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iğithan Dedeoğlu
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Abstract. A novel method to detect flames in infrared �IR� video is pro-
posed. Image regions containing flames appear as bright regions in IR
video. In addition to ordinary motion and brightness clues, the flame
flicker process is also detected by using a hidden Markov model �HMM�
describing the temporal behavior. IR image frames are also analyzed
spatially. Boundaries of flames are represented in wavelet domain and
the high frequency nature of the boundaries of fire regions is also used
as a clue to model the flame flicker. All of the temporal and spatial clues
extracted from the IR video are combined to reach a final decision. False
alarms due to ordinary bright moving objects are greatly reduced be-
cause of the HMM-based flicker modeling and wavelet domain boundary
modeling. © 2007 Society of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.2748752�
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Introduction

onventional point smoke and fire detectors typically de-
ect the presence of certain particles generated by smoke
nd fire by ionization or photometry. An important weak-
ess of point detectors is that they cannot provide quick
esponses in open or large spaces. In this work, an auto-
atic fire detection algorithm in infrared �IR� video is pro-

osed. The strength of using video in fire detection is the
bility to monitor large and open spaces such as auditori-
ms and atriums. Recently, fire and flame detection algo-
ithms in regular video were developed.1–5 They are based
n the use of color and motion information in video. Cur-
ent algorithms are not robust in outdoor applications, for
xample, they may produce false alarms to reddish leaves
ickering in the wind and reflections of periodic warning

ights. Other recent methods for video-based fire detection
re Refs. 6–8. These methods are developed to detect the
resence of smoke in the video.

It was reported that turbulent flames flicker with a fre-
uency of around 10 Hz.2,9,10 Various flame flicker values
ere reported for different fuel types in Refs. 11 and 12. In
ractice, the flame flicker process is time varying and it is
ar from periodic. This stochastic behavior in flicker fre-
uency is especially valid for uncontrolled fires. Therefore,
random model-based modeling of the flame flicker pro-

ess produces more robust performance compared to
requency-domain-based methods that try to detect peaks
round 10 Hz in the Fourier domain. In Ref. 4, fire and
ame flicker is modeled by using hidden Markov models
HMMs� in visible video. The use of IR cameras instead of

regular camera provides further robustness to imaging-
ased fire detection systems, especially for fires with little
adiance in the visible spectrum, e.g., alcohol and hydrogen
091-3286/2007/$25.00 © 2007 SPIE
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fires, which are common in tunnel collisions. Unfortu-
nately, the algorithms developed for regular video cannot
be used in IR video due to the lack of color information,
and there is almost no spatial variation or very little texture
information in fire regions in IR video as in most hot ob-
jects. Therefore, new image analysis techniques have to be
developed to automatically detect fire in IR videos.

A bright-looking object in IR video exhibiting rapid
time-varying contours is an important sign of presence of
flames in the scene. This time-varying behavior is not only
directly observable in the contours of a fire region, but is
also observable as variations of color channel values of the
pixels in regular video. On the other hand, we do not ob-
serve this behavior in IR videos. The entire fire region ap-
pears as a flat white region in IR cameras operating in
white-hot mode.

In this work, boundaries of moving bright regions are
estimated in each IR image frame. A 1-D curve represent-
ing the distance to the boundary from the center of mass of
the region is extracted for each moving hot region. The
wavelet transform of this 1-D curve is computed and the
high frequency nature of the contour of the fire region is
determined using the energy of the wavelet signal. This
spatial domain clue is also combined with temporal clues to
reach a final decision.

The organization of this work is as follows. In Sec. 2.1,
the spatial image analysis and feature extraction method
based on wavelet analysis is described. In Sec. 2.2, tempo-
ral video analysis and HMM-based modeling of the flicker
process is presented. Simulation examples are presented in
Sec. 3.

