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ABSTRACT 
 

MOVING OBJECT DETECTION AND TRACKING 
IN WAVELET COMPRESSED VIDEO 

 
Behçet Uğur Töreyin 

M.S. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. A. Enis Çetin 

August 2003 

 

In many surveillance systems the video is stored in wavelet compressed form. 

An algorithm for moving object and region detection in video that is 

compressed using a wavelet transform (WT) is developed. The algorithm 

estimates the WT of the background scene from the WTs of the past image 

frames of the video. The WT of the current image is compared with the WT of 

the background and the moving objects are determined from the difference. 

The algorithm does not perform inverse WT to obtain the actual pixels of the 

current image nor the estimated background. This leads to a computationally 

efficient method and a system compared to the existing motion estimation 

methods. In a second aspect, size and locations of moving objects and regions 

in video is estimated from the wavelet coefficients of the current image, which 

differ from the estimated background wavelet coefficients. This is possible 

because wavelet coefficients of an image carry both frequency and space 

information. In this way, we are able to track the detected objects in video. 

Another feature of the algorithm is that it can determine slowing objects in 

video. This is important in many practical applications including highway 

monitoring, queue control, etc. 
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Keywords: wavelet transform, intra-frame compression, background 

subtraction, video object tracking, non-linear voting, video-based surveillance 

systems.  
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ÖZET 
 

DALGACIK DÖNÜŞÜMÜYLE SIKIŞTIRILMIŞ 
VİDEODA HAREKETLİ NESNE TESPİTİ VE 

TAKİBİ 
 

Behçet Uğur Töreyin 

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. A. Enis Çetin 

Ağustos 2003 

 

Görüntü tabanlı pek çok güvenlik sisteminde sıkıştırma yöntemi olarak 

dalgacık dönüşümü kullanılmaktadır. Bu çalışmada, dalgacık dönüşümüyle 

sıkıştırılmış videolarda, hareketli nesne tespiti ve takibiyle ilgili bir yöntem 

geliştirilmiştir. Yöntem, her resim için arka plana ait dalgacık dönüşümü 

katsayılarının kestirilmesi esasına dayanmaktadır. Mevcut andaki resme ait 

dalgacık dönüşümü katsayıları, arkaplana ait katsayılarla karşılaştırılarak, 

hareketli nesneler tespit edilmektedir. Yöntem dalgacık dönüşümünün tersini 

almadan hareketli nesneleri bulabildiği için diğer yöntemlere göre çok daha az 

işlem gerektirir. Diğer taraftan, hareketli nesnelerin büyüklükleri ve konumları 

da tespit edilebilmektedir. Bu, dalgacık dönüşümünün hem konum hem de 

sıklık bilgisi içermesi sayesinde mümkün olmaktadır. Nesne takibi böylelikle 

gerçekleştirilmiştir. Yöntemin bir başka özelliği de yavaşlayan ve duran 

nesneleri de tespit edebiliyor olmasıdır. Bu da, otoyol görüntülenmesi, sıra 

denetimi, vb. pekçok uygulama için önemli bir özelliktir.  
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Anahtar kelimeler: dalgacık dönüşümü, resim içi sıkıştırma, arkaplan 

kestirimi, video nesnesi, takip etme, doğrusal olamayan oylama, görüntü 

tabanlı güvenlik sistemleri. 
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Chapter 1 
 

Introduction 

 
 

A surveillance system can be defined as a technological tool that helps humans 

by providing extended perception and reasoning capability about situations of 

interest that occur in the monitored environments [1,2]. Human perception and 

reasoning are constrained by the capabilities and the limits of the human senses 

and mind which collaboratively collect, process and store limited amount of 

data. Human beings can sense and process data coming from only a spatially 

limited area at a given time. Surveillance systems extend this limited 

perception capability of humans. 

