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ABSTRACT

When segmenting images of low quality or with missing
data, statistical prior information about the shapes of the ob-
jects to be segmented can significantly aid the segmentation
process. However, defining probability densities in the space
of shapes is an open and challenging problem. In this paper,
we propose a nonparametric shape prior model for image
segmentation problems. In particular, given example train-
ing shapes, we estimate the underlying shape distribution by
extending a Parzen density estimator to the space of shapes.
Such density estimates are expressed in terms of distances
between shapes, and we propose two distance metrics that
could be used in this framework. We then incorporate the
learned shape prior distribution into a maximum a posteriori
estimation framework for segmentation. This results in an
optimization problem, which we solve using active contours.
We demonstrate the effectiveness of the resulting algorithm
in segmenting images that involve low-quality data and oc-
clusions. The proposed framework is especially powerful in
handling “multimodal” shape densities, involving multiple
classes of objects.

1. INTRODUCTION

We consider image segmentation problems that involve lim-
ited and low-quality data. Such segmentation problems are
ill-posed and require the incorporation of prior information
about the objects to be segmented. When human experts
segment images, they clearly make use of such prior infor-
mation. For example, a radiologist can usually manually
segment an organ (e.g. the prostate) in a magnetic reso-
nance image, although the boundaries are mostly invisible
to a layperson. Clearly, radiologists augment the observed
data with their expertise, in other words with statistical prior
information, about the shape of the organ. Existing auto-
matic segmentation methods (either explicitly or implicitly)
enforce only very simple constraints about the underlying
shapes. For example, many active contour-based methods
(which is the framework we also use in our work) involve
a curve length penalty, which translates to the assumption
that shorter curves are statistically more likely than longer
ones. However, in many applications, more structured prior
information about the shapes is available. Yet the challenge
is how to construct probabilistic descriptions in the space
of shapes, and then incorporate such statistical information
into the segmentation process.

Early work on this problem involved landmark-based rep-
resentations of shapes, and the construction of typical shapes
and typical variability based on a set of training shapes via
principal component analysis (PCA) [1] . The use of land-
marks has the drawback that the performance of shape anal-
ysis depends on the quality of those landmarks. Recently,
there has been increasing interest in using level set-based rep-
resentations for shape priors [2, 3], which avoid landmarks.
In [2] and [3], PCA of the signed distance functions of train-
ing data is used to capture the variability of shapes. These

techniques have been applied to segmentation problems in-
volving low SNR or occluded images successfully, especially
when the shape variability is small. However, there are two
major shortcomings of such techniques. First, these meth-
ods treat the signed distance functions as elements of a lin-
ear vector space, and perform operations such as averaging.
Yet, the space of signed distance functions is a nonlinear
manifold and is not closed under linear operations. For ex-
ample, the average of signed distance functions, which is
commonly used to obtain a mean shape, is not necessarily a
signed distance function. Therefore, the use of linear analy-
sis tools such as PCA gives rise to an inconsistent framework
for shape modeling [3]. Second, these technique can handle
only unimodal, Gaussian-like shape densities. In particular,
these methods cannot deal with “multimodal” shape densi-
ties, which involve multiple classes of shapes (e.g. a shape
density of handwritten digits, composed of multiple digits).

In our work, we propose a framework for constructing
nonparametric shape densities from example training shapes.
In particular, we assume that the training shapes are drawn
from an unknown shape distribution, and we estimate the
underlying shape distribution by extending a Parzen density
estimator to the space of shapes. Such density estimates are
expressed in terms of distances between shapes. We propose
two specific distance metrics to be used for nonparametric
density estimation, although other metrics could be used in
our framework as well. We then formulate the segmenta-
tion problem as maximum a posteriori (MAP) estimation,
in which we use the learned nonparametric shape density
as the prior. This leads to an optimization problem for the
segmenting curve, for which we develop and use an active
contour-based iterative algorithm. We present experimental
results of segmenting low-quality and occluded images. We
also demonstrate how the proposed algorithm can success-
fully incorporate shape densities involving multiple object
classes.

