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ABSTRACT 
Memory-based architectures have received great attention for sin-
gle-chip implementation of the fast Fourier transform (FFT). Basi-
cally, they can be roughly categorized as single-memory design, 
dual-memory design, and buffer-memory design. Among them, the 
buffer-memory design can balance the trade-off between memory 
size and control circuit complexity. In this paper, we present a de-
sign methodology of buffer-memory architectures for the radix-2 
decimation-in-frequency FFT algorithm that can effectively reduce 
the needed memory. As compared to previous related works, the 
designs derived from the proposed methodology can reach the 
same throughput performance with a smaller memory size. These 
designs are rather attractive for long-length FFT applications, such 
as very-high-rate digital subscriber lines and digital video broad-
casting.  

1. INTRODUCTION 
The discrete Fourier transform (DFT) is a very important tool or 
building block in areas of digital signal processing and communi-
cations. It has been adopted in some standards for modern wire-
line/wireless applications, such as very-high-rate digital subscriber 
lines (VDSL) [1] and digital video broadcasting (DVB) [2]. In 
these DFT applications, the transform length N is large. To meet 
the real-time requirements, it is necessary to develop dedicated fast 
Fourier transform (FFT) processors. 

The FFT architectures based on radix-2n algorithms can be divided 
into two categories: pipeline-based designs (see, for example, [3] 
and [4]) and memory-based designs (see, for example, [5]-[9]). In 
the pipeline-based designs, there is one radix-r butterfly unit (BU) 
and a local buffer at each stage of the signal flow graph (SFG) for 
the radix-r FFT algorithm. These designs can compute one trans-
form sample per clock cycle and are suitable for very high 
throughput applications. However, they may consume a large chip 
area when the transform length N is very large. The memory-based 
designs usually adopt one radix-r BU to compute all the radix-r 
butterfly computations of the SFG and the corresponding architec-
tures can be roughly categorized as three types: single-memory 
design [5], dual-memory design [6], and buffer-memory design [7]-
[9]. Among these designs, the single-memory approach requires the 
least amount of memory, i.e. N words, but involves the most com-
plicated control circuitry. On the contrary, the dual-memory 
method has the simplest control circuit design, but it needs the 
largest memory size of 2N words. In contrast, the buffer-memory 
design can balance the trade-off between memory size and control 
circuit complexity, where a buffer is located between the subtrac-
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tion branch of the BU and the main memory to prevent memory-
access-conflict. For existing buffer-memory designs based on the 
radix-2 decimation-in-frequency (DIF) FFT algorithm, the work of 
[7] has a total memory size of 1.5N words, a throughput of one 
transform sample per log2N+1clock cycle, and 50% utilization 
efficiency in BU. The improved work presented in [8] doubles the 
throughput and BU utilization efficiency of those in [7], but with 
more memory of 2.5N words. As compared to the work of [8], the 
design of [9] decreases the total memory size to be 1.25N words 
with the same throughput and BU utilization efficiency. However, 
the critical path of this design includes one RAM read, one com-
plex multiplier, one complex adder, and five 2-input MUX delays. 
It is longer than those of the previous two which include one RAM 
read, one complex multiplier, and three 2-input MUX delays. 

In this paper, we propose a methodology to effectively reduce the 
buffer size and thus the total memory size of buffer-memory archi-
tectures for realizing the radix-2 DIF FFT algorithm. The designs 
based on the proposed methodology have the same throughput per-
formance (in terms of the number of samples per clock cycle) as [9] 
and the same critical path as that in [8]. Dependent on the main 
memory partition, the needed buffer size ranges from 1 to 0.125N 
words; the more partition the main memory, the smaller buffer size 
with more cost in routing and control circuitry the design will in-
volve. Finally, a design example of N=1024 with a total memory 
size of 1.125N words is given to verify the effectiveness of the pro-
posed methodology, where the main memory is divided into four 
N/4-word banks. 

