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ABSTRACT
Time-frequency analysis is a major tool in representing the
energy distribution of time-varying signals. There has been
a lot of research on various properties of these representa-
tions. However, there is a general lack of quantitative mea-
sures in describing the amount of information encoded into a
time-frequency distribution. Recently, information-theoretic
measures such as entropy and divergence have been adapted
to the time-frequency plane to quantify the complexity of in-
dividual signals as well as the difference between signals.
In this paper, we present a variety of information-theoretic
measures and their definitions on the time-frequency plane.
The properties of these measures and how they can be ap-
plied to signal classification problems are discussed in detail.
We then present an application of information-theoretic sig-
nal processing to the analysis of event- related brain poten-
tials.

1. INTRODUCTION

Time-frequency distributions (TFDs) are used for represent-
ing the energy distribution of time-varying signals simultane-
ously in time and frequency. Despite their wide use in areas
such as detection and classification of signals, their capacity
in representing information has not been evaluated quanti-
tatively. This paper aims at addressing this issue by intro-
ducing information-theoretic measures such as entropy and
divergence measures on the time-frequency plane.

In recent years, there has been an interest in adapting
information-theoretic measures to the time-frequency plane
in order to quantify signal complexity [1, 2, 3]. The ap-
plication of information-theoretic measures such as entropy
and divergence has made it easier to quantify the complex-
ity of non-stationary signals on the time-frequency plane as
well as differentiate between different signals. Despite the
success of entropy in characterizing a signal’s complexity
on the time-frequency plane, it is not sufficient in quanti-
fying the dependencies between signals. In order to have
an effective information-theoretic signal characterization and
classification system, we need information-theoretic mea-
sures that quantify the dependencies between signals on the
time-frequency plane. One such measure that can effectively
quantify the differences between signals is divergence mea-
sures. Distance measures between statistical models have
been widely used in signal processing applications. Using
entropy based distance functionals is a well-known discrim-
ination method in signal processing. These functionals are
known as divergence measures and are applied directly on
statistical models describing the signals. Measures of diver-
gence between two probability distributions are used to asso-
ciate, cluster, classify, compress, and restore signals, images

and patterns, in many applications. Many different measures
of divergence have been constructed and characterized [5, 6].
Another measure that quantifies dependency is mutual infor-
mation. Mutual information has been used effectively in var-
ious statistical signal processing applications including clas-
sification and source separation [4]. In this paper, it will be
extended to the time-frequency plane to quantify the ‘inde-
pendence’ between signals.

2. TIME-FREQUENCY EQUIVALENT OF MUTUAL
INFORMATION

2.1 Background on Information-Theoretic Measures on
the Time-Frequency Plane
A time-frequency distribution, C(t, f ), from Cohen’s class
can be expressed as 1 [7]:

C(t, f ) =

∫ ∫ ∫

φ(θ ,τ)s(u+
τ
2
)s∗(u− τ

2
)e j(θu−θ t−2πτ f )dudθ dτ, (1)

where φ(θ ,τ) is the kernel function and s is the signal. Some
of the most desired properties of TFDs are the energy preser-
vation and the marginals. They are given as follows and are
satisfied when φ(θ ,0) = φ(0,τ) = 1 ∀τ ,θ .

∫ ∫

C(t, f )dt d f =

∫

|s(t)|2 dt =

∫

|S( f )|2 d f ,
∫

C(t, f )d f = |s(t)|2 ,
∫

C(t, f )dt = |S( f )|2.
(2)

The formulas given above evoke an analogy between a TFD
and the probability density function (pdf) of a two-dimen-
sional random variable. This analogy has inspired the adapta-
tion of information-theoretic measures such as entropy to the
time-frequency plane. The main difference between TFDs
and pdfs is that TFDs are not always positive. Therefore, in
this paper the analysis focuses on spectrograms since they are
always positive. Another important point is that the distribu-
tions have to be normalized by their energy before applying
any information-theoretic measure.

2.2 Distance Measures
The most general class of distance measures is known
as Csiszar’s f-divergence which includes some well-known
measures like Hellinger distance, Kullback-Leibler diver-
gence and Rényi divergence [6]. The divergence between

1All integrals are from −∞ to ∞ unless otherwise stated.



two probability density functions, p1 and p2 for this class of
distance measures can be expressed as:

d(p1, p2) = g
[

E1

[

f
(

p2

p1

)]]

, (3)

where f is a continuous convex function, g is an increas-
ing function and E1 is the expectation operator with respect
to p1. The distance measures and their properties for time-
frequency distributions are given below.
1. Kullback-Leibler divergence: The most common dis-

tance measure used for probability distributions is the
Kullback-Leibler divergence measure. This measure can
be adapted to the time-frequency distributions as follows:

K(C1,C2) =

∫ ∫

C1(t, f ) log
C1(t, f )
C2(t, f )

dt d f . (4)

This measure belongs to the class of Csiszar’s f-
divergence with f (x) = − logx, and g(x) = x. 0 ≤
K(C1,C2) ≤ ∞, the first equality holds if and only if
C1 = C2 and the second equality holds if and only if
Supp C1

⋂

Supp = /0. This is not a symmetric distance
measure but can easily be symmetrized by taking the av-
erage of K(C1,C2) and K(C2,C1).

