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Abstract

The family of matching pursuit algorithms are
greedy heuristic methods for basis selection prob-
lem. In this paper, we propose an adaptive structure
for matching pursuit algorithms that uses a pro-
gressive refinement structure. The proposed adap-
tive algorithm allows the detector to adjust the
tradeoff between the computational complexity and
the resolution performance. The novel algorithm
is applied to direction of arrival detection prob-
lem and it is shown that the algorithm results in a
lower computational complexity than the direct im-
plementation of matching pursuit algorithms.

1. Introduction

The matching pursuit (MP) algorithms are suit-
able for selection of basis for signal decomposition
by determining a small, possibly the smallest, sub-
set of vectors chosen from a large redundant set of
vectors to match the given data. This problem has
various applications such as time/frequency repre-
sentations [1], speech coding [2], and spectral es-
timation [3]. There are several types of MP al-
gorithms. These include basic matching pursuit
(BMP) [1], orthogonal matching pursuit (OMP) [4]
and several other derivatives.

The main advantage of the MP algorithms is the
decreased computational complexity. However as
will be shown later, there is still a tradeoff between
complexity and resolution.

In this paper we propose a novel adaptive struc-
ture for MP algorithms in order to decrease the
overall complexity and adjust the resolution prop-
erty of the algorithm. The proposed structure can be
applied to several types of applications. In this pa-
per, we consider the direction of arrival (DOA) esti-
mation problem, the idea corresponds to integration
of an adaptive structure to MP algorithms in order
to provide a tradeoff between computational com-
plexity and the precision of the detected directions.
This high precision is achieved by a progressive re-
finement approach. Furthermore, it will be shown
by an example that the computational complexity
of the adaptive structures are much lower than that
of the direct implementation. In terms of perfor-
mance, the simulation results show that the direct
implementation and adaptive implementation have
quite close detection performances with a complex-

ity reduction of more than 50%. It should also be
noted that, the adaptive structure for the basis selec-
tion algorithms is a general framework and can be
applied to several other detection problems.

This paper is organized as follows. The problem
statement for DOA detection problem is given in
Section 2. In Section 3, the necessary background
on the BMP and OMP algorithms is summarized.
The adaptive resolution structure for the MP algo-
rithms are introduced in Section 4. Simulation re-
sults are presented in section 5. Finally conclusions
are given in Section 6.

2. Problem Statement
In our system model for DOA estimation, we

consider an adaptive antenna array of N elements.
The input signal is assumed to be a plane wave.
We consider the narrow-band, far-field estimation
problem, and hence we assume that the information
sources are point sources, and the incoming waves
are plane waves. The amplitude of the response
of the lth sensor to the ith source is represented by
bi,l(t). The output at the lth sensor can then be writ-
ten as [5]

xl(t) =
M

∑
i=1

bi,l(t)e jw0τ(θi) +n(t), l = 1,2, . . .,N,

(1)
where j is the complex exponent, M is the number
of distinct point sources, n(t) is the AWGN compo-
nent with mean 0 and variance σ2. The center fre-
quency is w0, and τ(θi) is the time delay between
the reference sensor (first sensor) and the lth sen-
sor. The DOA of ith source is denoted by θi, where
0o ≤ θi ≤ 180o.

For a uniform linear array, we can construct the
corresponding dictionary D as

D =





1 1 · · · 1
e jψ1 e jψ2 · · · e jψP

...
...

...
...

e j(N−1)ψ1 e j(N−1)ψ2 · · · e j(N−1)ψP





,

where ψi is the phase difference between elements
of the antenna array when the signal arrives from
direction θi, and hence ψi = 2πµ

λ cos(θi), where µ
is the separation between antenna elements [5].

As explained above, there is a particular phase
shift pattern for distinct DOAs in the antenna ar-



ray output. In practice, only a few directions are
received with substantial amplitudes. In the DOA
estimation problem, we exploit two facts: the bi-
jective relation between phases and DOAs, and the
sparsity of the DOAs. For the case in (2), the possi-
ble range of DOAs is divided into M parts forming
the dictionary D . Representing the ith column of
D , by di, the vector matrix model for this system
can be simplified to

x =
r

∑
i=1

cidki +n, ki ∈ {1,2, . . .,M}, (2)

where ci is the received signal amplitude from ar-
riving direction θi, and n is the AWGN vector. As-
suming the noise term is negligible and we have
x ≈ ∑r

i=1 cidki. The MP algorithms that are briefly
reviewed in the following section can be applied di-
rectly to the received vector x in order to estimate
the dki’s and hence the DOAs due to the bijective
relation.

