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ABSTRACT

Of all the physiological traits of the human body that help in per-
sonal identification, the iris is probably the most robust and accu-
rate. A number of iris recognition algorithms have been proposed in
the literature over the past few years; however, not all of them have
been tested on large databases. The largest known iris database
has about 350,000 images in it but is proprietary. In this paper, a
synthetic iris generation method based on Markov Random Field
(MRF) modeling is proposed. The synthesis procedure is determin-
istic and avoids the sampling of a probability distribution and is,
therefore, computationally simple. Furthermore, it is shown that
iris textures in general are significantly different from other non-
stochastic textural patterns. Clustering experiments indicate that the
synthetic irises generated using the proposed technique are similar
in content to real iris images.

1. INTRODUCTION

The iris is probably the only internal organ of the body that is readily
visible from the outside. Its purpose is to control the amount of
light that enters the eye through the pupil by using the dilator and
sphincter muscles that govern the pupil size. The elastic fibrous
tissue gives the iris a very complicated texture pattern. There is little
evidence that the structure of the iris changes over a person’s life.
Daugman [1] has shown that an iris pattern has about 250 degrees
of freedom, i.e., the probability of two eyes having the same iris
texture is about 1 in 7 billion. Even the 2 irises of an individual are
different thereby suggesting that iris textures are independent of the
genetic constitution of an individual. These observations have made
iris a very popular biometric.

Numerous algorithms have been proposed for using iris as a
biometric. Daugman [1] describes a system that uses Gabor trans-
forms to extract the textural content of an iris image. Wildes [2]
employs the Laplacian of a Gaussian (LOG) filter to extract fea-
tures from the iris image. Noh et al. [3] make use of multiresolution
Independent Component Analysis (ICA) to generate discriminating
features. Though most iris recognition algorithms claim a very low
false accept rate (FAR), only Daugman’s algorithm has been tested
on a large database (~ 350,000 iris images). The Chinese Academy
of Sciences Institute of Automation (CASIA) has made available a
public database which is modest in size comprising of 756 images
pertaining to 108 users [4]. With the introduction of new iris recog-
nition algorithms (e.g.,[2], [5], [6], [7]), there is a pronounced need
for a large public database to test and compare multiple techniques.
One way to address this need is to devise synthetic iris generation
schemes to construct large databases which can then be used by
algorithm developers to test their techniques on. The use of syn-
thetic databases in biometrics is not new and has been previously
studied in the context of fingerprints and face biometrics. Orlans
et al. [8] have outlined the advantages of studying synthetic bio-
metric capabilities which include (i) the development of parametric
models that permit the testing of a biometric system under various
conditions; (ii) the mitigation of privacy concerns typically associ-
ated with real-world data; (iii) the efficiency (with respect to cost
and time) in assembling a large database representing a variety of
intra-class variations; and (iv) the design of statistical procedures to
predict performance in large-scale systems. Also, an analysis-by-
synthesis approach helps researchers gain insight into the individu-

ality of biometric patterns.

In the fingerprint literature, a technique for generating syn-
thetic fingerprints was proposed by Cappelli et al [9]. The result-
ing software known as SFINGE has been used to generate artificial
databases that have been incorporated in multiple editions of the
Fingerprint Verification Contest (FVC2000, FVC2002, FVC2004
[10]). The authors observe that the performance of competing algo-
rithms on these synthetic databases, is comparable with their perfor-
mance on real datasets, thereby suggesting the ability of SFINGE to
realistically model intra-class and inter-class dynamics. Similarly,
the FaceGen software [11] along with 3D Studio Max and Viisage
FaceTools has been used by Orlans et al. [12] to devise test proto-
cols for face recognition.

There are, however, very few literature precedents discussing
synthetic generation of iris images. Wang et al. [13] recently used
the Principal Component Analysis(PCA) method to generate syn-
thetic irises. The eigen-coefficients obtained from a training set
of real iris images are modified in a controlled manner; the eigen-
basis is then used to generate synthetic images using these new co-
efficients. Proper modification of these coefficients results in new
classes of iris texture. Lefohn et al. [14] create renditions of the hu-
man iris by stacking several transparent layers with each layer de-
scribing a certain iris component (such as stroma, collarette, sphinc-
ter, etc.).