2. Rényi Divergence: Rényi divergence is a generalized
formulation of Kullback-Leibler divergence and can be
expressed as:

Dα(C1,C2) =
1

α−1
log

∫ ∫

Cα
1 (t, f )C1−α

2 (t, f )dt d f .

(5)
where α ∈ [0,1] is the order of Rényi divergence. This
measure converges to Kullback-Leibler distance as α →
1. It is also a member of Csiszar’s f-divergence with
f (x) = x1−α , and g(x) = 1

α−1 log(x). 0 ≤ Dα(C1,C2) ≤
∞, the first equality holds if and only if C1 = C2 and the
second if and only if Supp C1

⋂

Supp C2 = /0.
3. Jensen-Shannon Divergence: One common approach

for constructing divergence measures is to apply Jensen
inequality on the entropy functional. For time-frequency
distributions, Jensen-Shannon divergence can be defined
as:

J(C1,C2) = H
(

C1 +C2

2

)

− H(C1)+H(C2)

2
. (6)

This distance measure is always positive since

H
(

C1 +C2

2

)

≥ H(C1)

2
+

H(C2)

2
(7)

by concavity of H. It is equal to zero when C1 = C2 and
is a symmetric divergence measure. Unlike the Kullback-
Leibler divergence, Jensen-Shannon distance does not di-
verge when the two distributions are disjoint.

4. Jensen-Rényi Divergence: The Rényi entropy is derived
from the same set of axioms as the Shannon entropy, the
only difference being the employment of a more general
exponential mean instead of the arithmetic mean in the
derivation. This realization inspires the modification of
Jensen-Shannon divergence from an arithmetic to a geo-
metric mean, and the following quantity is obtained for

two positive TFDs C1 and C2.

J1(C1,C2) = Hα(
√

C1C2)−
Hα(C1)+Hα(C2)

2
, (8)

where (
√

C1C2)(t, f ) =
√

C1(t, f )C2(t, f ). This quan-
tity is obviously null when C1 = C2. The positivity of
this quantity can be proven using the Cauchy-Schwartz
inequality.
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∫ ∫
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≤
∫ ∫

Cα
1 (t, f )dt d f

∫ ∫

Cα
2 (t, f )dt d f , (9)

and since the log function is monotonically increasing,
for α > 1

1
1−α log

∣

∣

∣
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∣

∣

∣
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1
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log
∫ ∫

Cα
1 (t, f )dt d f + log

∫ ∫

Cα
2 (t, f )dt d f

]

.

(10)

Thus Hα(
√

C1C2)≥ Hα (C1)+Hα (C2)
2 , which proves that the

distance measure is always positive.

2.3 Definition of Mutual Information on the Time-Fre-
quency Plane
For two random variables, X and Y , the mutual information
is defined as:

I(X ;Y ) = ∑
x

∑
y

p(x,y) log
p(x,y)

p(x)p(y)
, (11)

where p(x,y), p(x) and p(y) are the joint and marginal prob-
ability density functions of X and Y , respectively. I(X ;Y )
achieves its minimum when X and Y are independent and is
equal to 0.

In the case of time-frequency distributions, we will adapt
the definition of mutual information using energy density
functions instead of probability density functions. Therefore,
the individual energy distributions of signals x(t) and y(t) de-
fined as Cx(t, f ) and Cy(t, f ), respectively, correspond to the
marginal densities, p(x) and p(y), given in equation 11. Us-
ing the same definition, the joint density function in equation
11 will be replaced by the joint energy distribution of x(t)
and y(t) defined as the cross-TFD of the two signals. For ex-
ample, in the case of the spectrogram this cross-distribution
is:

Cxy(t, f ) = ST FTx(t, f )ST FT ∗
y (t, f ), (12)

where ST FTx(t, f ) =
∫

h(τ − t)x(τ)e− j2π f τ with h(t) being
the data window. Since Cxy(t, f ) can be complex-valued, its
absolute value will be used in the definition of mutual in-
formation. Therefore, mutual information between two non-
stationary signals as measured through their time-frequency
distributions is:

I(Cx,Cy) =
∫ ∫

|Cxy(t, f )| log
|Cxy(t, f )|

Cx(t, f )Cy(t, f )
dtd f . (13)