Surveillance systems have various application areas: 

- safety in transport applications, such as monitoring of railway stations, 

underground stations, airports, motorways, urban and city roads, 

maritime environments 

- safety or quality control in industrial applications, such as monitoring 

of nuclear plants or industrial processing cycles 
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- security applications, such as monitoring of indoor or outdoor 

environments like banks, supermarkets, car parking areas, waiting 

rooms, buildings, etc., remote monitoring of a patient, remote 

surveillance of human activity. 

Among various sensing modalities in a surveillance system, like chemical 

sensing or audio, visual information processing and understanding modality 

have the most important and crucial part. This fact is due to several aspects of 

visual data:  

- Temporally organized visual information is the major source of human 

information about the surrounding environment. 

- As the number of cameras increase, event monitoring by personnel is 

rather boring, tedious, and erroneous at times. The automatic 

preprocessing of the video information by a surveillance system can act 

as a pre-filter to human validation of the events. Therefore, it is 

mandatory to manage the complexity of monitoring a large site 

somehow. Besides, presenting the events occurring in a large monitored 

area to the personnel in a user-friendly manner is the most suitable 

approach.  

- The cost of a video sensor is much lower compared to other sensing 

mechanisms when the area of coverage and event analysis 

functionalities provided by using video as the sensing modality for 

monitoring are taken into consideration. 

- A large body of knowledge exists in the areas of robust and fast digital 

communication, video processing, and pattern recognition. These 

facilitate the development of effective and robust real-time systems. 
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Video-based surveillance systems can be grouped in three successive 

generations, historically. The three generations follow the evolution of 

communications, processing, and storage technologies. 1960s can be 

considered to be the starting date of video surveillance systems as close circuit 

television systems (CCTV) were operative in the market and providing data at 

acceptable quality at those times. 

First generation video surveillance systems (1GSS) (1960-1980) basically 

extend the human perception capabilities in spatial sense. More eyes are used 

to monitor a large area. The analog visual signals from distant locations are 

collected and displayed in a single control room. 1GSSs are based on analog 

signal and image transmission and processing. From the processing point of 

view, one major drawback of these systems is that they are mostly dependent 

on the limited attention spans of the human operators who inspect the monitors 

in the control room. 

Then comes the next generation (2GSS) in video surveillance which 

spanned mainly the last two decades. It corresponds to the maturity stage of the 

1GSSs; they benefited from the early advances in digital technology (e.g., 

digital compression, bandwidth reduction, and robust transmission) and 

processing methods that provide assistance to the human operator by 

prescreening of important visual events. Most of the research efforts during the 

period of 2GSSs have been spent to the development of automated real-time 

event detection techniques for video surveillance. Consequently, advanced 

perception capability in 2GSSs allowed for a significant increase in the amount 

of simultaneously monitored data and, in addition, provided an alarm data 

directly relevant to the cognitive monitoring tasks. However, those systems still 

included digital methods to solve local and isolated problems. They didn’t 

make use of digital technology in the whole system. 
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The main idea behind the third generation surveillance systems (3GSS) is 

to provide full digital solutions to the design of the systems, starting at the 

sensor level, all the way up to the operators. 

In Figure 1.1, an architectural scheme of 3GSS is presented. Video cameras 

constitute the sensor layer, while the peripheral intelligence and the 

transmission devices form the local processing layer. These two can be 

physically organized together to form an intelligent camera. The local 

processing layer uses digital compression methods, including wavelet coding, 

to save bandwidth resources. The principal component in the network layer is 

the intelligent hub which fuses the data coming from lower layers in an 

application oriented manner. At the operator layer, an interface is presented to 

the operator. This interface draws the attention of the operator to a subset of 

interesting events. All communications throughout the entire system is digital. 