2. THE RADIX-2 DIF FFT ALGORITHM 
The N-point DFT is defined by 
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where WN=exp(-j2π/N), called the twiddle factor, and the transform 
length N is assumed to be a power of two. In the radix-2 DIF FFT 
algorithm, the output sequence Xk will be divided into even- and 
odd-numbered samples and (1) can be reformulated as 
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Equations (2) and (3) show that an N-point DFT can be decomposed 
into two N/2-point DFT’s. Similarly, these two N/2-point DFT’s can 
be further decomposed into four N/4-point DFT’s. This kind of 
decomposition process can be repeated until N/2 2-point DFT’s are 
attained. At the rth stage of decomposition, there are 2r-1 m-point 
DFT’s, where r =1, 2, …, log2N and m=N/2r-1. 

3. THE DESIGN METHODOLOGY FOR BUFFER-
MEMORY DESIGNS OF FFT PROCESSOR 

A buffer-memory design for FFT processor adopts a main memory 
to store the input data and the temporary results during the FFT 
computation, and a buffer to temporarily store the results from the 
subtraction branch of the BU for avoiding the memory-access-
conflict of reading/writing two data from/to the same memory block, 
simultaneously. What is the minimum size of the required buffer for 
a buffer-memory design? To find the solution, we first assume that 
for a buffer-memory design of the radix-2 N-point DIF FFT algo-
rithm the main memory consists of two N/2-word memory banks, 
R1 and R2, and the DFT input data xi and x(i+N/2) are respectively 
stored in the address i of R1 and R2, where i=  0, 1, 2, ..., (N/2)-1. 
After the butterfly operations at the first stage of the SFG, the results 
from the addition and subtraction branches of the BU will form the 
input data of the two decomposed N/2-point DFT’s at the second 
stage, respectively. To avoid the memory-access-conflict, the two 
input data for each butterfly of the N/2-point FFT algorithm must be 
stored into different memory banks so that they can be read out 
simultaneously. Hence, for each decomposed N/2-point DFT we 
should store one half input data into R1 and the other half into R2. 
Let each memory bank consist of two parts, the first half (FH) and 
the second half (SH), which include the addresses 0 ~ (N/4)-1 and 
N/4 ~ (N/2)-1, respectively. For simplicity of read/write addresses 
generation, we allocate the FH of R1 and R2 to one decomposed 
N/2-point DFT, and the SH of R1 and R2 to the other one. Without 
loss of generality, we use   Fig. 1, a SFG of the 8-point radix-2 DIF 
FFT algorithm, to illustrate the memory arrangement for the butter-
fly operations. In Fig. 1, a pair of crossing lines represents a butter-
fly operation and the white node at the intersection represents the 
adder/subtractor of the BU. The upper and lower lines at the right 
hand side of a white node indicate the adder and subtractor outputs 
of the BU, respectively. The black node at a horizontal line terminal 
represents a storage location and the symbol above it indicates the 
address in a memory module. For example, R1[2] means in the 
address 2 of memory bank R1 and B[0] means in the address 0 of 
the buffer. The symbol below a horizontal line shows the twiddle 
factor that will be multiplied by the data stored at the address indi-
cated by the left black node. From Fig. 1, we find that the sites of 
the FH of R2 (i.e., address 0 and 1) and the SH of R1 (i.e., address 2 
and 3) at the SFG are exchanged after the butterfly operations of the 
first stage. This kind of memory arrangement will be referred to as 
the “half memory swapping strategy”. However, this memory ar-
rangement will cause memory-access-conflict because the two out-
puts of a butterfly computation will be stored into the different 
halves of the same memory bank, simultaneously. Hence, a buffer is 
inserted between the subtraction branch of the BU and the main 
memory, and the minimum required buffer is one half of a memory 
bank, i.e., N/4 words (two words for Fig. 1). The “half memory 
swapping strategy” can be also applied to the other decomposed 
DFT’s of the SFG, as shown at the second stage of Fig. 1.  

