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ABSTRACT 
In this paper, we present a dynamic programming approach to 
voice transformation (VT). The goal of VT is to modify the speech 
of a source speaker such that it is perceived as if spoken by a target 
speaker. The speech model used in this work is based on MELP 
(Mixed Excitation Linear Prediction) speech coding algorithm. The 
designed system obtains speaker-specific codebooks of line spec-
tral frequencies (LSFs) out of MELP's multi-stage vector quantiza-
tion LSF codebook for both source and target speakers. Those 
codebooks are used to train a mapping histogram, which is used for 
LSF transformation from one speaker to the other. The baseline 
system uses the maxima of the histograms for LSF transformations. 
The shortcomings of this system, which are the limitation of the 
target LSF space and the spectral discontinuities due to independ-
ent mapping of subsequent frames, have been overcome by apply-
ing the dynamic programming approach. Dynamic programming 
approach tries to model the long-term behaviour of the LSFs of the 
target speaker, while it is trying to preserve the relationship be-
tween the subsequent frames of the source LSFs, during transfor-
mation. Both objective and subjective evaluations have been con-
ducted and it has been shown that dynamic programming approach 
improves the performance of the system in terms of both the 
speech quality and speaker similarity.  

 

1. INTRODUCTION 
In this paper, we propose a dynamic programming approach for 
voice transformation (VT). The aim of VT is to modify a source 
speaker’s speech such that it is perceived as if spoken by a target 
speaker. The proposed dynamic programming approach tries to 
preserve the long-term behaviour of the line spectral frequencies 
(LSFs) of the target speaker, while it is considering the distance 
between the LSFs from subsequent frames of the source speaker 
during transformation. MELP (mixed excitation linear prediction) 
speech coding algorithm has been used as an analysis and synthesis 
framework [1, 2]. Using MELP’s multi-stage vector quantization 
(MSVQ) codebook, we have obtained speaker-specific LSF code-
books for source and target speakers. In addition to our previous 
work on VT in [3], MELP’s MSVQ LSF codebook has been re-
duced to speaker-specific codebooks and the dynamic programming 
approach has been introduced. Section 2 presents the method for 
obtaining the speaker-specific codebooks. Section 3 explains the 
dynamic programming approach and finally Section 4 presents the 
objective and subjective evaluation results on the proposed VT sys-
tem. 

2. OBTAINING THE NEW CODEBOOKS 
We have considered modifying the spectral characteristics of the 
source speaker for VT. In MELP, a 10th order linear prediction 

analysis is performed on the input speech signal using a 200-sample 
(25 ms) Hamming window centered on the last sample in the current 
frame. A MELP frame interval is 22.5 ms in duration and 180 voice 
samples (for 8 kHz sampling rate). MELP uses 4-stage vector quan-
tized LSFs to code the Linear Prediction Coefficients (LPCs). The 
quantized LSFs for each frame is obtained by summing the frequen-
cies selected from each stage of the LSF codebook. The first stage 
consists of 128 LSF vectors, while other 3 stages have 64 frequency 
vectors each. The first stage LSF vectors form the general shape of 
the LPC spectrum, while the frequency vectors in the other stages 
are added to the first to get a more detailed spectral shape.  

 
2.1 Speech Corpus for VT 
 
For training, speech collected from two male speakers of Turkish, 
has been used. 235 sentences from a triphone-balanced sentence set 
[4] uttered by both speakers have been recorded. Phoneme level 
alignments have been provided using the Sonic Turkish Aligner [3].  
The phoneme-level alignments have been used to time-align the 
MELP-frames of the two speakers. Dynamic time-warping (DTW) 
has been used to equate the number of the source frames and that of 
the target frames. DTW achieves this procedure by selectively delet-
ing or repeating frames from the target speaker feature stream to 
match the number of source frames within phonetically equivalent 
regions defined by phoneme-level alignments. Note that phoneme-
level alignments have been used only for DTW procedure here. The 
training and transformation parts of the proposed VT system are 
context-free. The number of time-aligned frame pairs of the source 
and target speakers is approximately 30,000.  
 