To implement a full digital surveillance system,  improvements in 

automatic recognition functionalities and digital multi-user communications 

strategies are needed. Technology  meeting the requirements for the 

recognition algorithms includes computational speed, memory usage, remote 

data access, multi-user communications between distributed processors, etc. In 

this study, we address the problems of computational speed and memory usage 

for the recognition methods, and propose a system which makes use of the 

compressed data to extract the needed cognitive information from the visual 

content.  
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Figure 1.1: Architectural scheme of 3GSS. 

 

1.1. MOTIVATION 

Compression of the digital data coming from the sensors has been an 

indispensable part of surveillance systems since 2GSSs. Hence, several 

transforms have been used for coding of this huge amount of data. In many 

video based surveillance systems, the video is compressed intra-frame only, 

without performing motion compensated prediction due to legal reasons. 

Courts do not accept predicted image frames as legal evidence in many 

European countries. As a result, a typical surveillance video is composed of a 

series of individually compressed image frames. In addition, many practical 

systems have a built-in VLSI hardware image compressor directly storing the 

video data coming from several cameras into a hard disc.  
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In this study, it is assumed that the video data is stored using a wavelet 

compressor in the wavelet domain. In most of the video based surveillance 

systems used today, the visual data is stored in wavelet compressed form for its 

superior features compared to the discrete cosine transform. In many multi-

channel real-time systems, it is not possible to use uncompressed video due to 

available processor limitations. Thus, we developed an algorithm for moving 

object and region detection in compressed video using a wavelet transform 

(WT). A tracker is also added to the system which successfully keeps track of 

the objects, handles occlusions with two occluding bodies, again by making 

use of the wavelet coefficients of the video data.  

The algorithm estimates a wavelet transform of the background scene from 

the wavelet transforms of the past image frames of the video. The wavelet 

transform of the current image is compared with the WT of the background and 

the moving objects are determined from the difference. The algorithm does not 

perform inverse wavelet transform to obtain the actual pixels of the current 

image nor the estimated background. This leads to a computationally efficient 

method and a system compared to the existing motion estimation methods. In a 

second aspect, size and locations of moving objects and regions in video is 

estimated from the wavelet coefficients of the current image, which differ from 

the estimated background wavelet coefficients. This is possible because 

wavelet coefficients of an image carry both frequency and space information. 

Another feature of the algorithm is that it can determine slowing objects in 

video. This is important in many practical applications including highway 

monitoring, waiting room monitoring, etc. 
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1.2. ORGANIZATION OF THE THESIS 

The thesis is organized as follows: Chapter 2 presents a survey of the prior 

studies on moving object detection methods and systems. In Chapter 3, the 

proposed method for moving and left object detection is explained in detail. 

Chapter 4 includes the explanation of the tracker used in the system. Finally, 

Chapter 5 concludes the thesis. 

  



  

 

 

Chapter 2 

 

Related Work 

 
In [17], Plasberg describes an apparatus and a method for the detection of an 

object moving in the monitored region of a camera, wherein measured values 

are compared with reference values and an object detection reaction is 

triggered when the measured value deviates in a pre-determined manner from 

the reference value. This method is based on comparing the actual pixel values 

of images forming the video. Plasberg neither tries to detect left objects nor 

makes an attempt to use compressed images or video stream. In many real-time 

applications, it is not possible to use uncompressed video due to available 

processor power limitations. 

In [18], Jung describes a method where motion vectors of small image 

blocks are determined between the current frame and the preceding frame 

using the actual image data.  The system described in this patent computes the 

motion of small blocks not moving objects. In addition, it cannot estimate the 

motion in the compressed domain. 

In [19], Naoi et al. describe a method which classifies moving objects 

according  to  their  motion.   In   this  system  several  background  images  are 

 8  
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estimated from the video and speeds of moving objects are determined by 

taking the difference of the current image and estimated background images.  

The system described in this patent did not consider characterizing the motion 

of moving objects in the compressed data domain and cannot estimate the 

motion in the compressed domain. Thus it cannot classify the motion of 

moving objects from the compressed video data. 

