage, and so on.

Based on the above discussion, we can conclude a design methodol-
ogy for buffer-memory designs of the N-point DIF FFT algorithm:
1. Evenly partition the N-word main memory into 2q N/2q-word

memory banks, where q = 2, 4, 8, …, log2N-1.
2. Insert a buffer of N/2q+1 words between the subtraction branch of

the BU and the main memory.
3. Store the first N/2 DFT input data into the FH of the 2q memory

banks, sequentially. Fetch the second N/2 input data and send
them to the BU directly for the butterfly computation at the first
stage of the SFG for the N-point FFT algorithm.

4. During the butterfly computation of the FFT algorithm, the in-
placement strategy is used at the first q-1 stages and the half
memory swapping strategy is adopted from the qth to the last
second stage. The DFT outputs can be obtained from the two
branches of the BU during the operations of the last stage.

4. A DESIGN EXAMPLE BASED ON THE
PROPOSED DESIGN METHODOLOGY

4.1 Architecture

Based on the above derived design methodology, a buffer-memory
architecture for the N-point FFT is presented in Fig. 4, where the
main memory consists of four N/4-word memory banks, R1, R2, R3,
and R4, and the buffer, BUF, has N/8 words. The memory banks
and the buffer are composed of dual-port RAM. An N/2-word ROM
is used to store the twiddle factors. During the FFT operations, the
in-placement strategy is used at the first stage and the half memory
swapping strategy is adopted from the second stage to the last sec-
ond stage. The operations of this design can be summarized as the
following three steps:

Step 1: Load and store the first N/2 input data of DFT into the
FH of the four memory banks in the main memory.
The writing order of the four banks is R1, R2, R3 and R4.

Step 2: Load the second N/2 input data and execute the butter-
fly computation at the first stage of the SFG.
The outputs of the adder are directly stored into the FH of
the four banks by using the in-placement strategy. The out-
puts of the subtractor are first buffered in the BUF temporar-
ily, accessed for twiddle factor multiplication at N/8 clock
cycles later, and then stored into the SH of the four banks.

Step 3: Execute the butterflies at the rth stage of FFT, where r =
2, 3, …, log2N.
The half memory swapping strategy is adopted in this step
instead of the last stage. At each stage the execution of the
first N/8 butterflies will be overlapped by the twiddle factor
multiplications of the last N/8 subtraction results at the pre-
vious stage. After the second stage, the SFG can be decom-
posed to be four N/4-point DFT's and the operations of adja-
cent N/4-point DFT's can be also overlapped. When the but-
terflies of the last stage are being executed, the outputs of
DFT can be directly acquired from the two outputs of the
BU because the twiddle factor at the final stage is 1. The
outputs produced by the subtraction branch will be first writ-
ten back to R3 or R4 and then be accessed when the butter-
fly executions of the last stage are completed. When the
stored outputs in the R3 and R4 are being accessed, the first
N/2 input data of the next N-point DFT can be simultane-
ously loaded and stored in the FH of the four memory banks.
It means that the step 3 can be overlapped with the step 1 of
the next N-point DFT operations for N/2 clock cycles.

For an N-point FFT, the computation time of each stage is N/2 clock
cycles and the latency to complete the three steps are
(N/2)×(log2N+2) clock cycles. Furthermore, due to overlapping the
step 3 with the step 1 of the next N-point DFT, the average through-
put will reach two transform samples per log2N+1 clock cycles and
the BU utilization efficiency can reach 100%, for which are the
same as those of [9]. The critical path of Fig. 4 includes one RAM
read, one complex multiplier, and three 2-input MUX delays, which
is the same as those of [7] and [8]. For the other architectures de-
rived from the proposed design methodology also have the same
throughput rate, the BU utilization efficiency, and the critical path
length as the example in Fig. 4.