There is one drawback for the above memory arrangement: The 
second N/2-point DFT of the second stage can not be executed until 
the N/4 buffered data of the first N/2-point FFT have been multi-
plied by the twiddle factors and written back to R1. This will pro-
long the execution time and degrade the BU utility efficiency. This 
drawback can be solved by dividing the main memory into two pairs 

of N/4-word memory banks and each pair of banks are responsible 
to one N/2-point DFT computation at the second stage. This new 
memory arrangement for the 8-point DIF FFT algorithm is shown in 
Fig. 2. The operations of the two decomposed N/2-point DFT can be 
overlapped to increase both of the throughput rate and the BU utili-
zation. We can easily derive that at the rth stage of the SFG, if the 
input data of an N/2r-1-point decomposed DFT are sequentially 
stored in four different memory banks for a buffer-memory design 
that adopts the half memory swapping strategy, the minimum 
needed buffer size is (N/2r-1)/4= N/2r+1 words, where r= 1, 2, 3, ..., 
log2N-1. It is clear that the minimum buffer size decided at a given 
stage is applicable to the later stages. 

The needed buffer size can be further reduced if the in-placement 
strategy is also adopted in the buffer-memory designs. Let the main 
memory consist of four N/4-word banks and the first half DFT input 
data are stored in the FH of the four banks, sequentially. The second 
half DFT input data are accessed from the external input buffer and 
sent to the BU directly for the butterfly computation of the first 
stage. After the butterfly executions of the first stage, the results 
from the addition branch of the BU are directly written back to the 
FH of the four memory banks by using the in-placement strategy. 
The results from the subtraction branch, which will be sequentially 
stored into the SH of the four banks, should be buffered first for 
avoiding the memory-access-conflict and the minimum needed 
buffer is N/8 words. The N/8-word buffer is also valid for the de-
composed N/2-point DFT's at the second stage, where the half 
memory swapping strategy is adopted. Fig. 3 shows the SFG of the 
8-point FFT which uses the new memory arrangement. Similarly, 
we can derive that the required buffer will be decreased to N/16 
words if the main memory is divided to eight N/8-word memory 
banks, where the first two stages of FFT adopt the in-placement 
strategy and the half memory swapping strategy is used from the 
third stage, and so on. 

Based on the above discussion, we can conclude a design methodol-
ogy for buffer-memory designs of the N-point DIF FFT algorithm: 
1. Evenly partition the N-word main memory into 2q N/2q-word 

memory banks, where q = 2, 4, 8, …, log2N-1. 
2. Insert a buffer of N/2q+1 words between the subtraction branch of 

the BU and the main memory. 
3. Store the first N/2 DFT input data into the FH of the 2q memory 

banks, sequentially. Fetch the second N/2 input data and send 
them to the BU directly for the butterfly computation at the first 
stage of the SFG for the N-point FFT algorithm. 

4. During the butterfly computation of the FFT algorithm, the in-
placement strategy is used at the first q-1 stages and the half 
memory swapping strategy is adopted from the qth to the last 
second stage. The DFT outputs can be obtained from the two 
branches of the BU during the operations of the last stage. 

4. A DESIGN EXAMPLE BASED ON THE 
PROPOSED DESIGN METHODOLOGY 

4.1 Architecture 

Based on the above derived design methodology, a buffer-memory 
architecture for the N-point FFT is presented in Fig. 4, where the 
main memory consists of four N/4-word memory banks, R1, R2, R3, 
and R4, and the buffer, BUF, has N/8 words. The memory banks 
and the buffer are composed of dual-port RAM. An N/2-word ROM 
is used to store the twiddle factors. During the FFT operations, the 
in-placement strategy is used at the first stage and the half memory 
swapping strategy is adopted from the second stage to the last sec-
ond stage. The operations of this design can be summarized as the 
following three steps: 



Step 1: Load and store the first N/2 input data of DFT into the 
FH of the four memory banks in the main memory.  
The writing order of the four banks is R1, R2, R3 and R4. 