2 Fire and Flame Behavior in Infrared Video
Fire and flame detection methods in regular video use color
information.1–5,13 On the other hand, most IR imaging sen-

sors provide a measure of the heat distribution in the scene
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nd each pixel has a single value. Usually, hot �cold� ob-
ects in the scene are displayed as bright �dark� regions in
hite-hot mode in IR cameras. Therefore, fire and flame
ixels appear as local maxima in an IR image. If a rela-
ively bright region moves in the captured video, then it
hould be marked as a potential region of fire in the scene
onitored by the IR camera. However, an algorithm based

n only motion and brightness information will produce
any false alarms because vehicles, animals, and people

re warmer than the background, and they also appear as
right objects. In this work, in addition to motion and rela-
ive brightness information, object boundaries are analyzed
oth spatially �intraframe� and temporally �interframe�.

Boundaries of uncontrolled fire regions in an image
rame are obviously irregular. On the other hand, almost all
egular objects and people have smooth and stationary
oundaries. This information is modeled using wavelet do-
ain analysis of moving object contours, which is de-

cribed in the next section. One can reduce the false alarms
hat may be due to ordinary moving hot objects by carrying
ut temporal analysis around object boundaries to detect
andom changes in object contours. This analysis is de-
cribed in Sec. 2.2.

.1 Wavelet Domain Analysis of Object Contours

oving objects in IR video are detected using the back-
round estimation method developed by Collins, Lipton,
nd Kanade.14 This method assumes that the camera is sta-
ionary. Moving pixels are determined by subtracting the
urrent image from the background image and threshold-
ng. A recursive adaptive threshold estimation is described
n Ref. 14 as well. Other methods can be also used for
oving object estimation. After moving object detection, it

s checked whether the object is hotter than the background,
.e., it is verified if some of the object pixels are higher in
alue than the background pixels.

Hot objects and regions in IR video can be determined
n moving cameras as well by estimating local maxima in
he image. Contours of these high temperature regions can
e determined by region growing.

The next step of the proposed method is to determine the
enter of mass of the moving bright object. A 1-D signal
��� is obtained by computing the distance from the center
f mass of the object to the object boundary for 0��
2�. In Fig. 1, two forward-looking infrared �FLIR� im-

ge frames are shown. The example feature functions for
he walking man, indicated with an arrow, and the fire re-
ion in Fig. 1 are shown in Fig. 2 for 64 equally spaced
ngles x�l�=x�l�s�, �s=2� /64. To determine the high-
requency content of a curve, we use a single scale wavelet
ransform shown in Fig. 3. The feature signal x�l� is fed to
filter bank shown in Fig. 3 and the low-band signal

�l� = �
m

h�2l − m�x�m� , �1�
nd the high-band subsignal

ptical Engineering 067204-
w�l� = �
m

g�2l − m�x�m� , �2�

are obtained. Coefficients of the low-pass and high-pass
filters are h�l�= �1/4 ,1 /2 ,1 /4� and g�l�= �−1/4 ,1 /2 ,
−1/4�, respectively.15–17

The absolute values of high-band �wavelet� w�l� and
low-band c�l� coefficients of the fire region and the walking
man are shown in Figs. 4 and 5, respectively. The high-
frequency variations of the feature signal of the fire region
are clearly distinct from that of the man. Since regular ob-
jects have relatively smooth boundaries compared to
flames, the high-frequency wavelet coefficients of flame
boundary feature signals have more energy than regular
objects. Therefore, the ratio of the wavelet domain energy
to the energy of the low-band signal is a good indicator of
a fire region. This ratio is defined as

� =
�l

�w�l��

�l
�c�l��

. �3�

The likelihood of the moving region to be a fire region is

Fig. 1 Two relatively bright moving objects in FLIR video: �a� fire
image and �b� a man �shown with an arrow�. Moving objects are
determined by the hybrid background subtraction algorithm of Ref.
14.
highly correlated with the parameter �. The higher the

June 2007/Vol. 46�6�2
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alue of �, the higher the probability of the region belong-
ng to flame regions.

A threshold �T for � was experimentally estimated off-
ine. During real-time analysis, regions for which ���T are
rst determined. Such regions are possible fire regions. In
rder not to miss any fire region, a low threshold value for
T is selected. Therefore, temporal flicker analysis should
e carried out in these regions to reach a final decision. The
icker detection process is described in the next section.