2. NONPARAMETRIC SHAPE DENSITIES

In this section, we address the problem of estimating an un-
known shape probability density. Given n example train-
ing curves C1, . . . , Cn, we first align1 them to obtain the
aligned training set C̃1, . . . , C̃n. Ideally, this operation re-
moves the pose variability in the training data, and what
remains is just shape variability. The problem then is to
estimate pC̃(C̃) from which the training samples C̃1, . . . , C̃n

are drawn. This density is a probability density over an in-
finite dimensional space. We would like to leave the shape
of this density unconstrained, therefore we adopt a nonpara-
metric density estimation route. Assuming that we are given
a distance metric dC(·, ·) in the space of curves C, we can form
a Parzen density estimator as follows:

1We use the alignment algorithm of [3], but other techniques
can be used as well.



p̂C̃(C̃) =
1

n

nX
i=1

k(dC(C̃, C̃i), σ) (1)

where k(·, σ) denotes a Gaussian kernel with kernel size σ,

i.e. k(x, σ) = 1√
2πσ2 exp(− x2

2σ2 ).

Conceptually, the nonparametric density estimate in (1)
can be used with a variety of distance metrics, yet the key
issue is what kind of metrics make sense. This is related
to the question of what it means for two shapes to be simi-
lar. In the following sections, we consider two specific met-
rics, namely the template metric2 and the Euclidean (or L2)
distance between signed distance functions. The template
metric is given by the area of the set-symmetric difference
between interior regions of two shapes, and can be expressed
as a norm of difference between two binary maps represent-
ing the shapes. On the other hand, the L2 metric we use is a
norm of the difference between two signed distance functions.
From a practical standpoint, the key difference between these
two metrics is that the template metric puts equal weight
on pixels, whereas the L2 distance between signed distance
functions puts variable weight.

2.1 Template Metric

We now consider the Parzen density estimate in (1) with

a specific metric, namely the template metric dT (C̃, C̃i) =
Area(Rinside C̃

�Rinside C̃i
) [5], where � denotes set sym-

metric difference. The density estimate with the template
metric is given by

p̂C̃(C̃) =
1

n

nX
i=1

k(dT (C̃, C̃i), σ). (2)

In [6], we also consider a variant of this metric, namely its
square-root, as an alternative distance measure.

2.2 Euclidean Distance between Signed Distance
Functions

We now consider representing each shape C̃i, i ∈ {1, ..., n},
by its corresponding signed distance function φ̃i, and con-
structing a shape density estimate p̂C̃(C̃) = p̂φ̃(φ̃).3 We ob-
serve that the space of signed distance functions D is a subset
of an infinite dimensional Hilbert space L � {φ|φ : Ω → R},
where Ω denotes the image domain. We can define an inner
product and an induced L2 distance in L as follows:

〈φ1, φ2〉 =

Z
Ω

φ1(x)φ2(x)dx, (3)

dL2(φ1, φ2) =
p

〈φ1 − φ2, φ1 − φ2〉. (4)

Since the space D is embedded in a Hilbert space, a natural
metric d(φ1, φ2) for this space would be a minimum geodesic
distance, i.e. the distance of the shortest path from φ1 to φ2

lying in D. If one could compute such minimum geodesic
distances dgeodesic(·, ·), the corresponding Parzen density

estimate based on aligned training samples {φ̃i} would be

p̂φ̃(φ̃) =
1

n

nX
i=1

k(dgeodesic(φ̃, φ̃i), σ). (5)

2We note that the work in [4] (which came to our attention
while preparing this manuscript) has commonalities with our tem-
plate metric-based approach.

3φ and φ̃ denote the signed distance functions before and after
alignment, respectively.
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Figure 1: Notional illustration of the space of signed distance
functions D, in a scenario where example shapes form two
clusters, corresponding to two classes of shapes.

However, computing a geodesic distance in an infinite di-
mensional manifold is a challenging problem. There is some
previous work on computing geodesic distances in the space
of curves [7, 8], but there is little work when the shape is
represented by signed distance functions.

Instead, we now consider the Parzen density estimate
with the L2 distance in L:

p̂φ̃(φ̃) =
1

n

nX
i=1

k(dL2(φ̃, φ̃i), σ). (6)