Step 2: Load the second N/2 input data and execute the butter-
fly computation at the first stage of the SFG.  
The outputs of the adder are directly stored into the FH of 
the four banks by using the in-placement strategy. The out-
puts of the subtractor are first buffered in the BUF temporar-
ily, accessed for twiddle factor multiplication at N/8 clock 
cycles later, and then stored into the SH of the four banks. 

Step 3: Execute the butterflies at the rth stage of FFT, where r = 
2, 3,  …, log2N. 
The half memory swapping strategy is adopted in this step 
instead of the last stage. At each stage the execution of the 
first N/8 butterflies will be overlapped by the twiddle factor 
multiplications of the last N/8 subtraction results at the pre-
vious stage. After the second stage, the SFG can be decom-
posed to be four N/4-point DFT's and the operations of adja-
cent N/4-point DFT's can be also overlapped. When the but-
terflies of the last stage are being executed, the outputs of 
DFT can be directly acquired from the two outputs of the 
BU because the twiddle factor at the final stage is 1. The 
outputs produced by the subtraction branch will be first writ-
ten back to R3 or R4 and then be accessed when the butter-
fly executions of the last stage are completed. When the 
stored outputs in the R3 and R4 are being accessed, the first 
N/2 input data of the next N-point DFT can be simultane-
ously loaded and stored in the FH of the four memory banks. 
It means that the step 3 can be overlapped with the step 1 of 
the next N-point DFT operations for N/2 clock cycles. 

For an N-point FFT, the computation time of each stage is N/2 clock 
cycles and the latency to complete the three steps are 
(N/2)×(log2N+2) clock cycles. Furthermore, due to overlapping the 
step 3 with the step 1 of the next N-point DFT, the average through-
put will reach two transform samples per log2N+1 clock cycles and 
the BU utilization efficiency can reach 100%, for which are the 
same as those of [9]. The critical path of Fig. 4 includes one RAM 
read, one complex multiplier, and three 2-input MUX delays, which 
is the same as those of [7] and [8]. For the other architectures de-
rived from the proposed design methodology also have the same 
throughput rate, the BU utilization efficiency, and the critical path 
length as the example in Fig. 4. 

Let a phase be equal to N/2 clock cycles and n= log2N. To complete 
an N-point DFT needs n+2 phases, numbered from 0 to n+1. Like 
the works of [7]-[9], the control signals can be simply generated by 
an up-counter with bit number m= Ceiling(log2((N/2)×(n+2)). As-
sume that the output of the m-bit up-counter is (am-1am-2...a2a1a0). 
The phase number is generated by the m-n+1 bits, (am-1am-2...anan-1); 
the other n-1 bits, (an-2an-3...a2a1a0), are used to generate the memory 
read- and write-enable signals, the memory addresses, and the selec-
tion signals of multiplexers. The read-address, RA, for the four 
memory banks is equal to (0an-4...a2a1a0) in phase 1 and equal to  
(an-2an-4an-5...a2a1a0) from phase 2. TABLE I lists the write-enable 
and write-address for R1/R3, where the bit an-1-p will be selected 
from the n-1 bits, (an-2an-3...a2a1a0), to generate the write-enable 
signals and the remaining n-2 bits will be used to generate the write-
address, WA_a, in phase p, where p is from 1 to n-1. The writing 
operations of R2/R4 are performed at N/8 clock cycles later than 
those of R1/R3. Hence, the writing signals for R2/R4 are generated 
by the other m-bit signal, (bm-1bm-2...b2b1b0), which is N/8 clock cy-
cles later than (am-1am-2...a2a1a0). In TABLE I, if we replace the 
signal ‘a’ by ‘b’, we can obtain the write signals of R2/R4. TABLE 
II lists the selection signals for the five multiplexers and the read-

address for ROM for Fig. 4. In TABLE I and II, the phase numbers 
and the signals listed in each column are determined by the same m-
bit signal. The write- and read- addresses for BUF are respectively 
equal to (an-4an-5...a2a1a0) and (bn-4bn-5...b2b1b0) during the FFT com-
putation. 