Cross occurrence histograms of all stages of MSVQ indices from 
the VT corpus have been obtained. Figure 1 illustrates the histogram 
matrix mapping the first stage indices of the two speakers. x-axis 
shows the 128 first stage indices of Speaker-1 while y-axis shows 
those of Speaker-2. z-axis shows the occurrence numbers in the 
30,000-frame VT corpus. 

 
 

2.2 Observations 
 
MSVQ indices of the LSFs for every time-aligned MELP-frame of 
both the source and the target speakers are extracted for analysis. 
Assuming each stage i of MSVQ is a random variable, Xi and Yi for 
Speaker-1 and Speaker-2 respectively, mutual information analysis 
has been done to investigate the amount of information one 
speaker’s LSF indices give about those of the other. Let us define 
the empirical probabilities of the LSF indices of Speaker-1 and 
Speaker-2 as pi(x) and pi(y) respectively, where the subscript i corre-
sponds to the stage numbers of MSVQ. Joint distribution pi(x,y) is 
obtained from the mapping histogram of the corresponding stage 



(mapping histogram of the first stage is observed in Figure 1) by 
normalizing it with the total frame number.   
 
 

 
 

Figure 1. Histogram matrix mapping the first stage indi-
ces of MELP’s multi-stage LSF quantization of the Speaket-1 
and Speaker-2. 

 
 

 
Mutual information, I(Xi,Yi), is computed as: 
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I(X1,Y1) has been found to be 1.7 bits, while I(X2,Y2) is 0.21. This 
shows that mapping the MSVQ stages of one speaker to those of the 
other independently, will not result in a successful transformation, 
because second MSVQ stage of one speaker does not give enough 
information about the second stage of the other speaker. When all 
combinations of the first two stages are considered together (i.e. 
128x64=8192 LSF indices), the mutual information between the 
combined stages of the two speakers is obtained as 2.23 bits. This 
shows that mapping the two stages dependently results in a more 
successful VT in terms of LSF mapping. However, considering all 
four stages together is not feasible in terms of our corpus size. All 
four LSF stages of MELP yield approximately 33 million possibili-
ties, while we have 30,000 frames in our VT corpus.  
 
Another observation is that some LSF indices are not used by some 
speakers. This can be observed in Figure 1. Some columns and rows 
are completely empty. The unused codewords cause inefficiency of 
codebook usage while mapping the LSF space of one speaker to the 
other. Therefore, we have considered obtaining speaker-specific 
LSF codewords out of MELP’s LSF codewords.  
 
2.3 Speaker-Specific LSF  Codeword Selection 

 
Considering the observations presented in the previous section, we 
have decided to obtain speaker-specific codebooks with reduced 
number of codewords out of MELP’s 4 stage LSF quantizer. The 
method used can be summarized in the following steps: 

• The first two stages provide 8192 different LSF vectors. 1600 
of them, specific to the speaker, are enough to cover 80% of 
the LPC spectrum space of each speaker. The most frequently 
used 1600 two-stage combinations for each speaker are ob-
tained. 

• New 3rd and 4th stage indices for the whole corpus are deter-
mined once more, forcing MELP to use the selected 1600 1st 
and 2nd stage combinations. 

• Considering the 3rd stage with those 1600 two-stage indices 
makes 1600x64=102400 LSF combinations. 102400 LSF vec-
tors have been reduced to L, by choosing the most frequently 
used L combinations for each speaker. The rest (102400-L 
combinations) are mapped to one of those L LSF vectors. 4th 
stages are neglected in this quantization, since 4th stage fre-
quencies of LSF has the least effect on the final shape of the 
LPC spectrum. During transformation, the 4th stage frequencies 
of the source speaker are added to the transformed 3-stage LSF 
vector (which is one of the L codewords of the target speaker) 
directly.  

 
Once the L codewords are obtained for both speakers, the VT cor-
pus is quantized once more using the new codewords for each 
speaker. The LxL histogram matrix mapping the new LSF indices of 
the two speakers has been obtained.  
 

