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ABSTRACT

Score Function Difference (SFD) is a recently proposed “gra-
dient” for mutual information which can be used in Blind
Source Separation algorithms based on minimization of mu-
tual information. To be applied to practical problems, SFD
must be estimated from the data samples. In this paper, a
new method for estimating SFD is proposed. To compare the
performance of this new estimator with other proposed SFD
estimation methods, we have applied them in separating lin-
ear instantaneous mixtures. It will be seen that our method
performs superior to all other methods previously proposed
for estimation of SFD.

1. INTRODUCTION

Blind Source Separation (BSS) [1, 2] consists in retriev-
ing unobserved independent mixed signals from mixtures of
them, assuming there is information neither about the orig-
inal sources, nor about the mixing system. Since the only
information about source signals is their statistical indepen-
dence, a general approach for BSS is to design the separating
system which transforms again the observations to statisti-
cally independent outputs. This approach is called Indepen-
dent Component Analysis (ICA), and for linear mixtures, it
is shown to result in retrieving the sources up to some trivial
indeterminacies [3].

ICA can be obtained by optimizing a “contrast function”
i.e. a scalar measure of the independence of the outputs [4, 3].
One of the widely used contrast functions is mutual informa-
tion, which has been shown [4] to provide an asymptotically
Maximum-Likelihood (ML) estimation of source signals in
linear instantaneous mixtures. Recently, a non-parametric
“gradient” for mutual information, called Score Function
Difference (SFD), has been proposed [5]. SFD has been used
successfully in separating different mixing models [6]. To be
applied to practical problems, the algorithms based on SFD
need its data derived estimation.

In this paper, a new method for estimating SFD is pro-
posed and it will be applied to blind source separation of lin-
ear instantaneous mixtures. This new method is shown to
perform superior to all previously proposed SFD estimation
methods.

The paper is organized as follows. Section 2 reviews the
essential materials to express the “gradient” of mutual infor-
mation. The new method for estimating SFD is developed
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in Section 3. Section 4 presents some experimental results.
Finally, conclusions are made in Section 5.

2. PRELIMINARY ISSUES

2.1 Mutual information

For designing a system which generates independent outputs,
we need a criterion for measuring their independence. Re-
call that random variables y1� � � � �yN are independent if and
only if p���� � ∏N

i�1 pyi
�yi�, where p stands for the Proba-

bility Density Function (PDF) . A convenient independence
measure is mutual information [7] of yi’s, denoted by I���,
which is the Kullback-Leibler divergence between p���� and
∏N

i�1 pyi
�yi�:

I��� � D�p���� �
N

∏
i�1

pyi
�yi��

�

�
�

p���� ln
p����

∏N
i�1 pyi

�yi�
d�

(1)

It is well-known that this quantity is always non-negative,
and vanishes if and only if the yi’s are independent. Conse-
quently, the parameters of the separating system can be cal-
culated based on minimization of the mutual information of
the outputs.

To do this minimization, knowing an expression for the
“gradient” of the mutual information is helpful. Such an ex-
pression, which has been already proposed [5], requires mul-
tivariate score functions.

2.2 “Gradient” of mutual information

The variations of mutual information resulted from a small
deviation in its argument (the “differential” of mutual infor-
mation), is given by the following theorem [5]:

Theorem 1 Let Δ be a ‘small’ random vector, with the same
dimension as the random vector �. Then:

I���Δ�� I��� � E
�

ΔT β����
�
�o�Δ� (2)

where o�Δ� denotes higher order terms in Δ.

In this Theorem, the function β ����, called Score Function
Difference (SFD) [8], is defined as follows.



Definition 1 (SFD) The score function difference (SFD) of a
random vector � is the difference between its marginal score
function ψ���� (MSF) and joint score function ϕ ���� (JSF):

β���� � ψ�����ϕ���� (3)

where the marginal score function is defined by

ψ���� �
�
ψ1�y1�� � � � �ψN�yN�

�T
(4)

with

ψi�yi� ��
d
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ln pyi

�yi� ��
p�yi
�yi�

pyi
�yi�

� (5)

and the joint score function is defined by

ϕ���� �
�
ϕ1���� � � � �ϕN���

�T
(6)
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∂

∂yi
ln p���� ��

∂
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SFD plays an important role for minimizing the mutual
information. In fact, for any multivariate differentiable func-
tion f ���, we have:

f ���Δ�� f ��� � ΔT ∇ f ����o�Δ� (8)

Then, a comparison between (2) and (8) shows that the so-
called SFD can be called the stochastic gradient of the mu-
tual information.