4.2 Chip Design 

A prototype chip for the case of N=1024 is being developed by 
using the proposed buffer-memory architecture in Fig. 4, where the 
word lengths of the real and imaginary parts are 16 bits. The chip 
contains four RAM's of 256×32 bits each, one buffer of 128×32 
bits, one ROM of 512×32 bits, one 16-bit×16-bit complex multi-
plier, two 16-bit complex adders, and some logic circuitry for gen-
erating the control signals. This design has been verified by the 
Verilog code and synthesized by the Synopsys Design Vision based 
on the standard cell library of UMC 0.18 μm CMOS technology. 
The chip contains about 400K transistors with a critical path of 
4.73ns. Its clock rate can reach 211 MHz with the corresponding 
throughput rate of 38.3M transform samples per second. It meets 
the speed requirement of a VDSL transceiver [1]. 

5. CONCLUSIONS 
In this paper, a new design methodology has been presented to 
effectively reduce the memory size of buffer-memory architectures 
for the radix-2 DIF FFT algorithm. Based on the proposed method-
ology, a family of buffer-memory architectures for FFT computa-
tion can be derived. As compared to previous related designs, these 
derived architectures can reach the same throughput performance 
and BU utilization efficiency with less memory. Finally, a design 
example has been given to verify the design methodology. Based 
on 0.18 μm CMOS technology, the design for the 1024-point FFT 
algorithm consists of about 400K transistors with a throughput of 
38.3M transform samples per second. It is very suitable for single-
chip design of long-length FFT applications.  
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Figure 1. The SFG for the buffer-memory design of N=8 with two memory 

banks in the main memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The SFG for the buffer-memory design of N=8 with four 

memory banks in the main memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3. The SFG with the in-placement strategy for the first stage and 
the half memory swapping strategy for the second stage. 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 

 

 

 

 

 

Figure 4. The proposed buffer-memory design with a buffer of N/8 words. 

 

 

TABLE I. WRITE SIGNALS OF R1 AND R3 (−: MEANS “NEGLECTED”) 

Write Address Write Enable Phase 

# WA_a R1 R3 

0 4 5 1 00 ...n na a a a− −
 

2 3n na a− −+  
2 3n na a− −+  

1 3 4 5 1 0...n n na a a a a− − −
 

2na −
 

2na −
 

2 
2 4 5 1 0...n n na a a a a− − −

 
3na −
 

3na −
 

3 
2 3 5 1 0...n n na a a a a− − −

 
4na −

 
4na −
 

M  M  M  M  
n-2 

2 4 5 3 0...n n n na a a a a− − − −
 

1a  
1a  

n-1 
2 4 5 1 3...n n n na a a a a− − − −

 
0a  

0a  
n 

3 4 5 1 0...n n na a a a a− − −
 1 0 

n+1 － 1 1 

 
 

TABLE II. CONTROL SIGNALS OF THE FIVE MULTIPLEXERS AND ROM  

 
 

Phase 
# 

C1 C2 C3 C4 C5 Read Address 
of ROM 

0 10  10  － － － － 
1 

30 na −
 

30 nb −
 

2 3n na a− −
 10  － 2 3 4 2 1 0...n n nb b b b b b− − −

 

2 00  00  
30 na −
 

30 na −
 － 

3 4 5 1 0... 0n n nb b b b b− − −
 

3 
30 na −
 

30 nb −
 

30 na −
 

30 na −
 － 4 5 6 0... 00n n nb b b b− − −

 

M  M  M  M  M  M  M  
n-1 

30 na −
 

30 nb −
 

30 na −
 

30 na −
 － 

0 00...000b  

n 01  01  
30 na −
 

30 na −
 0  000...000  

n+1 － － － 
30 na −
 1 － 
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