It is important to note that this measure is closely re-
lated to Jensen-Rényi divergence. Since |Cxy(t, f )| =



√

|Cx(t, f )|
√

|Cy(t, f )|, the mutual information can be writ-
ten as:

I(Cx,Cy) =

∫ ∫

√

|Cx(t, f )|
√

|Cy(t, f )| log

√

|Cx(t, f )|
√

|Cy(t, f )|
Cx(t, f )Cy(t, f )

dt d f ,

=
∫ ∫

√

|Cx(t, f )|
√

|Cy(t, f )| log
1

√

|Cx(t, f )|
√

|Cy(t, f )|
dt d f ,

= H(
√

|Cx(t, f )|
√

|Cy(t, f )|). (14)

This is equivalent to computing the entropy of the over-
lap between the two distributions and is similar to Jensen-
Rényi divergence of order 1 with the difference being that
the average entropy of the individual distributions is not sub-
tracted. Therefore, the mutual information quantifies how
similar the two distributions are rather than measuring how
their ‘joint’ information is different than their individual in-
formation contents.

Some other important properties of this measure on the
time-frequency plane are:
• I(Cx,Cy) is a symmetric measure. Since

Cyx(t, f ) = ST FTy(t, f )ST FT ∗
x (t, f ),

= C∗
xy(t, f ), (15)

the magnitudes of the joint energy distributions are equal
to each other.

• When the two signals, x(t) and y(t), are equal to each
other, I(Cx,Cy) equals to the entropy of the individual
signals. This can be shown as follows:

I(Cx,Cx) =
∫ ∫

Cx(t, f ) log
Cx(t, f )
Cx(t, f )2 dt d f ,

= −
∫ ∫

Cx(t, f ) logCx(t, f )dt d f ,

= H(Cx). (16)

For deterministic signals, this constitutes the maximum
of mutual information since when the two signals are
equal to each other, the dependence between the signals
reaches its maximum.

• If x(t) and y(t) are well-separated on the time-frequency
plane, i.e. their TFDs do not overlap, then the mutual
information between them is equal to zero. When the
two signals are separated on the time-frequency plane,
Cx(t, f )Cy(t, f ) = 0,∀t, f . Therefore,

|Cxy(t, f )| = |ST FTx(t, f )ST FT ∗
y (t, f )|

= |ST FTx(t, f )||ST FT ∗
y (t, f )|,

=
√

Cx(t, f )
√

Cy(t, f ),

= 0, (17)

which implies that the mutual information I(Cx,Cy) = 0.
This is analogous to the case where independent random
variables have zero mutual information. Unlike random
variables, the signals have energy distributions that are
disjoint on the time-frequency plane, and are not statisti-
cally independent.

3. RESULTS

The event-related potentials (ERPs) analyzed in this paper
are collected during an experiment that aims at differentiat-

ing between the responses of two different groups of sub-
jects: spider phobics and non-phobics 2. Nine spider phobics
and seven non-phobics, serving as controls, were shown sub-
liminally 40 blanks, 20 rectangles and 20 spiders in random-
ized order using a Harvard-type 3-field tachistoscope. The
participants were asked to say if they saw a blank or a picture.
Stimulus duration was set at 1ms and luminance at 5ft/lamb.
Confirming stimulus subliminality was the finding that d ′,
the probability of detection, was not significantly different
from zero for the behaviorial response. The event-related po-
tentials are recorded for 1 second before the stimulus and 1
second after the stimulus. In this study, the event-related po-
tentials in response to the phobic stimulus, i.e. spider, will
be analyzed at two electrodes, Cz, the central electrode, and
Oz, the occipital electrode.

For each trial, the time-frequency distribution for the pre-
and post-stimulus activities are computed. For each subject
and each electrode the average of the pre- and post-stimulus
activities is computed over 20 trials. The information-
theoretic measure is then applied to these averages to de-
termine the difference between pre- and post-stimulus ac-
tivities. A two-way analysis of variance (ANOVA) is used
to explore the interactions between the two factors, i.e. the
electrode and the phobic group. A significant interaction
was found such that the spider phobics showed a greater
difference at Cz than Oz, while the non-phobics showed
the opposite. This major finding is sustained for all of the
information-theoretic measures, except mutual information,
at the 10% significance level.

The results for the different information-theoretic mea-
sures can be summarized as follows:
• Kullback-Leibler Distance: This distance measure is

only applicable to positive distributions, such as the spec-
trogram. There was significant interaction between the
phobia group and the electrode at the 10% significance
level (p = 0.0776). The mean and the standard errors for
different subject groups and electrodes are summarized
in Table 1.