.2 Modeling Temporal Flame Behavior
t was reported in mechanical engineering literature that
urbulent flames flicker with a frequency of 10 Hz.10 In
ef. 18, the shape of fire regions are represented in the
ourier domain. Since Fourier transform does not carry any

ime information, fast Fourier transforms �FFTs� have to be
omputed in windows of data and temporal window size,
nd the peak or energy around 10 Hz is very critical for
icker detection. If the window size is too long, then one
ay not get enough peaks in the FFT data. If it is too short,

Fig. 2 Equally spaced 64 contour points of �a�
1.

ig. 3 Single-stage wavelet filter bank. The high-pass and low-pass
lter coefficients are �−1/4,1/2,−1/4� and �1/4,1/2,1/4�,

espectively.

ptical Engineering 067204-
then one may completely miss flicker and therefore no
peaks can be observed in the Fourier domain. Furthermore,
one may not observe a peak at 10 Hz but a plateau around
it, which may be hard to distinguish from the Fourier do-
main background.

Another problem is that one may not detect periodicity
in fast growing uncontrolled fires, because the boundary of
the fire region simply grows in video. Actually, the fire
behavior is a wide-band random activity below 15 Hz, and
a random-process-based modeling approach is naturally
suited to characterize the rapid time-varying characteristic
of flame boundaries. Broadbent and Huang et al. indepen-
dently reported different flicker frequency distributions for
various fuel types in Refs. 11 and 12. In general a pixel,
especially at the edge of a flame, becomes part of the fire
and disappears in the background several times in one sec-
ond of a video at random. In fact, we analyzed the temporal
characteristics of the red channel value of a pixel at the
boundary of a flame region in color-video clips recorded at
10 and 25 fps. We also analyzed the temporal characteris-
tics of the intensity value of a pixel at the boundary of a
flame region in an IR video clip recorded at 10 fps. We
obtained the flicker frequency distributions shown in Fig. 6
for 10 fps color video, 25 fps color video, and 10 fps IR
video, respectively. We assumed that the flame flicker be-
havior is a wide-band random activity below 15 Hz for all
practical purposes. This is the basic reason behind our sto-
chastic model.

Flame flicker can be detected in low-rate image se-
quences obtained with a rate of less than 20 Hz as well, in
spite of the aliasing phenomenon. To capture 10-Hz flicker,
the video should capture at least 20 fps. However, in some
surveillance systems, the video capture rate is below 20 Hz.

lking man and �b� the fire regions shown in Fig.
the wa
If the video is available at a lower capture rate, aliasing

June 2007/Vol. 46�6�3
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ccurs but flicker due to flames can still be observed in the
ideo �Fig. 6�. For example, 8-Hz sinusoid appears as 2-Hz
inusoid in a 10 fps video.5 An aliased version of flame
icker signal is also a wide-band signal in the discrete-time
ourier transform domain. This characteristic flicker behav-

or is very well suited to be modeled as a random Markov

Fig. 4 The absolute values of �a� high-band �wa
Fig. 5 The absolute �a� high-band �wavelet� and �b

ptical Engineering 067204-
model, which is extensively used in speech recognition sys-
tems, and recently these models have been used in com-
puter vision applications.19

In this work, three-state Markov models are trained off-
line for both flame and nonflame pixels to represent the
temporal behavior �Fig. 7�. These models are trained using

and �b� low-band coefficients for the fire region.
velet�
� low-band coefficients for the walking man.

June 2007/Vol. 46�6�4
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feature signal, which is defined as follows: let Ik�n� be the
ntensity value of the k’th pixel at frame n. The wavelet
oefficients of Ik are obtained by the same structure shown
n Fig. 3, but filtering is implemented temporally.