In [20] Yoneyama et al. describe a system for detecting moving objects 

in moving picture. It can detect moving objects in block based compression 

schemes without completely decoding the compressed moving picture data. 

Yoneyama’s method works only in block based coding schemes. This method 

divides images into small blocks and compresses the image and video block by 

block. The method is based on the so called motion vectors characterizing the 

motions of blocks forming each image. Yoneyama’s approach restricts the 

accuracy of motion calculation to the pre-defined blocks and makes no attempt 

to reduce the amount of processing required by ignoring the non-moving 

background parts. Therefore it is a different approach than our approach, which 

characterizes the moving objects. In addition, the scheme makes no attempt to 

estimate a background image from video to characterize the motion of moving 

objects. 

In [21], Taniguchi et al. describe a moving object detection apparatus 

including a movable input section to input a plurality of images in a time 

series, in which a background area and a moving object are included. A 

calculation section divides each input image by unit of predetermined area, and 

calculates the moving vector between two images in a time series and a 

corresponding confidence value of the moving vector by unit of the 

predetermined area. A background area detection section detects a group of the 

predetermined areas, each of which moves almost equally as the background 

area from the input image according to the moving vector and the confidence 
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value by unit of the predetermined area. A moving area detection section 

detects the area other than the background area as the moving area from the 

input image according to the moving vector of the background area. This 

method is also based on comparing the actual pixel values of images forming 

the video and there is neither an attempt to detect left objects in video nor use 

compressed images nor compressed video stream for background estimation. 

In the survey article [22] by Wang et al., motion estimation and detection 

methods in compressed domain are reviewed. All of the methods are developed 

for detecting motion in Discrete Cosine Transform (DCT) domain. DCT 

coefficients neither carry time nor space information. In DCT based image and 

video coding, DCT of image blocks are computed and motion of these blocks 

are estimated. Therefore, these methods restrict the accuracy of motion 

calculation to the pre-defined blocks. These methods do not take advantage of 

the fact that wavelet transform coefficients contain spatial information about 

the original image. Therefore, they can not be used in videos compressed using 

a wavelet transform. The methods and systems described in this article try to 

detect stopped objects or left objects by examining the motion vectors of 

moving objects in video. Our approach is different from other approaches in 

the sense that we characterize the motion of moving objects by examining the 

background scene estimated from the video. 

  



 

 

Chapter 3 

 
Moving and Left Object Detector 

 
Proposed method and system for characterizing the motion of moving 

objects in digital video is presented in this chapter.  

A typical video scene contains foreground and background objects. 

Foreground objects temporarily stay in the video. However, a stopped object or 

a left object becomes a part of the background scene and remains in the 

viewing range of the camera. We determine if an object is in transition or it 

stops within the viewing range of the camera by examining the background 

scene estimated from the video. We also detect left objects. Other methods 

characterize moving objects by examining the motion vectors of moving 

objects in video. Our approach is different from other approaches in the sense 

that we determine if an object is transitory or remains in video by estimating 

the background scene. 

The proposed method and the system determine left objects from a 

digital video. A plurality of images are input to the system as a time series. The 

method and the system determine the left objects by comparing the background 

image  estimated  from  the  current  image  of  the  video with  the background 

 11  
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estimated from previous images of the video. Difference between the current 

and previous background images indicates a left object. Other objects, which 

do not modify the background scene are determined as transitory objects. This 

idea is implemented in compressed data domain. In other words, the method 

and the system determine left objects from digital video in compressed form.  

Background scene of a video can be estimated using the compressed 

video data as well. If the video is in compressed form, estimating the 

compressed form of the background in the compressed data domain leads to a 

computationally efficient method as there is no need to decompress the video. 

Other objects, which do not modify the background scene in compressed data 

domain are considered as transitory objects. In this case, comparison of the 

current background scene with the previous estimates of the background scene 

can be carried out in the compressed domain. 