Phobic Group Electrode Average Distance Standard Error
Spider Phobics Oz 0.028 0.0046

Cz 0.042 0.0074
Non-Phobics Oz 0.037 0.0091

Cz 0.027 0.0035

Table 1: Kullback-Leibler Divergence for the Interaction of
Phobic Group and Electrode for the Spider Stimulus

• Rényi Divergence: The Rényi divergence is tested for dif-
ferent values of α in the range (0,1). It is observed that
as α → 1, the distance values get closer to the one re-
ported for Kullback-Leibler distance as expected. The
interaction between the phobic group and the electrode is
found to be significant for all tested values of α , though it
is observed that the significance increases as α increases
(p = 0.0752 for α = 0.8.). The mean and the standard
errors for α = 0.8 are summarized in Table 2.

• Jensen-Shannon Divergence: This measure is based on
Shannon entropy, and thus requires positive distribu-
tions. There was significant interaction between the pho-
bia group and the electrode at the 10% significance level

2The author wishes to acknowledge Dr. Howard Shevrin and his research
group at the University of Michigan for sharing this data.



Phobic Group Electrode Average Distance Standard Error
Spider Phobics Oz 0.0193 0.0036

Cz 0.0315 0.0057
Non-Phobics Oz 0.0278 0.0071

Cz 0.0197 0.0025

Table 2: Rényi Divergence for the Interaction of Phobic
Group and Electrode for the Spider Stimulus (α = 0.8)

(p = 0.0752). The mean and the standard errors for dif-
ferent subject groups and electrodes are summarized in
Table 3.

Phobic Group Electrode Average Distance Standard Error
Spider Phobics Oz 0.006 0.0011

Cz 0.009 0.0017
Non-Phobics Oz 0.009 0.0021

Cz 0.006 0.0008

Table 3: Jensen-Shannon Divergence

• Jensen-Rényi Divergence: This measure is based on the
Rényi entropy, and can be applied on non-positive TFDs
without any modification. The order α is greater than
one, since for fractional order α the Rényi entropy will
result in complex values. Different values of α are tested
to understand the effect of even and odd orders. The in-
teraction between the phobia group and the electrode was
significant at the 5% significance level (p = 0.0338 for
α = 2 and p = 0.023 for α = 3.) The mean and the stan-
dard errors for α = 3 are summarized in Table 4.

Phobic Group Electrode Average Distance Standard Error
Spider Phobics Oz 0.04278 0.01150

Cz 0.08767 0.01843
Non-Phobics Oz 0.08453 0.02192

Cz 0.04786 0.01326

Table 4: Jensen-Rényi Divergence for the Interaction of Pho-
bic Group and Electrode for the Spider Stimulus (α = 3)

• Mutual Information: The final information-theoretic
measure tested was the mutual information. The mutual
information was the only measure that did not show any
significant interaction between the phobia group and the
electrode. The major reason is that this measure quanti-
fies the complexity of the overlap between the two dis-
tributions, but not the difference between ‘joint’ entropy
and individual entropies. The mean and the standard er-
rors for different subject groups and electrodes are sum-
marized in Table 5.

Phobic Group Electrode Average Distance Standard Error
Spider Phobics Oz 12.444 0.0749

Cz 12.540 0.0840
Non-Phobics Oz 12.484 0.1239

Cz 12.409 0.0515

Table 5: Mutual Information for the Interaction of Phobic
Group and Electrode for the Spider Stimulus

From the results, it is clear that all of the applied measures
give similar findings in terms of the interactions between the
electrode and the phobic group. It is important to mention

that Jensen-Rényi divergence yielded the most significant in-
teraction between phobic group and electrode. This is mainly
due to the robustness of Rényi entropy compared to Shannon
entropy [3], as well as the way this measure is constructed.
This measure quantifies the difference between the ‘joint’ en-
tropy or entropy of the overlap and the individual entropies.
All the other information-theoretic measures introduced in
this paper quantify only the entropy of the overlap between
the two distributions.

4. CONCLUSIONS

In this paper, we introduced a collection of information-
theoretic measures that can be used to quantify the difference
between signals on the time-frequency plane. These mea-
sures are based on treating the time-frequency distributions
as two-dimensional probability density functions and adapt-
ing the well-known information-theoretic measures such as
divergence measures and mutual information. We have ap-
plied the proposed measures on an ERP data set to discrim-
inate between pre- and post-stimulus brain activities. It has
been shown that all of the measures result in significant inter-
actions between phobia group and the electrode. It is also ob-
served that information-theoretic measures, such as Jensen-
Rényi divergence, which quantify the difference between the
entropy of the ‘overlap’ of TFDs and the individual entropies,
perform better than measures that just quantify the complex-
ity of the ‘joint’ TFD.

The proposed measures can be modified so that they are
applicable to a large class of distributions including non-
positive TFDs. The information-theoretic measures can also
be optimized for the underlying signal classes by choosing
the optimal parameter and the measure.
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