In this paper we propose a technique for generating synthetic
iris images using Markov Random Field (MRF) models. The syn-
thesis procedure uses single or multiple primitives to generate iris-
like patterns. The validity of the generated images are confirmed
via two experiments: (a) by a clustering process to distinguish iris
images (real and synthetic) from non-iris textural patterns, and (b)
by examining the genuine and impostor match score distributions
of the synthetic images.

2. SYNTHESIS USING MARKOV RANDOM FIELDS

The iris exhibits a very rich texture consisting of “pectinate liga-
ments adhering into a tangled mesh revealing striations, ciliary pro-
cesses, crypts, rings, furrows, a corona, sometimes freckles, vascu-
lature, and other features” [15]. It is the randomness (and apparent
stability) of the inherent textural structure that renders iris as a use-
ful biometric (Figure 1).

Figure 1: (a) An iris image exhibiting rich texture, and (b) the asso-
ciated unwrapped image.



The task of texture synthesis, in general, can be divided into
2 major processes: (a) texture modeling, that characterizes the
stochastic and structural properties of a sample, and (b) model sam-
pling, to generate novel texture patterns described by the model.
The model is usually a probability distribution that defines the spa-
tial relationship between groups of pixels. Model sampling, in such
a case, entails determining the pixel values for the new texture based
on this probability distribution. In this work, the textural intricacy
of the iris is captured via a Markov Random Field (MRF) model.
MRFs have been used to successfully model a wide variety of tex-
tures [16, 17]. MRF has also been used in biometrics for synthe-
sizing face-like images [18]. MRF models are used to describe the
probability distribution governing the intensity values of pixels in a
specific neighborhood also known as a clique.

The texture synthesis procedure described in this paper has been
inspired by the work of Wei et al [19]. The technique uses texture
primitives to guide the synthesis process. The pixels of a randomly
initialized image are iteratively updated until an iris-like structure
emerges. The proposed technique is deterministic in that it does not
sample a probability distribution but rather observes neighborhood
values in the primitive image to determine the value of the pixels
in the synthetic image. The algorithm therefore synthesizes a tex-
ture image, that is locally similar to the primitive image but globally
exhibits a different structure. While a single primitive is sufficient
for the generating algorithm, two or more primitives may also be
used. The use of multiple primitives may be necessary because (i)
a typical iris exhibits rich texture in the immediate vicinity of the
pupil which tapers away in intensity as one moves away from the
pupil; and (ii) the blending of multiple primitives increases the ran-
domness of the synthesized image. In the following subsections we
describe synthesis based on single as well as multiple primitives.

2.1 Synthesis Using a Single Primitive

Let the primitive sample be denoted as I, and let I; represent the
initial random noise image. For a pixel r in I, let Ny(r) represent
its neighborhood as shown in Figure 2. Similarly, let N, = {N,(r)}
be the set of all such neighborhoods in /,. In our formulation, Ny(r)
is compared with individual elements of N, using the Euclidean
distance metric. The purpose of this exercise is to determine that
neighborhood in 7, that closely resembles the current neighborhood
of r in I;. The pixel value I(r) is then updated based on this com-
parison as Is(r) = I,(¢*) where t* = argmin, ¢y, [Ny (r) — Np(¢)| and
|.| is the Ly norm. This process is repeated iteratively in a raster
scan fashion for all pixels in /; until the desired texture is generated.
Note that more sophisticated comparison techniques other than the
L, norm may be used to compare the neighborhood intensities of the
two images; however, experiments suggest that the L, norm suffices
for our purpose.
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Figure 2: The neighborhood structure, Ny(r), of pixel r.

2.1.1 Choice of Neighborhood

Since the neighborhood effectively decides the quality of the syn-
thesized texture, its size and shape play an important role. For any
regular repetitive texture pattern, the size should be at least equal
to the largest regular structure present in the primitive pattern. But
for the generation of iris images, which are non-homogenous, this
constraint can be relaxed. One has to ensure, however, that the input
texture block displays a good amount of ‘random texture’ elements.
To facilitate this, images from the CASIA database [4] have been
used to obtain primitive patterns in our experiments. Figure 3(a)
shows two 30 x 30 blocks on an arbitrarily chosen iris image; Fig-
ure 3(b) shows some of the sample textures that have been selected
from different images for the synthesis process. The neighborhoods
were chosen based on the visual appearance of the iris texture, and

their size varied anywhere between 9 x 9 pixels to 23 x 23 pixels
in our experiments. Note that any other primitive, demonstrating
iris-like properties, can be used.