Wavelet signals can easily reveal the random character-
stic of a given signal, which is an intrinsic nature of flame
ixels. That is why the use of wavelets instead of actual
ixel values leads to more robust detection of flames in
ideo. Since wavelet signals are high-pass filtered signals,
low variations in the original signal lead to zero-valued
avelet coefficients. Hence it is easier to set thresholds in

he wavelet domain to distinguish slow varying signals
rom rapidly changing signals. Non-negative thresholds
1�T2 are introduced in the wavelet domain to define the

hree states of the hidden Markov models for flame and
onflame moving bright objects.

Fig. 6 Flicker frequency distributions for �a� 10-f
video. These frequency distributions were obta
channel value of a pixel at the boundary of a
25 fps, and intensity value of a pixel at the boun
10 fps, respectively.

ig. 7 Three-state Markov models for �a� flame and �b� nonflame

oving pixels.

ptical Engineering 067204-
The states of HMMs are defined as follows: at time n, if
�w�n� � �T1, the state is in S1; if T1� �w�n� � �T2, the state
is S2; else if �w�n� � �T2, the state S3 is attained. For the
pixels of regular hot objects like walking people, the engine
of a moving car, etc., no rapid changes take place in the
pixel values. Therefore, the temporal wavelet coefficients
ideally should be zero, but due to thermal noise of the
camera, the wavelet coefficients wiggle around zero. The
lower threshold T1 basically determines a given wavelet
coefficient being close to zero. The state defined for the
wavelet coefficients below T1 is S1. The second threshold
T2 indicates that the wavelet coefficient is significantly
higher than zero. The state defined for the wavelet coeffi-
cients above this second threshold T2 is S3. The values
between T1 and T2 define S2.The state S2 provides hyster-
esis and it prevents sudden transitions from S1 to S3 or vice
versa. When the wavelet coefficients fluctuate between val-
ues above the higher threshold T2 and below the lower
threshold T1 in a frequent manner, this indicates the exis-
tence of flames in the viewing range of the camera.

In flame pixels, the transition probabilities a should be
high and close to each other due to the random nature of
uncontrolled fire. On the other hand, transition probabilities
should be small in constant-temperature moving bodies, be-
cause there is no change or little change in pixel values.
Hence we expect a higher probability for b00 than any other
b value in the nonflame moving pixels model �Fig. 7�,
which corresponds to higher probability of being in S1. The
state S2 provides hysteresis and it prevents sudden transi-
tions from S1 to S3 or vice versa.

r video, �b� 25-fps color video, and �c� 10-fps IR
y analyzing the temporal variations in the red
region in color-video clips recorded at 10 and
f a flame region in an IR video clip recorded at
ps colo
ined b
flame
dary o
The transition probabilities between states for a pixel are

June 2007/Vol. 46�6�5
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stimated during a predetermined period of time around
ame boundaries. In this way, the model not only learns the
ay flame boundaries flicker during a period of time, but

lso it tailors its parameters to mimic the spatial character-
stics of flame regions. The way the model is trained dras-
ically reduces the false alarm rates.

During the recognition phase, the HMM-based analysis
s carried out in pixels near the contour boundaries of bright
oving regions whose � values exceed �T. The state se-

uence of length of 20 image frames is determined for
hese candidate pixels and fed to the flame and nonflame
ixel models. The model yielding higher probability is de-
ermined as the result of the analysis for each of the candi-
ate pixels. A pixel is called as a flame or a nonflame pixel
ccording to the result of this analysis. A fire mask com-
osed of flame pixels is formed as the output of the method.

The probability of a Markov model producing a given
equence of wavelet coefficients is determined by the se-
uence of state transition probabilities. Therefore, the flame
ecision process is insensitive to the choice of thresholds
1 and T2, which basically determine if a given wavelet
oefficient is close to zero or not.