 
2.4 Transformation and the Baseline System 
 
In the baseline system, during the analysis phase, analysis every 
frame of the source speaker is quantized to one of L codewords of 
the source. During LSF transformation, every codeword of source 
speaker is mapped to the target codeword which has the highest 
occurrence rate in the histogram matrix corresponding to the source 
codeword. There are two shortcomings of this method:  First one is 
the limitation of the LSF space of the target speaker to L codewords. 
The second one is the possibility of LSF discontinuities appearing at 
the frame boundaries due to mapping the subsequent frames inde-
pendent of each other. Dynamic programming has been integrated 
to the baseline system to avoid these shortcomings.  
 
Synthesis is achieved by replacing the source LSF codewords with 
the transformed LSFs at every frame during synthesis. After the 
spectral modification, pitch modification is applied in the residual 
signal to match the pitch range of the target speaker. Pitch modifica-
tion is achieved in the MELP synthesis framework. Using the 
maximum and the minimum values of the two speakers in the 230-
sentence corpus, a linear relationship between their pitch periods 
have been obtained. This relation has been used to modify the pitch 
value obtained by MELP analysis at every frame during synthesis.   
 

3. DYNAMIC PROGRAMMING APPROACH 
Dynamic programming helps to use the histogram matrix, H, ob-
tained during training, more efficiently during transformation. 
Moreover, it lets the transformed LSF values follow the LSF conti-
nuities or discontinuities between the subsequent frames of the 
source speaker, which increases the synthetic speech quality.  
 
Codewords of the source and target speakers are shown by 

],,,[ 21 Lxxxx Λ=  and  ],,,[ 21 Lyyyy Λ=  respectively. 
The first step is to quantize the source speaker’s frames along a 
sentence to obtain the x[n] vector, whose elements are the indices of 
the codewords in x . n shows the  frame number in the sentence. 



Then the sentence histogram matrix, Hsen, is obtained as shown in 
Equation 2: 
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where M shows the total number of frames in the sentence. Dy-
namic programming finds the highest probability path from n=1 to 
n=M, on the above matrix under the constraint, which is the LSF 
distance between the subsequent frames of the source speaker. The 
parameters used in determining the best path are the transition prob-
abilities of the target speaker from one codeword to the other, T(i,j), 
and the normalized sentence histogram matrix Hsen.  
 
The probability of transition from target codeword yi to yj is shown 
by T(i,j) and this matrix is obtained from the corpus of the target 
speaker during training. Probabilities are the empirical probabilities 
obtained from the occurrence rates of subsequent target LSF code-
words. The columns of Hsen matrix is normalized to add up to unity, 
so that the columns show the LSF probabilities of the target LSF 
codewords corresponding to the source LSF x[n]. This normalized 
matrix is called P.  
 
The method is illustrated with an example in Figure 2. To determine 
the best path towards the node, for example, P(L,2), first all the 
allowable paths towards P(L,2) are determined.  
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Figure 2. Dynamic programming example for LSF 

transformation. 
 
 
Allowable paths are the paths which satisfy the constraint given 
below in (3).  
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where D is the allowable amount of distance. SD(x, y) is the spectral 
distance between the LSF vectors x and y, which is computed by 
using the spectral distance measure defined in MELP algorithm [1]. 
It is given in detail in Section 4 in Equation (7).  This constraint lets 
the target LSFs follow a smooth path from one frame to another, 
when the source LSFs are changing smoothly from frame to frame. 
At the same time, it forces the target LSFs to follow the discontinui-

ties between the subsequent frames of the source speaker (for exam-
ple, between frames of plosive phonemes). Once the allowable paths 
are determined, the path probability from yj to P(L,2), which is de-
fined as Ppath(L,2), is obtained as: 
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assuming yj is among the allowable paths. Ppath(j,k) is the probability 
of being at point j at frame k. Path towards P(L,2) is selected among 
yj’s which give the highest Ppath value.  
 
The final column of the Ppath matrix obtained at the end of the sen-
tence has the accumulated probabilities along the sentence. The 
highest probability row at the final column of Ppath is selected and 
the path from n=1 to n=M towards that point gives the sequence of 
transformed LSF codewords.  
 
