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ABSTRACT 
The paper presents a quantitative comparison study of some 
time-frequency distributions i.e.  (TFDs). The comparison 
is in terms of a criterion known as the Renyi measure. The 
assessment of the TFDs is accomplished by evaluating   the 
Rényi measure which yields the best time-frequency resolu-
tion. We show, using synthetic as well as real-life data, that 
a recently proposed TFD outperforms existing TFDs. In 
particular, we show that this proposed TFD presents a high 
time-frequency resolution while suppressing the undesir-
able cross-terms.  

1. INTRODUCTION 

In this paper, we present a quantitative comparative study 
between some existing time-frequency distributions (TFDs) 
and a recently proposed one [1] in the analysis of multi-
component signals. In the comparison, we consider the cross-
terms suppression and the high energy concentration of the 
signal around its instantaneous frequency (IF).The widely 
used spectrogram (SP), which is in general a cross-terms free 
TFD, suffers from the undesirable trade-off between time 
resolution and frequency resolution [2], [3], [4], and [5]. On 
the other hand, the Wigner-Ville distribution (WVD) has a 
high time-frequency resolution but is known to suffer from 
the presence of cross-terms [2]. To address the problem of 
cross-terms suppression, while keeping a high time-
frequency resolution, other TFDs have been proposed. 
Among these, one can cite the  Zhao-Atlas-Marks distribu-
tion (ZAMD) [6], the B-distribution (BD) [7] and the Modi-
fied B-distribution (MBD) [8], just to name a few. In the se-
quel, we will compare these reduced cross-terms TFDs to a 
newly proposed TFD, inspired from the Butterworth kernel 
quadratic TFD [9]. The comparison is performed by evaluat-
ing the Rényi criterion for each of the considered TFDs. 
Since these TFDs are function of some parameters, we first 
obtain the optimal parameters in terms of the minimal values 
of the Rényi information for each individual one. Then, we 
compare them to  each  other.  Synthetic  as  well  as  real-life  

data are used in this comparative study. The paper is organ-
ized as follows: In Section 2, we give a brief theoretical 
background of the various TFDs used in the comparison and 
present some properties of the comparison tool (i.e., the Ré-
nyi information criterion). In Section 3, we present some 
simulations results as well as a discussion. Section 4 con-
cludes the paper. 

2. QUADRATIC TIME-FREQUENCY 
DISTRIBUTION 

Quadratic, a.k.a. bilinear or Cohen’s, TFDs constitute a pow-
erful tool in the analysis of non-stationary signals, i.e., sig-
nals whose frequency contents vary with time.  Many of 
these representations are invariant to time and frequency 
translations and can be considered as energy distribution in 
the time-frequency plane. The quadratic class can be ex-
pressed as [2, 4].    
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where x (t) represents the analytical form of signal under 
consideration and ( )τξΦ ,x  is called the kernel of the distribu-
tion. All the integrals are from -∞  to +∞ , unless otherwise 
stated. A choice of a particular kernel function yields a par-
ticular quadratic TFD with its own specificities [2], [3]. All 
the reduced cross-terms TFDs mentioned earlier are mem-
bers of the quadratic class. In particular, the kernel of the 
Butterworth kernel is given by [9] 
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This kernel, which is a general form of the exponential 

kernel, is considered as a low-pass filter in the ambiguity 
domain.  A suitable choice of the parameters N, M, ξσ  and         



τσ  helps remove the cross-terms from the TFD, in the 
analysis of a multicomponent signal. 
A recently proposed TFD, inspired from the Butterworth 
kernel, was shown to possess a good trade-off between cross-
terms suppression and high time-frequency resolution [1]. 
This TFD kernel is expressed as 

( ) M2N2x

1

1.

1

,












σ
τ+















σ
ξ+

π
=τξΦ

τ

ξ

ξ

σ  

(3) 

Using the inverse Fourier Transform and fixing N equal to 
unity, we obtain the time-lag kernel expression given by 
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Now, by substituting expression (3) in Equation (1), we ob-
tain the proposed TFD expression as 
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In this comparison study, we have used the Rényi informa-
tion of order α defined as: 

( ) dfdtf,tClogR x21
1 ∫∫ α
α−α=   (6)

   α: Rank of the Rényi measure, 2≥α . 
This criterion was used in [10], [11], and [12] to evaluate the 
complexity of a signal in the time frequency plane. Four 
schemes have been studied in [12] but both of them using the 
normalized form versus volume have been proved to have 
useful properties. The normalization operation assures that 
the TFD behave like a probability density function (pdf). So 
minimising the Rényi entropy for  a given TFD is equivalent 
to maximizing its concentration, peakiness and resolution 
[13]. Then the best parameters of kernel for  TFD with re-
spect to the minimal value of the  Rényi will give a good 
localization of the energy. Recently in [14] the performance 
of minimum entropy kernels for best TFDs and component 
counting is also demonstrated. In our study we have used the 
second and the third order of Rényi entropy with volume 
normalized. Moreover the discrete-time formulation of the 
Rényi entropy for TFD [12] with normalization volume is 
given by: 
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where n and k are variables for discrete-time and discrete  
frequency respectively , N and K are number of samples in 
time and frequency respectively.   

3. EXAMPLES   AND DISCUSSIONS 

All analysis is done using third order Rényi entropy RV3 
since it has been proved [10-11] that is the well choice for 
measuring time-frequency uncertainty.  We have particularly 
used the normalized scheme versus the volume which has 
been used for adaptive kernel design [11, 12].  The goal is to  

 

 
 

 
 

 
 
 

Fig. 1.  TFDs results of signal given in example 1. 
              