Experimental Results
he proposed method was implemented in a personal com-
uter with an AMD AthlonXP 2000+1.66-GHz processor.
he HMMs used in the temporal analysis step were trained
sing outdoor IR video clips with fire and ordinary moving
right objects like people and cars. Video clips have
36,577 image frames with 160�120 pixel resolution. All
f the clips are captured at 10 fps. The FLIR camera that
ecorded the clips has a spectral range of 8 to 12 �m. Some

ig. 8 Image frames from some of the test clips. �a�, �c�, and �d�
how fire regions detected and flame boundaries marked with ar-
ows. No false alarms are issued for ordinary moving bright objects
n �b�, �e�, and �f�.
f the clips were obtained using an ordinary black and

ptical Engineering 067204-
white camera. There are moving cars and walking people in
most of the test video clips. Image frames from some of the
clips are shown in Figs. 8 and 9.

We used some of our clips for training the Markov mod-
els. The fire model was trained with fire videos and the
other model was trained with ordinary moving bright ob-
jects. The remaining 48 video clips were used for test pur-
poses. Our method yields no false positives in any of the IR
test clips.

A modified version of a recent method by Guillemant
and Vicente6 for real-time identification of smoke in black
and white video is implemented for comparison. This
method is developed for forest fire detection from watch-
towers. In a forest fire, smoke rises first, therefore the
method was tuned for smoke detection. Guillemant and Vi-
cente based their method on the observation that the move-
ments of various patterns like smoke plumes produce cor-
related temporal segments of gray-level pixels, which they
called temporal signatures. For each pixel inside an enve-
lope of possible smoke regions, they recovered its last d
luminance values to form a point P= �x0 ,x1 , . . . ,xd−1� in
d−dimensional “embedding space.” Luminance values
were quantized to 2e levels. They utilized fractal indexing
using a space-filling Z-curve concept whose fractal rank is
defined as:

z�P� = �
j=0

e−1

�
l=0

d−1

2l+jdxl
j , �4�

where xl
j is the j’th bit of xl for a point P. They defined an

instantaneous velocity for each point P using the linked list

Fig. 9 Image frames from some of the test clips with fire. Pixels on
the flame boundaries are successfully detected.
obtained according to Z-curve fractal ranks. After this step,

June 2007/Vol. 46�6�6
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hey estimated a cumulative velocity histogram �CVH� for
ach possible smoke region by including the maximum ve-
ocity among them, and made smoke decisions about the
xistence of smoke according to the standard deviation,
inimum average energy, and shape and smoothness of

hese histograms.6

Our aim is to detect flames in manufacturing and power
lants, large auditoriums, and other large indoor environ-
ents. So, we modified the method in Ref. 6 similar to the

pproach presented in Sec. 2.2. For comparison purposes,
e replaced our wavelet-based contour analysis step with

Table 1 Detection results for some of the test cl
most of the time.

Video
clips

Number of frames
with flames

Numbe
in which fl

CVH method

V1 0 17

V2 0 0

V3 71 42

V4 86 71

V5 44 30

V6 79 79

V7 0 15

V8 101 86

V9 62 52

V10 725 510

V11 1456 1291

V12 988 806

Table 2 Fire detection results of our m

Video
clips

Flame
type

Number o
with fla

V9 Paper 62

V10 Paper 72

V11 Paper+alcohol 145

V12 Paper+alcohol 99

V13 Paper+alcohol 143

V14 Paper 99
ptical Engineering 067204-
the CVH-based method and left the rest of the algorithm as
proposed. We formed two three-state Markov models for
flame and nonflame bright moving regions. These models
were trained for each possible flame region using wavelet
coefficients of CVH standard deviation values. States of
HMMs were defined as in Sec. 2.2.

Comparative detection results for some of the test videos
are presented in Table 1. The second column lists the num-
ber of frames in which flames exist in the viewing range of
the camera. The third and fourth columns show the number
of frames in which flames were detected by the modified

the video clip V3, flames are hindered by a wall

mes
detected

Number of false
positive frames

ur method CVH method Our method

0 17 0

0 0 0

63 0 0

85 0 0

41 0 0

79 0 0

0 15 0

101 0 0

59 8 0

718 54 0

1449 107 0

981 19 0

hen trained with different flame types.