2.3 Relation between SFD and conditional densities

One of the many properties of SFD, which has been proved
in [9], is that it can be stated in terms of conditional densities
as follows:

Property 1 For a random vector �� �y1� � � � �yN�
T we have:

β i��� �
∂

∂yi

�
ln p�y1� � � � �yi�1�yi�1� � � � �yN �yi�

�
�

∂
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(9)

where β i��� denotes the i-th component of the SFD of y.

As we will see in the next Section, this property, though very
simple, proves to do a good job in estimating SFD.

3. PROPOSED SFD ESTIMATION METHOD

Our main idea for estimating SFD is to use Property 1. Con-
trary to the definition of SFD (definition 1), which gives
SFD indirectly from the functions MSF and JSF, this prop-
erty gives a representation for SFD which makes it possible
to estimate SFD directly (not from estimations of MSF and
JSF, as it is done in all previously proposed methods for es-
timating SFD). Actually, if we first independently estimate
MSF and JSF, there will be estimation errors in both estima-
tions, which results in poorer estimation of SFD [9], but these
“double” errors do not exist in dependent estimations (MSF
can be estimated by integration of the JSF estimate) [9, 10]
or in the direct estimation we propose based on Property 1.

3.1 Estimating conditional densities and their deriva-
tives

It is seen from (9) that if we estimate conditional densities
of the form p���x�, where � is a random vector and x is a
random variable, and their derivative with respect to the con-
ditioning variable (x), then we will be able to make an esti-
mation of SFD. In statistics literature, there are various meth-
ods for estimating conditional densities. However, we need
not only the estimation of conditional densities, but also the
estimation of their derivatives. Among the existing methods
for conditional density estimation, the method proposed in
[11] can be easily adjusted to be applied to our problem. The
resulting method is as follows.

Let � be a d-dimensional random vector, x be a random
variable and p���x� be the conditional density of � given x,
which is assumed smooth in both x and �. Furthermore, let
p�i����x� denote the i-th derivative of p���x� with respect to
x. The goal is to estimate functions p���x� and p�1����x�
based on a sequence of observations

�
�1�x1

�
� � � � ���n�xn�.

As it is mentioned in [11], estimating the conditional den-
sity (and its derivatives) can be regarded as a non-parametric
regression problem. To make this connection, note that:

E
�

δ ����0��x � x0

�
�

�
�

δ ����0� p���x0�d�� p��0�x0�

(10)
where δ ��� is the Dirac delta function. From this equation it
can be deduced that:

E
�

Kb����0��x � x0

�
� p��0�x0� as b� 0 (11)

where K is a ‘kernel’ function, that is, the density of a d-
dimensional random vector with zero mean and unit vari-
ance, and Kb��� � b�d �K��b � (b is usually called the ‘band-
width’). Now, by using the r-th order Taylor’s expansion
about x0, we have:

E
�
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�
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r
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(12)

This suggests the following least squares problem. Let θ̂ �
�θ̂0� θ̂1� � � � � θ̂r� minimize:

R�θ ;x0��0��
n

∑
i�1

�
Kb��i��0��

r

∑
j�0

θ j�xi� x0�
j

�2

�Wh�xi�x0�

(13)
Where W is a symmetric scalar density function and Wh�x� �
h�1

�W � x
h�. Then recalling equation (12) we can estimate

p��0�x0�� θ̂0 and p�1���0�x0�� θ̂1.

3.2 Estimating SFD

Now, having an estimation for conditional density and its
derivative (with respect to the conditioning variable), we re-
turn to the main problem of estimating SFD.

Let � � �y1� � � � �yN�
T be a random vector and define the

notation ��i� � �y1� � � � �yi�1�yi�1� � � � �yN�
T , for i � 1� � � � �N.