3. Matching Pursuit Algorithms
Matching pursuit (MP) algorithms are adaptive

approximations that select the approximation vec-
tor with no orthogonality constraint. These greedy
algorithms are sufficiently good to build compact
representations for signals such as speech, music or
image data [6]. The greedy method is used when
the set of approximating functions is a linear com-
bination of the basis functions. Initially only the
first term is optimized. Optimization corresponds to
minimizing the discrepancy between the input sig-
nal that can be observed as the training data and the
current model. This term is kept fixed and then the
next term is optimized. This process continues until
all M terms are evaluated. This approach is termed
as greedy since at any point only a single term is
added to the model in order to get a closer approx-
imation. In the neural network literature greedy al-
gorithms are known as network growing algorithms
or constructive procedures [7]. Greedy algorithms
are frequently used in many statistical methods. Im-
plementation leads to very fast learning methods
however quality of optimization can be suboptimal.

For MP algorithms, since the problem is pursu-
ing the goal of determining a small subset of vectors
in the dictionary D , that best match the vector x,
the algorithms proposed for solution are termed as
matching pursuit algorithms. These algorithms are
adaptive due to the fact that the basis functions are
selected adaptively for best matching a given data
from a fixed dictionary.

3.1 Basic Matching Pursuit Algorithm

The basic matching pursuit (BMP) algorithm is
proposed in [1]. The algorithm is closely related
to projection pursuit algorithm [8] that is used fre-
quently by statisticians, and the shape-gain vector
quantizer [9].

Consider the space generated by signals of size
N. Let D= {ϕλ}λ∈Γ be a set of redundant vectors

with P number of vectors where P > N and with N
linearly independent vectors that define CN of sig-
nals length N. We can also assume that ‖ϕλ‖ = 1
without loss of generality ∀λ . In MP algorithms,
basis selection is performed sequentially, i.e. one
at a time. This forces an index requirement for the
residual and selected vectors at each iteration.

This iterative procedure can implemented with
a fast algorithm by exploiting the recursive structure
as follows.
1. Initialization Set m = 0, e0 = x and compute

〈e0,ϕλ 〉λ∈Γ.
2. Best Match Find ϕλm

∈ D such that

|〈em,ϕλm〉| ≥ sup
λ∈Γ

|〈em,ϕλ 〉|. (3)

3. Update Update the new residue vector as

em+1 = em −〈em,ϕλm
〉ϕλm

. (4)

4. Terminate If

‖x−em+1‖ < ε (5)

or m = M stop. Otherwise m = m+1, and go to
step 2.
This approximation is suboptimal due to the fact

that it is not performed with all dictionary compo-
nents but one at a time. If the loop of the BMP
algorithm is executed M times, the computational
cost of the algorithm is at most O(PMN) [10].

It should also be noted that the output
of MP algorithms are not only the coefficient
set {cλ0

,cλ1
, . . .,cλM−1

} but also the index set
{λ0,λ1, . . .λM−1} which indicate the selected atoms
from the dictionary.

3.2 Orthogonal Matching Pursuit Algorithm

The orthogonal matching pursuit (OMP) algo-
rithm is proposed in [4] and in [11] independently.
OMP is also termed as modified matching pursuit
algorithm in the literature [12]. Similar to BMP, the
aim of OMP is to obtain an approximate of the input
signal x, by sequentially selecting vectors from the
dictionary. However, OMP algorithm gives a bet-
ter approximation performance by orthogonalizing
the directions of the projection. This guarantees the
convergence of OMP with a finite number of itera-
tions. In BMP the convergence was guaranteed with
infinite number of iterations. However, the compu-
tational cost of the OMP algorithm is increased due
to the employed Gram-Schmidt orthogonalization
procedure.

The indices of the m atoms are selected and
stored in the index vector Λm = [λ0,λ1, . . .,λm−1]
with Λ0 = []. Similar to the BMP case, for OMP we
can assume that ‖ϕλ‖= 1 without loss of generality
∀λ . The OMP algorithm selects the next atom ϕλm
by finding the vector best aligned with the residual
obtained by projecting em onto the dictionary com-
ponents, that is

λm = argmax
λ∈Γ

|〈ϕλ ,em〉|, l /∈ Λm. (6)



Then the selected vector component ϕλm is or-
thogonalized by the Gram-Schmidt algorithm as

um = ϕλm
−

m−1

∑
l=0

〈ϕλm
,ul〉

‖ul‖2 ul, (7)

with u0 = ϕλ0
.The residue vector em is updated as

em+1 = em− 〈em,um〉
‖um‖2 um. (8)

The coefficient set {cλ0
,cλ1

, . . .,cλm−1
} changes

with each iteration and can be evaluated by tak-
ing the orthogonal projection of x onto the selected
atoms. Similar to the BMP algorithm, OMP termi-
nates when either m = M, or ‖em‖≤ ε. The compu-
tational cost of the algorithm is at most O(NM(M+
P)) [10].

4. Adaptive Resolution Structure for
Matching Pursuit Algorithms

The precision of the directions that can be de-
tected through an MP algorithm of choice is de-
termined by the number of distinct columns of the
dictionary (i.e. P). Hence in order to get very pre-
cise direction estimations, the value of P must be as
high as possible. However such a selection will in-
crease the computational complexity of both BMP
and OMP algorithms.