(b)

Figure 3: (a) Selection of primitives from an actual iris image. The
iris structure has been unwrapped and presented as a rectangular
entity rather than a circular one. (b) Examples of sample primitives
used in our experiments.

The shape of the neighborhood is made ‘causal’, i.e. the neigh-
borhood will only include pixels that have already been generated
during the raster scan. This ensures that every output pixel is up-
dated based on previously generated pixels and not from random
noise. This causal property of the neighborhood accelerates the
convergence speed of the algorithm. Only the first few pixels of
the output image use white noise as their neighborhoods in the first
iteration, but subsequently, all pixels will use neighborhoods that
have already been visited in an earlier pass.

The boundary pixels will not contain the full specified neigh-
borhood. To circumvent this problem we assume the image to
be toroidal in nature. Hence the pixel (x,y) can be mapped to
(x mod R,y mod C), where R and C are the rows and columns of
the image, respectively. If the neighborhoods of boundary pixels are
not handled properly, the output image will appear tiled and have a
blocky appearance. The image synthesis algorithm is summarized
in Figure 4.
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Figure 4: Flowchart summarizing the texture synthesis procedure.



2.2 Synthesis Using Multiple Primitives

In section 2.1 we described the generation of a texture based on
a single primitive. This technique is useful for generating textures
with repetitive patterns (i.e., primitives). Iris texture is, however, not
repetitive in nature and exhibits significant randomness. To incor-
porate this randomness, we propose the use of more than one type
of primitive for the synthesis process. Blending multiple primitives
will result in a very unique and random structure.

The algorithm takes a set of source iris textures
{Ip dpy 5. Ip,} as primitives with weight image W; associ-
ated Wlth primitive Ip,. The weight image (whose size is the
same as the desired synthetic image) specifies the importance of
a primitive when determining the value of a pixel in the synthetic
texture /;. A real iris does not contain the same textured pattern all
over the image. Instead, it exhibits significant variations across the
image. For example, the region of the iris closer to the pupil, has
very closely packed radial structures (radial furrows), spreading
out from the edge of the pupil. Moving outward, the radial patterns
begin to merge with large blob like structures, referred to as crypts.
The outer region of the image (closer to the sclera) has limited
texture information and is known as the /imbus. The primitives are
selected based on these observations of a true iris image; hence,
three primitives are used, rather than just one, to incorporate the
true structure of an iris into the synthetic image.

Figure 5(a) shows 3 primitives - I, I,, I, - representing dif-
ferent regions of the iris. The weighting scheme (W, W,, W3) for
each of these primitives is shown in figure 5(b). Since the crypts
appear only intermittently in the iris image, we randomly select
locations in /; to incorporate those primitives and accordingly the
weight ¥, is generated. To incorporate randomness in the synthesis
procedure, we treat the weight values as probability measures when
updating pixel values in /;. Thus, to update pixel  in Iy we first
compare N (r) with all neighborhoods in the 3 primitives using the
Ly norm. For each primitive, 7, the best neighborhood, N, (¢;) is
reported. Then /;(r) is assigned the value I, (¢;) with a probability
W;(t;). This ensures that sufficient randomness is introduced in the
synthetic image.
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Figure 5: Three primitives representing the radial furrows, crypts
and limbus. (a) Primitives, (b) Corresponding weights.

3. RESULTS OF SYNTHESIS

To demonstrate the efficacy of the proposed algorithm we manu-
ally extract 3 primitives from each of the 108 users in the CASIA
database. A total of 324 separate blocks are thus extracted and,
hence, the maximum number of classes (i.e., users) that can be gen-
erated using this technique would be 1083, By combining more
than three texture primitives or by altering the weight images, this
number can be exponentially increased. The synthetic patterns are
generated as rectangular entities and are subsequently mapped onto
a circular structure to create iris-like images. Also, tree-structured
vector quantization (TSVQ) is used to accelerate the comparison of
a pixel neighborhood in the synthetic image with all neighborhoods
in the primitive patterns. Figures 6 and 7 show a few results of the
synthesis process.

3.1 Generating Multiple Samples Per User Class

In real world scenarios, multiple acquisitions of the same iris do not
result in the same image. Variations are caused due to rotation (cy-
clovergence or tilting of the head), elastic deformation (due to pupil
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Figure 6: Synthesis using (a) a single primitive and (b) multiple
primitives.