TABLE I 
OPTIMAL VALUES  OF  THE KERNEL PARAMETER  

 
 
 

            TFD nh RV2 RV3 
WVD  5.8912 5.9936 
SP 89 5.0359 4.8583 
ZAMD a=2 111 5.4923 5.2780 
Proposed TFD σξ=0.05 111 4.2892 4.0895 
MBD   β=0.05 85 4.5840 4.2538 

    
Fig. 2.  Left:  Slices taken at  time instant n=256 for  (a) WVD, (b)  SP  
(c) ZAMD (d) Proposed TFD (e) MBD. Right: Performance comparison 
between SP (dashed line) and the proposed TFD (solid line). Horizontal 
axis shows frequency in Hz.  

 
find based on Rényi measure the best parameters that can 
give better TFDs results. Then achieved comparison and 
interpretation between each TFDs. The data window length 
which controls the size of the kernel used for analysis is 
noted nh. Some results of TFDs have been realized by TFSA 
[15] except for the proposed TFD. 

 
3.1. Example 1: Sinusoidal and linear FM components 
     In this example, the synthetic signals consist of two com-
ponents the first is sinusoidal FM component and the second 
is linear FM given by:  
( ) )t180t25(cos)t70t10)t(cos50(costx 22 π+π+π+π+π−=  

 A sampling frequency is equal to fs=256 Hz with a signal 
length equal to 512. Table I shows the optimal parameters 
corresponding to the minimal values of the Rényi measure 
for all TFDs. Each result of TFDs has been obtained after 
several variations of optional parameters. All optimized 
TFDs are represented in figure 1, where horizontal axis 
shows the frequency and vertical axis is the time. The Left 
part of figure 2 shows slices taken at the same time instant 
n=256 for different TFDs with optimal parameters when the 
right part shows slices taken at the same time instant n=256 
for the SP and the proposed TFD.  

 
3.2. Example 2: Bat signal. 
 In this example, the real-life  signal consisting  of  Bat chirp 
signal1  digitized  at   2.5  microsecond   echolocation   pulse  
emitted by the Large Brown Bat, Eptesicus Fuscus. There 
are approximate 400 samples; the sampling period was 7 
microseconds,   the signal length used is equal to 512 and 
the sampling frequency is fixed equal to fs =143.72 KHz. 
Also, the same TFDs used in the first example are consid-
ered here. To find the optimal TFD for resolving the compo-
nents  of  the signal  we  first  find  the  optimal values of the 
                                                           
1 The authors wish to thank Curtis Condon, Ken White, and Al Feng of the 
Beckman Institute of the University of Illinois for the bat data and for per-
mission to use it in this paper. 
 

 TABLE II 
OPTIMAL VALUES  OF  THE KERNEL PARAMETER  FOR  BAT 

SIGNAL ANALYSIS 
TFD WVD 

 
 

SP 
nh=65 

ZAMD 
nh=85 
a=2 

MBD 
nh=65 
β=0.05  

Proposed TFD 
nh=45 σξ=0.05    

RV3 4.6253 2.1148 4.1835 3.3090 2.9961  
 

 
(a) 

 

 
(b) 

 
                       (c) 

 
                        (d) 

Fig. 3. Evolution of  RV3  versus nh for (a) ZAMD  (b) MBD (c) Pro-
posed TFD and (d) Optimal values of RV3  for all TFDs.  
 

   
Fig. 5. Slices taken at the same time n=150 (left) and n=250 (right) for 
(a) WVD,  (b) SP,  (c) ZAMD,  (d) BD,  (e) MBD, (f) Proposed TFD. 
Horizontal axis shows frequency in KHz. 

 
TFDs kernel parameters using Rényi criterion. The values of 
RV3 have been measured for all TFDs versus each proper 
parameter.  Different values of window lengths and optional 
parameters have been used in the evaluation of the Rényi 
measure. All the minimal values of Rényi that represent the 
best time-frequency concentration and elimination cross-
terms have been summarized on table II. We can see also the 
optimal value of the kernel parameter for each TFDs. The 
variations of RV3 versus the window length for each TFDs 
can be seen in figure 3. The results of TFDs using the opti-
mal parameters are represented in Figure 4. We take slices of 
the TFDs at the time instants n= 150 and n=250 (recall that 
n= 1, 2…512) and we plot the normalized amplitudes of 
these slices in figure 5. We can see in left part of this figure 
that the first and the second components have appeared with-
out cross-terms. In the right part we can see the second com-
ponent and the third component without cross-terms. Also we 
can remark that  the results of the proposed TFD show a bet-
ter performance, in terms of frequency resolution. However 
the highest performance is achieved by the MBD and the 
proposed TFD for signal in consideration. Also we can re-
mark that the proposed TFD not only can successfully appear 
the third components (the weakest) but it has the best resolu-
tion i.e (narrower main-lobe and smaller side-lobes) com-
pared to all the other considered distributions.    



 

 

  

 
Fig. 4. Bat signal analysis by  (a) WVD,(b) SP,  (c) ZAMD , (d) BD σ=0.05 nh =45, (e) MBD β=0.05 nh =65 and  (f) Proposed TFD σξ=0.05 nh =45. 
Horizontal axis show frequency in KHz, vertical axis show time versus number of samples. 

             
 

4. CONCLUSION 
 
In this paper, we presented a quantitative comparative study 
of some quadratic TFDs using synthetic and real-life bat 
signal. We have used some distributions known for their 
high cross-terms suppression property in terms of trade-off 
between cross-terms suppression and high energy concentra-
tion in the time-frequency domain. The optimal parameters 
of all TFDs have been selected based on the Rényi criterion. 
Our study have show that the proposed TFD exhibits high 
resolution and very little interference terms between the 
signal components both on simulated or real signal. 
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