Let a phase be equal to N/2 clock cycles and n= log2N. To complete
an N-point DFT needs n+2 phases, numbered from 0 to n+1. Like
the works of [7]-[9], the control signals can be simply generated by
an up-counter with bit number m= Ceiling(log2((N/2)×(n+2)). As-
sume that the output of the m-bit up-counter is (am-1am-2...a2a1a0).
The phase number is generated by the m-n+1 bits, (am-1am-2...anan-1);
the other n-1 bits, (an-2an-3...a2a1a0), are used to generate the memory
read- and write-enable signals, the memory addresses, and the selec-
tion signals of multiplexers. The read-address, RA, for the four
memory banks is equal to (0an-4...a2a1a0) in phase 1 and equal to
(an-2an-4an-5...a2a1a0) from phase 2. TABLE I lists the write-enable
and write-address for R1/R3, where the bit an-1-p will be selected
from the n-1 bits, (an-2an-3...a2a1a0), to generate the write-enable
signals and the remaining n-2 bits will be used to generate the write-
address, WA_a, in phase p, where p is from 1 to n-1. The writing
operations of R2/R4 are performed at N/8 clock cycles later than
those of R1/R3. Hence, the writing signals for R2/R4 are generated
by the other m-bit signal, (bm-1bm-2...b2b1b0), which is N/8 clock cy-
cles later than (am-1am-2...a2a1a0). In TABLE I, if we replace the
signal ‘a’ by ‘b’, we can obtain the write signals of R2/R4. TABLE
II lists the selection signals for the five multiplexers and the read-

address for ROM for Fig. 4. In TABLE I and II, the phase numbers
and the signals listed in each column are determined by the same m-
bit signal. The write- and read- addresses for BUF are respectively
equal to (an-4an-5...a2a1a0) and (bn-4bn-5...b2b1b0) during the FFT com-
putation.

4.2 Chip Design

A prototype chip for the case of N=1024 is being developed by
using the proposed buffer-memory architecture in Fig. 4, where the
word lengths of the real and imaginary parts are 16 bits. The chip
contains four RAM's of 256×32 bits each, one buffer of 128×32
bits, one ROM of 512×32 bits, one 16-bit×16-bit complex multi-
plier, two 16-bit complex adders, and some logic circuitry for gen-
erating the control signals. This design has been verified by the
Verilog code and synthesized by the Synopsys Design Vision based
on the standard cell library of UMC 0.18 μm CMOS technology.
The chip contains about 400K transistors with a critical path of
4.73ns. Its clock rate can reach 211 MHz with the corresponding
throughput rate of 38.3M transform samples per second. It meets
the speed requirement of a VDSL transceiver [1].

5. CONCLUSIONS
In this paper, a new design methodology has been presented to
effectively reduce the memory size of buffer-memory architectures
for the radix-2 DIF FFT algorithm. Based on the proposed method-
ology, a family of buffer-memory architectures for FFT computa-
tion can be derived. As compared to previous related designs, these
derived architectures can reach the same throughput performance
and BU utilization efficiency with less memory. Finally, a design
example has been given to verify the design methodology. Based
on 0.18 μm CMOS technology, the design for the 1024-point FFT
algorithm consists of about 400K transistors with a throughput of
38.3M transform samples per second. It is very suitable for single-
chip design of long-length FFT applications.

REFERENCES
[1] VDSL Alliance SDMT VDSL Draft Standard Proposal, ETSI

STC/TM6, April 1998.
[2] Digital Video Broadcasting: framing structure, channel coding, and

modulation for digital terrestrial television, ETSI Standard, EN 300
744 v1.4.1, 2000.

[3] S. He and M. Torkelson, “Design and implementation of a 1024-
point pipeline FFT Processor,” in Proc. IEEE Custom Integrated
Circuits Conf., May 1998, pp. 131-134.

[4] Y.-N. Chang and K. K. Parhi, “An efficient pipelined FFT
architecture,” IEEE Trans. Circuits and Systems-II: Analog and
Digital Signal Processing, vol. 50, pp. 322-325, June 2003.

[5] L. G. Johnson, “Conflict free memory addressing for dedicated FFT
hardware,” IEEE Trans. Circuits and Systems-II: Analog and Digital
Signal Processing, vol. 39, pp. 312-316, May 1992.