Figure 7: Synthesis results using 3 primitives.

dilation) and changes in camera position, focus or zoom factor. We
incorporate these factors in the synthesis process to generate multi-
ple images of the same class.

The synthetic image (rectangular) is cyclically rotated in or-
der to incorporate the rotation parameter. Translation is introduced
by shifting the circular iris along the x- and y-axis by a few pix-
els. To include distortion due to the camera motion, perspective
transformations are used [20]. If x,, and y, are the undistorted co-
ordinates and x; and y, are the co-ordinates after distortion, then
the lens distortion model can be written as x, = x4(1 + kr3) and

yu=ya(l+ krﬁ), where ry = xfl + yﬁ is the distorted radius. The

inverse distortion model is then given as r, = ry(1 + krfi) where

Ty = \/x2 + yu is the undistorted radius. Solving for x; and y,; we
get xg = Xy ‘f and y; = y,'?. This model represents a simple dis-
tortion of the lens. Multlple k values (0.02, 0.03, 0.04, 0.05) were
used in our experiments.

4. VALIDATING SYNTHETIC IRISES

Iris images have distinct texture properties when compared against
other natural textures. A simple form of clustering using the k-
means clustering method is sufficient to show that iris images are
significantly distinct from other irregular texture images. We stud-
ied the clustering property of real and synthetic iris images rela-
tive to other textural patterns present in the Brodatz library. Since
iris images are non-homogeneous and non-repetitive in nature, we
choose only the non-stochastic textures present in the Brodatz li-
brary.

Some of the well known features for texture classification and
analysis are the ones derived from the co-occurrence matrix of the
pattern [16]. The spatial gray level co-occurrence matrix, Cy, of
an image tries to capture the second order statistics of the image.
The entry (i, /) of C; denotes the number of pixel pairs separated
by a distance d=(dy,d,) and having gray levels i and j. We com-
pute various properties of the covariance matrix in order to under-
stand the texture structure of the underlying image: (a) Energy =

: jC3(i.j); (o) Entropy = — ;  ;Ca(i, j)log(Cy(i, j)); (c) Con-
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There are no well defined methods for selecting the displace-
ment vector d. We consider multiple displacements by moving
in steps of 5 and 1 along the x- and y-axis, respectively. For a
(20 x 360) image we get 111 co-occurrence matrices. Thus a fea-
ture vector of length 111 x 4 = 444 is derived for each image.

These features were computed for 100 images in the CASIA
dataset, 100 images in the synthesized dataset and 20 non-stochastic
images in the Brodatz library. The k-means clustering technique
was used to organize these images into 2 categories. In our cluster-
ing experiment, 97% of the real iris images and 100% of the syn-
thetic iris images were classified into one group, and 75% of the
Brodatz textures and 3% of the real iris images were classified into
a separate group. This suggests that (a) the iris texture is distinct
from other non-stochastic textural patterns, and (b) the synthetic
iris images have similar textural content as real iris images.

We also generated the genuine and impostor match score dis-
tributions of the synthetic iris images (100 classes, 4 samples per
class) by extracting features using a wavelet approach and compar-
ing the features using the Manhattan distance (using Daugman’s al-
gorithm [1] with the Hamming distance will result in a different set
of distributions). Figure 8 compares these distributions with those
associated with real iris images (100 classes, 4 samples per user).
The impostor distribution of the synthetic data is observed to be
multimodal. This is not desirable and we are currently looking at

ways to address this problem.
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Figure 8: The genuine and impostor match score distributions for
real and synthetic iris images. A simple wavelet-based algorithm
was used to generate features. The features were compared using
the Manhattan distance.

5. SUMMARY AND FUTURE WORK

We have presented a novel technique for synthesizing iris images by
characterizing the texture using a Markov Random Field. The pro-
posed technique uses primitive textural patterns to guide the synthe-
sis of iris images from a random noise image. Tree structured vector
quantization is used to accelerate the synthesis procedure. Cluster-
ing experiments using feature vectors extracted from co-occurrence
matrices show that the textural content of both synthetic and real
iris textures are very similar. Presently, the synthesis algorithm ter-
minates after 10 iterations. We are looking at ways to dynamically
determine the number of iterations that is required. We are also ex-
amining the possibility of developing individuality models for iris
patterns based on the technique presented in this paper.
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