Now we discuss how the density estimate in (6) might be a
good approximation to the one with geodesic distance in (5).
If the example shapes are of small variation then the part of
the manifold supporting the example shapes can be approx-
imately flat provided that the manifold does not have too
much curvature. This is why methods involving linear anal-
ysis tools such as PCA of signed distance functions [2, 3]
work reasonably well in the case of small shape variation.
Due to the same phenomenon, the L2 distance used in the
Parzen density estimate can be close to the geodesic distance.
Now consider the case where the example shapes belong to
multiple classes and form multiple clusters as illustrated in
Fig. 1. In this case, the part of the manifold supporting the
samples is no longer flat, and PCA would no longer be a
valid approach. In contrast, the density estimate with L2

distance can still be a good approximation of (5) for the fol-
lowing reasons. For two shapes that are in the same cluster
(e.g. φ̃ and φ̃i in Fig. 1), hence are of small variation, the L2

norm will be a good approximation of the geodesic distance.
On the other hand, for shapes that are in different clusters
(e.g. φ̃ and φ̃j in Fig. 1), there will be an error in approxima-
tion of the geodesic distance, but the overall error in density
estimation will be small as long as the kernel size σ is small
compared to the distance dL2(φ̃, φ̃j).

3. SHAPE-BASED SEGMENTATION

Now we combine the nonparametric shape prior with a data
term, and formulate the segmentation problem as MAP es-
timation. This leads to the following energy functional to be
minimized for segmentation4:

E(C) = − log p(data|C) − log pC(C). (7)

The data term we use here is based on [9], and the second
term is based on the nonparametric shape priors introduced
in Section 2. We minimize this functional iteratively by gra-
dient descent, for which we need the gradient flow for the
curve C or the corresponding signed distance function φ.

4In the rest of the paper, we drop the hat for simplicity in
density estimate p̂.



1. Evolve C without the shape prior for time t ∈ [0, t0]
2. For the curve C|t=t0 , compute the pose p|t=t0 by aligning

C|t=t0 with respect to {C̃i}
3. Iterate until convergence:

(a) fix p and

i. compute C̃ = T [p]C

ii. compute ∂C̃
∂t

for the shape prior log pC̃(C̃)

iii. compute ∂C
∂t

from ∂C̃
∂t

by ∂C
∂t

= T−1[p] ∂C̃
∂t

(b) update C by both the data and the shape force
(c) fix C and update p using an alignment technique

Algorithm 1: Iterative algorithm for updating the pose p
and the curve C.

The gradient flow for the data term is computed as is done
in [9]. So we only focus on the gradient flow ∂C

∂t
or ∂φ

∂t
for the

shape term log pC(C), where t denotes an artificial iteration
time.

Note that any given curve C is not necessarily aligned
with the training data, whereas the shape densities we pro-
posed in Section 2 are based on aligned curves C̃ and {C̃i}.
As a result, in order to compute ∂C

∂t
, we first compute ∂C̃

∂t
,

and then compute ∂C
∂t

from ∂C̃
∂t

. To this end, let C̃ = T [p]C,
where T [p] is a similarity transformation with the pose pa-
rameter p capturing translation, rotation, and scale. We
update C and p iteratively as described in Algorithm 1. We
discuss Step 3-(a)-ii below for the two distance metrics we
consider.

When we use the template metric-based shape prior
p̂C̃(C̃) of (2) in (7), we obtain the following gradient flow [6]:

∂C̃

∂t
=

1

pC̃(C̃)

1

n

1

σ2

X

i

k(dT (C̃, C̃i), σ)dT (C̃, C̃i)(1 − 2H(φi)) �N (8)

where �N is the outward normal direction with respect to
the curve, and H(·) is the Heaviside function, i.e. H(φ)=1
if φ ≥ 0 and H(φ) = 0 if φ < 0. Note that the gradient
flow is composed of a weighted average of several directions,
where the i-th direction is an optimal (gradient) direction
that decreases the distance between the i-th training shape
and the evolving shape. We implement (8) using level set
methods.

Next, we consider the Euclidean distance-based shape
prior pφ̃(φ̃) of (6). Let us first consider evolving φ̃ in the

space L along the gradient of log pφ̃(φ̃) w.r.t. φ̃. The result-

ing gradient flow would be [6]:

∂φ̃

∂t
=

1

pφ̃(φ̃)

1

σ2

1

n

X
i

k(dL2(φ̃, φ̃i), σ)(φ̃i − φ̃). (9)

This flow involves a weighted average of {φ̃i − φ̃}n
i=1, where

φ̃i−φ̃ is the direction toward the i-th training shape φ̃i. Note
that the weight k(dL2(φ̃, φ̃i), σ) for the velocity component

φ̃i − φ̃ increases as φ̃ gets closer to φ̃i.
One issue with the evolution in (9) is that the evolving

level set function does not necessarily remain on the man-
ifold of signed distance functions D. The evolution of the
zero level set (i.e. the curve) in such a case can be less stable
than the case where the evolving level set function remains
a signed distance function [10]. Hence, it is desirable to con-
strain the evolving level set function to stay on the manifold.