[6] A. Delaruelle, J. Huisken, J.van Loon, and F. Welten, “A channel
demodulator for digital audio broadcasting,” in Proc. IEEE Custom
Integrated Circuits Conf., May 1994, pp. 47-50.

[7] C.-H. Chang, C.-L. Wang, and Y.-T. Chang, “Efficient VLSI
architectures for fast computation of the discrete Fourier transform
and its inverse,” IEEE Trans. Signal Processing, vol. 48, pp. 3206-
3216, Nov. 2000.

[8] C.-L. Wang and C.-H. Chang, “A new memory-based FFT processor
for VDSL transceivers,” in Proc. IEEE Circuits and Systems Conf.,
vol. 4, May 2001, pp. 670-673.

[9] C.-K. Chang, C.-P. Hung, and S.-G. Chen, “An efficient memory-
based FFT architecture,” in Proc. IEEE Circuits and Systems Conf.,
vol. 2, July 2003, pp. 25-28.

Figure 1. The SFG for the buffer-memory design of N=8 with two memory

banks in the main memory.

Figure 2. The SFG for the buffer-memory design of N=8 with four

memory banks in the main memory.

Figure 3. The SFG with the in-placement strategy for the first stage and
the half memory swapping strategy for the second stage.

Figure 4. The proposed buffer-memory design with a buffer of N/8 words.

TABLE I. WRITE SIGNALS OF R1 AND R3 (−: MEANS “NEGLECTED”)

Write Address Write Enable Phase

WA_a R1 R3

0 4 5 1 00 ...n na a a a− −

2 3n na a− −+
2 3n na a− −+

1 3 4 5 1 0...n n na a a a a− − −

2na −

2na −

2
2 4 5 1 0...n n na a a a a− − −

3na −

3na −

3
2 3 5 1 0...n n na a a a a− − −

4na −

4na −

M M M M
n-2

2 4 5 3 0...n n n na a a a a− − − −

1a
1a

n-1
2 4 5 1 3...n n n na a a a a− − − −

0a

0a
n

3 4 5 1 0...n n na a a a a− − −
 1 0

n+1 － 1 1

TABLE II. CONTROL SIGNALS OF THE FIVE MULTIPLEXERS AND ROM

Phase

C1 C2 C3 C4 C5 Read Address
of ROM

0 10 10 － － － －
1

30 na −

30 nb −

2 3n na a− −
 10 － 2 3 4 2 1 0...n n nb b b b b b− − −

2 00 00
30 na −

30 na −
 －

3 4 5 1 0... 0n n nb b b b b− − −

3
30 na −

30 nb −

30 na −

30 na −
 － 4 5 6 0... 00n n nb b b b− − −

M M M M M M M
n-1

30 na −

30 nb −

30 na −

30 na −
 －

0 00...000b

n 01 01
30 na −

30 na −
 0 000...000

n+1 － － －
30 na −
 1 －

x0

x1

x2

x3

x4

x5

x6

x7

X0

X4

X2

X6

X1

X5

X3

X73

2

1

0

2

0

2

0

First
stage

Third
stage

Second
stage

Input data DFT output

0

0

R1[0]

R1[1]

R1[2]

R1[3]

R2[0]

R2[1]

R2[2]

R2[3]

R1[0]

R1[1]

R1[2]

R1[3]

R2[0]

R2[1]

R2[2]

R2[3]

B[0]

B[1]

B[0]

B[1]

R1[0]

R2[0]

R1[1]

R2[1]

R1[2]

R2[2]

R1[3]

R2[3]

B[0]

B[1]

B[0]

B[1]

B[0]

B[1]

0

0

B[0]

B[1]

The first 4-point DFT

The second 4-point DFT

	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis (I) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking (I) ...
	MonPmOR5-Geophysical Signal Processing (I) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis (II) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing (II) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking (II ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV (I) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (...
	ThuAmOR12-3DTV (II) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications (I)
	ThuPmOR4-Architecture and VLSI Hardware (I)
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics (I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware (II)
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Sheng-Ju Ku
	Chin-Liang Wang