During transformation, the 4th stage frequencies of the source 
speaker are added to the 3-stage LSF vector (which is one of the L 
codewords of the target speaker) directly after transformation. This 
corresponds to moving the transformed LSF in the same direction 
with the 4th stage of the source speaker. The method can be illus-
trated in the two dimensional LSF space as seen in Figure 3.  Block 
diagram of the whole transformation system is given in Figure 4. 
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Figure 3. Illustration of the transformation in the two 
dimensional LSF space. 
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Figure 4. Block diagram of the VT system. 
 

4. EVALUATION RESULTS AND CONCLUSIONS 
The VT performance measure used to evaluate our VT system is 
based on the comparison of the spectral distance between the source 
and the target speakers, SD(s,t) with the spectral distance between 
the converted speech and the target speaker, SD(c,t). Evaluations 
have been done on a test set of five sentences, which are not in the 



training set of 230 sentences. The performance index used is given 
as: 
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where E(x,y) is the average spectral distance between LSF vectors 
of x and y, over all M frames. Spectral distance between 10th order 

LSFs  and  is computed as: f f̂
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This is the same perceptual distance used by MELP for quantizing 
LSFs [1]. P(fi) is the inverse prediction filter power spectrum evalu-
ated at frequency fi.  
 
The performance index PLSF is 1 in case of perfect transformation, 
and approaches towards zero as the performance of the system de-
grades. A performance index smaller than zero shows an unsuccess-
ful transformation.  
 
We have two parameters in our VT system: Number of codewords 
in the codebook, L, and the allowable distance, D. L has been varied 
L=256, 128, 96, and 64. D has been varied D=0.14, 0.16, 0.128. 0.2, 
0.4, 0.6, and ∞. D=∞ means using no constraints in the dynamic 
programming and it approximates the performance of the baseline 
system. The maximum value for D is obtained as 2.3 dB, which is 
the maximum distance between any two LSFs of the source speaker, 
and values D>0.6 result in the same performance indices, which is 
very close to the performance of the baseline system.  
 
Figure 5 illustrates the performance indices obtained for L=256, 
128, and 96 for VT from Speaker-1 to Speaker-2. L=64 results in 
performance indices smaller than zero. The reason is though to be 
the method used to obtain speaker-specific LSF codebooks from out 
of MELP’s MSVQ LSF codebook. Since the reduction method is 
based on selecting the most frequently used LSF indices, when L is 
too small, selected codewords may be very close to each other, 
which may cause inefficient quantization of the LSF spaces of the 
speakers. The results with L=256 are worse than those with L=128. 
This is because more data is needed to approximate the correct oc-
currence probabilities as the number of codewords is increased. So 
there is a trade-off between selecting high and low number of code-
words. Direct quantization on speech instead of using MELP’s LSF 
codebook is considered as future work to improve the VT system 
performance. It is also observed in Figure 5 that dynamic program-
ming improves the system performance.  
 
Subjective listening tests have also been conducted using the same 
test sentence set. An ABX test has been done, where A and B are 
the source speakers’ utterances, and X is the transformed speech. 20 

subjects have taken the test. Subjects are allowed to listen to one 
original sentence from each of the two speakers as many times as 
they like until they get used to the speakers and they are also al-
lowed to listen to them during the test. The original sentences are 
different than the transformed ones to prevent the long-term behav-
iour of the intonation of the speakers from effecting the decisions of 
the subjects. Then they listen to nine transformed sentences, and 
decide which speaker each one is. 3 groups of 3 sentences each with 
L= 256, 128 and 96 have been transformed either from Speaker-1 to 
Speaker-2 or vice versa. D values that result in the highest objective 
performance indices for each L have been used. It has been observed 
that out of 180 converted sentences tested, 174 have been perceived 
as the target speaker. 4 of the incorrect decisions were with L=128 
and 2 of them were with L=96. We can conclude that the best per-
ception has been obtained with L=128, which is also the case for 
objective evaluation results.  

 
Figure 5. Performance indices of voice transformation 

from Speaker-1 to Speaker-2.  
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