Based on these observations, we modify the evolution
equation (9). The goal here is to extract relevant informa-
tion for shape evolution from the velocity field in (9) and to
construct a new velocity field such that the resulting trajec-
tory is on D. First we observe that the only components of

(a) (b) (c)

Figure 2: Segmentation of an occluded aircraft image. (a)
Test image. (b) Result without a shape prior. (c) Result
with the nonparametric shape prior.

the velocity field in (9) that directly impact the shape evolu-

tion are those defined at the points on the boundary C̃, i.e.
where the φ̃ = 0. So we do not modify those components.
The key property we exploit is the following: if we start
with a signed distance function and evolve it with a velocity
field that is constant along the direction normal to the cor-
responding curve C̃, the evolving level set function remains
a signed distance function [11]. So we construct a modified
velocity field by copying the velocities on the boundary from
(9), and then extending these values in the direction normal
to the boundary.

4. EXPERIMENTAL RESULTS

Now we present experimental results demonstrating our seg-
mentation method based on nonparametric shape priors. We
first show results for segmenting occluded objects. Here the
shape prior involves a single class of object shapes. Next, we
present experimental results on a more challenging problem,
where the prior involves multiple classes of object shapes.
In particular, we consider the problem of segmenting hand-
written digits (with low quality or missing data), where the
prior density involves all digits, and the algorithm does not
know which digit class the test data belong to. For the sake
of brevity we present results with only the L2 metric; the
results with the template metric are similar.

4.1 Segmentation of Occluded Objects

In this section, we demonstrate our shape-based segmen-
tation algorithm on synthetic aircraft images. As example
shapes of this class, we have a set of 11 binary images (not
shown here), whose boundaries provide the training curves
C1, . . . , Cn (n = 11). We present segmentation results on
the image of an aircraft whose shape is not included in the
training set. Fig. 2(a) shows the noisy aircraft test image
with an occluded left-wing. Fig. 2(b) shows the segmenta-
tion of this image without a shape prior (the shape prior is
replaced by a curve length penalty term). In Fig. 2(c) we
show the result of our proposed technique, where the shape
prior information allows us to recover the wing of the air-
craft. We also note that our algorithm does not have access
to any information about which parts of the image contain
occlusions.

4.2 Segmentation of Multiple Classes of Objects

We now consider the case where the shape prior density in-
volves multiple classes of shapes. This is a scenario which
cannot be readily handled by most existing shape-based seg-
mentation techniques. In particular, we consider the prob-
lem of segmenting handwritten digits, where there are 10
classes of digits, i.e. 0, 1, . . . , 9. We use a training set of 100
sample images with 10 segmented images of each digit.

Let us consider the low-SNR test images (not included in
the training set) in Fig. 3(a). Segmentations without a shape
prior (and with a curve length penalty instead) are shown
in Fig. 3(b). The results of our shape-based segmentation



(a) (b) (c)

Figure 3: Segmentation of low-SNR digit images. (a) Test
images. (b) Results without a shape prior. (c) Results with
the proposed shape prior.

method are shown in Fig. 3(c), which appear to be quite ac-
curate despite the low-quality data. Finally, we consider an
example involving test images with missing data, as shown
in Fig. 4(a). Our shape-based segmentation results shown
in Fig. 4(c) provide accurate segmentations despite the data
limitations.

5. CONCLUSION

We have considered the problem of estimating shape prior
densities from example shapes and proposed a shape-based
segmentation method. In particular, we have developed a
framework for estimating shape priors from training shapes
nonparametrically. Based on such nonparametric shape pri-
ors, we have formulated the shape-based segmentation prob-
lem as a MAP estimation problem. Evaluation of the non-
parametric shape prior for a candidate curve for segmenta-
tion is given in terms of distances between the candidate
curve and the training curves. We considered the template
metric and the L2 distance between signed distance func-
tions, but other metrics can also be used for nonparametric
shape priors. We have derived curve evolution equations
based on the nonparametric shape priors. We have pre-
sented experimental results of segmenting partially-occluded
images. We have considered the case in which the training
shapes form multiple clusters, and demonstrated that our
nonparametric shape priors model such shape distributions
successfully without requiring prior knowledge on the num-
ber of clusters.
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