s
Number of frames

in which flames detected by
our method trained with

Paper fire Paper+alcohol fire

60 58

722 722

1449 1453

988 991

1426 1430

996 995
ips. In

r of fra
ames

O

ethod w

f frame
mes

5

6

3

4

9
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VH method explained in the previous paragraph and our
ethod, respectively. Our method detected flame bound-

ries that have irregular shapes both temporally and spa-
ially. Both methods detected fire in video clips V3 to V6
nd V8 to V12, which contain actual fires indoor and out-
oor. In video clip V3, flames were behind a wall most of
he time. The distance between the camera and fire ranges
etween 5 to 50 m in these video clips. Video clips V1, V2,
nd V7 do not contain any fire. There are flames and people
alking in the remaining clips. Some flame frames are
issed by both methods, but this is not an important prob-

em at all, because the fire was detected in the next frame or
he frame after the next one. The method using CVH de-
ected fire in most of the frames in fire-containing videos as
ell. However, it yielded false alarms in clips V1, V7, and
9 through V12, in which there were groups of people
alking by a car and around a fireplace. The proposed
ethod analyzes the contours of possible fire regions in the
avelet domain. This makes it more robust to slight con-

our changes than the modified method, which basically
epends on the analysis of motion vectors of possible fire
egions.

Flames of various burning materials have similar yet
ifferent temporal and spatial characteristics. For example,
il flame has a peak flicker frequency around 15 Hz,
hereas it is around 5 Hz for coal flame �see Fig. 2 in Ref.

1�. In fact, flames of the same burning material under
ifferent weather/wind conditions also have different tem-
oral and spatial characteristics. What is common among
arious flame types is the wide-band random nature in them
ausing temporal and spatial flicker. Our method exploits
his stochastic nature. We use wavelet-based feature signals
btained from flickering flames to train and test our models
o get rid of the effects of specific conditions forming the
ames. The wavelet domain feature signals capture the
ondition-independent random nature of flames.

To verify the performance of our method with respect to
ames of different materials, we set up the following ex-
eriment.

1. We train the model with “paper” fire and test it with
both “paper” and “paper+alcohol” fires.

2. We train the model with “paper+alcohol” fire and
test it with both “paper” and “paper+alcohol” fires.

Table 3 Comparison of the proposed method w
method� and the fire detection method describ
range camera. The values for processing times

Video
clips

Number of frames
with flames

Number
in which fla

Our
method

Me
in R

V15 37 31

V16 18 13

V17 0 2
Results of this experiment for some of the test clips are

ptical Engineering 067204-
presented in Table 2. The results show that the method has
similar detection rates for different fires when trained with
different flame types.

The proposed method was also tested with regular video
recordings in comparison with the modified version of the
method in Ref. 6 and the fire detection method described in
Ref. 5. The method in Ref. 5 uses frequency subband
analysis to detect 10-Hz flame flicker, instead of using
HMMs to capture the random temporal behavior in flames.
Results for some of the clips are presented in Table 3. The
clip V17 does not contain any fire, either. However, it leads
to false alarms because a man with a bright fire-colored
shirt dances in front of the camera to fool the algorithm.
This man would not cause any false alarms if an infrared
camera were used instead of a regular visible range camera.

Notice also that the proposed method is computationally
more efficient than Ref. 6 because it is mostly based on
contour analysis of the bright moving objects. Average pro-
cessing time per frame for the proposed method is 5 msec,
as shown in Table 3.

4 Conclusion

A novel method to detect flames in IR video is developed.
The algorithm uses brightness and motion clues along with
a temporal and contour analysis in the wavelet domain. The
main contribution of the method is the utilization of hidden
Markov models trained using temporal wavelet domain in-
formation to detect a random flicker process. The high-
frequency behavior of flame region boundaries are ana-
lyzed using a wavelet-based contour analysis technique.
The experimental results indicate that when the fire falls
into the viewing range of an IR camera, the proposed
method is successful in detecting the flames without pro-
ducing false alarms in all the examples that we tried.

The method can be used for both indoor and outdoor
early fire detection applications.
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