For the DOA estimation problem the idea corre-
sponds to integration of an adaptive structure to MP
algorithms in order to provide a tradeoff between
computational complexity and the precision of the
detected directions. This high precision is achieved
by a progressive refinement approach.

In order to make the DOA detection algorithm
compatible with low power implementation ap-
plications, the computational complexity can be
decreased through a progressive refinement tech-
nique. Here, a novel adaptive structure for MP al-
gorithms is proposed in order to decrease the over-
all complexity and adjust the resolution property of
the algorithm. The idea is to keep P = N for the
first implementation of an MP algorithm of choice
and roughly detect regions of DOA. An example
of 4 symmetric regions is shown in Fig. 1. This
partition can be implemented with uniform or non-
uniform intervals depending on the channel char-
acteristics. Once the region is detected for one or
more DOAs then the MP algorithm of choice can
be applied once more in order to increase the preci-
sion of the DOAs. The process can be repeated for
a few iterations until the desired level of precision
is achieved.

The process can be clarified with a numerical
example. Consider an DOA estimation problem
with N = 10 element uniform linear array as shown
in Fig. 2. Assume that there are M = 3 station-
ary point sources. In order to detect within 1.8o

the dictionary length is P = 100. For detecting the
DOAs, direct application the BMP and the OMP al-
gorithms corresponds to a computational complex-
ity of O(3000) and O(3090), respectively.

Figure 1: Division of the direction plane by 4 sym-
metric regions.

RX-1 RX-2 RX-N

MP-AlgorithmDictionary Angles of
Arrival

.......
X

Figure 2: MP detection of direction of arrivals.

Now let us consider a two stage progressive re-
finement model for adaptive resolution MP struc-
ture. At the first stage the input dictionary D1,1 is
defined according to N = 10 and P = 10. Hence
BMP or OMP algorithm will have estimates within
18o precision. This process requires O(300) and
O(390) operations for BMP and OMP algorithms,
respectively. In order to detect the DOAs more pre-
cisely finer dictionaries are defined for each interval
composed of 1.8o precision. That is, for the second
stage, the first dictionary D2,1 has P = 10 columns
and defines the direction from 0o to 18o. All pos-
sible DOAs are covered with D2,i for i = 1, . . .,10.
Regardless of any constraints of being different, let
k, l, and m denote the selected directions after the
first stage. A new dictionary can be constructed as
{D2,k,D2,l,D2,m}. Hence the length of this second
dictionary is at most 30. The corresponding com-
plexity of the second stage is O(900) operations
for BMP and O(990) operations for OMP. The total
number of operations are O(1200) and O(1380) for
BMP and OMP algorithms, respectively. Hence for
this specific example, the computational complex-
ity is reduced by more than 56% and the precision
is kept the same as a direct implementation. For
further precision, a third stage of MP algorithm can
be added to the detector in a similar fashion. In or-
der to verify these results, simulation examples are
presented in the following section.

5. Simulation Results

In our system, we consider an adaptive antenna
array of N elements as in Fig. 2. The input signal
is assumed to be a plane wave or equivalently it can
be decomposed into plane waves.

In simulations, only the OMP algorithm is con-
sidered due to its high resolution properties as
shown in [13]. System parameters that are defined
by the example above are considered for simula-
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Figure 3: Probability of resolution vs. SNR.

tions. In our work, instead of equally partitioning
the direction space (0o,180o), we equally divide the
space that spans the cosine of the direction space
(−1,1). Then take the inverse cosine and acquire
the partitions in direction space. This is optimum
due to the dictionary structure of (2). However the
comparison of different partitioning scenarios are
not included and beyond the scope of this work.
The legends AR-OMP represents the OMP algo-
rithm with two stage implementation. In Fig. 3,
probability of detection performances of the algo-
rithms mentioned above are shown. As can be seen
in Fig. 3, AR-OMP as well as the OMP algorithm
for high SNR values. There is a small discrep-
ancy for low SNR region. This is due to the fact
that when SNR is not sufficiently high enough, the
coarse detection process in the first stage may give
erroneous results, and hence resulting in error prop-
agation.

In Fig. 4, root mean square error (RMSE) in the
estimated directions is shown. RMSE is normalized
by the null-to-null beamwidth (BWnn) of the 10 el-
ement antenna array. As it is seen in Fig. 4, at low
SNR the performance of the OMP is slightly bet-
ter, but as for SNR> 0 dB both algorithms have the
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Figure 4: RMSE of DOA normalized by null-to-
null beamwidth.

same performance. Here, we should emphasize that
the number of operations of AR-OMP is less than
half of the OMP algorithm.

6. Conclusions
In this paper we have presented a general frame-

work for reducing the computation complexity of
the MP algorithms by dividing the dictionary into
partitions and applying the MP algorithm of choice
progressively. The proposed structure is applied to
the DOA detection problem. It is verified by using
simulation results that the performances of the pro-
posed BMP and OMP algorithms in adaptive nature
are similar to those of their direct implementation
with a major reduction in computational complex-
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