Furthermore, assume that we have at hand n samples of �,
namely ��1�� � � � ���n�. Thus, for each 1 � i � n we have n



samples of ��i� (that is, ��i��1�� � � � ���i��n�) and n samples
of yi (that is, yi�1�� � � � �yi�n�). Now to estimate the value of
β i��� (1� i � n), we note that from Property 1 we have:

β i��� �

∂
∂yi

p���i��yi�

p���i��yi�
(14)

Now, using n sample pairs ���i��1��yi�1��,� � � ,��
�i��n��yi�n��

we can estimate each of the numerator and the denominator
of the fraction in equation (14) by the explained method. This
results in estimation of SFD.

4. EXPERIMENTAL RESULTS

As an experiment, two independent sources with uniform
distributions and with zero means and unit variances were
mixed by:

��

	
1 0�7

0�5 1



(15)

For separating the sources we used the SFD-based algorithm
proposed in [6]. This algorithm is briefly as follows:
� Initialization: �� ��

� Loop:
1. � ����

2. Estimate β����.
3. ∇�I � �E �β�����T

�
4. �	 ���μ∇�I���

5. Normalization: Divide the i-th row of the matrix B
by σi, where σ 2

i is the energy of yi.
� Repeat until convergence.

In the above algorithm,� is the separating matrix, � denotes
the identity matrix, � stands for the observation vector, �
denotes the output vector, and I is the mutual information of
the outputs.

Three methods for estimating SFD, a kernel based esti-
mator, a histogram based estimator, and a polynomial esti-
mator, are proposed in [6] and another method for this esti-
mation is proposed by D.-T. Pham in [12]. We implemented
the above algorithm with these four SFD estimation methods
and with the estimation method proposed in this paper. For
all of these implementations μ � 0�1 was chosen. Besides,
we took r � 2 and b � h � 0�3, with Gaussian densities as
kernel function ( K��� ) and weight function ( W ��� ), for the
proposed method. Figures 1 through 5 show the averaged
Signal To Noise Ratios (SNR’s), taken over 100 experiments,
versus iteration for these methods. SNR is defined as:

SNR �
SNR1 �SNR2

2
(16)

where (assuming no permutation):

SNRi(in dB) � 10log10

E
�

s2
i

�
E
�
�yi� si�

2
� � i � 1�2 (17)

Furthermore, Table 1 shows, for each estimation method,
the average and the variance of the SNR’s (after conver-
gence), taken over 100 runs of the algorithm. As it is seen
in this table, our method has better separation performance
than all other methods previously developed for SFD estima-
tion. Moreover, as it can be seen from Figures 1 to 5, the

separation algorithm when using our method converges in
much fewer iterations than when other methods are applied.

However, our method is computationally more demand-
ing. To have an idea about the computational load of
these methods, we have listed in Table 2 the average time
needed for convergence of each method in our implemen-
tation (which was done using MATLAB6.1 on a 802MHz
Pentium III machine with 256MB RAM and Windows XP
platform). Although, the comparison based on this table is
not very accurate, it roughly shows that the proposed method
has more computational load than other methods.
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Figure 1: Kernel method.
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Figure 2: Histogram method.
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Figure 3: Pham’s method.
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Figure 4: Polynomial method.
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Figure 5: Our method.

5. CONCLUSION

In this paper a new method for estimating Score Function
Difference (SFD) has been proposed. The method is based
on a direct representation of SFD in terms of conditional den-
sities and an adjusted conditional density estimation method.
The proposed estimation method has been applied to blind
separation of linear instantaneous mixtures. It has been
shown that the proposed method performs superior to all pre-
viously developed SFD estimation methods. Furthermore, it
has been shown that our algorithm needs much fewer itera-
tions for convergence than all other methods.

However, this better performance has been obtained at
the expense of a higher computational load. Moreover, the
proposed method has two bandwidth parameters (b and h)
which should be suitably selected. We selected these param-
eters in our simulations, mainly by means of trial and error,
but we observed that the proposed method is not very de-
pendent on the values of these parameters. Finding a more
sophisticated selection of these parameters is currently under
study.
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