Proposed system provides several methods and apparatus for 

characterizing the motion of moving objects in video represented in wavelet 

encoded form without performing data decompression. 

 

3.1 Hybrid Algorithm for Moving Object Detection 
 

 Background subtraction is a commonly used class of techniques for 

segmenting out objects of interest in a scene for applications such as 

surveillance. There are numerous methods in the literature [16]. A significant 

number of background estimation algorithms use a simple IIR filter applied to 

each pixel independently to update the background and use updated thresholds 

to classify pixels into foreground/background. This is followed by some post 

processing to correct classification failures. Some use statistical analysis per 
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pixel per frame, which increase the computational complexity drastically. 

Hence those methods are not suitable for real time event monitoring 

applications as in our case. 

Stationary pixels in the video are the pixels of the background scene 

because the background can be defined as temporally stationary part of the 

video. If the scene is observed for some time, then pixels forming the entire 

background scene can be estimated because moving regions and objects 

occupy only some parts of the scene in a typical image of a video. A simple 

approach to estimate the background is to average the observed image frames 

of the video. Since moving objects and regions occupy only a part of the 

image, they conceal a part of the background scene and their effect is cancelled 

over time by averaging. 

Our main concern is real-time performance of the system. Satisfying 

our concern, any one of the background subtraction methods can be used.  

Among various methods reported in the literature for estimating backgrounds 

of frames forming the video, we chose to implement the one presented in the 

System for Video Surveillance and Monitoring (VSAM) Project’s report of 

Carnegie Mellon University [3]. In that document, a recursive background 

estimation method was reported from the actual image data. Let In(x,y) 

represent the intensity(brightness) value at pixel position (x,y) in the nth image 

frame In. Estimated background intensity value at the same pixel position, 

Bn+1(x,y), is calculated as follows: 

n n
n + 1

n

aB (x, y) + (1- a)I (x, y)     if  (x, y) is non - moving
B (x, y) = 

B (x, y)                             if  (x, y) is moving




     (3.1) 
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where Bn(x,y) is the previous estimate of the background intensity value at the 

same pixel position. The update parameter a is a positive real number close to 

one. Initially, B0(x,y) is set to the first image frame I0(x,y). 

A pixel positioned at (x,y) is assumed to be moving if the brightness 

values corresponding to it in image frame In and image frame In-1, satisfy the 

following inequality: 

| In (x,y) - In-1(x,y)|  > Tn(x,y)                                 (3.2) 

where In-1(x,y) is the brightness value at pixel position (x,y) in the (n-1)st image 

frame In-1. Tn(x,y) is a threshold describing a statistically significant brightness 

change at pixel position (x,y). This threshold is recursively updated for each 

pixel as follows: 

n n n
n + 1

n

aT (x, y) +(1- a)(c | I (x, y) - B (x, y)|)   if  (x, y) is non - moving
T (x, y) = 

T (x, y)                                                 if  (x, y) is moving




 (3.3) 

where c is a real number greater than one and the update parameter a is a 

positive number close to one. Initial threshold values are set to an 

experimentally determined value.  

As it can be seen from (3.3), the higher the parameter c, higher the 

threshold or lower the sensitivity of detection scheme. 

It is assumed that regions significantly different from the background 

are moving regions. Estimated background image is subtracted from the 

current image to detect moving regions. In other words all of the pixels 

satisfying: 

| In (x,y) - Bn(x,y)|  > Tn(x,y)                               (3.4)                  
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are determined.  These pixels at (x,y) locations are classified as the pixels of 

moving objects. 

In this study, we also detect left or removed objects. In order to achieve 

this, we compare the background images at (n+1)st frame Bn+1, and  (n-m)th 

frame Bn-m, where the duration parameter m is a positive integer used to 

determine the change in background. The duration parameter m is determined 

by the user to classify if an object is moving, left(abandoned) or removed. If 

there are pixels whose corresponding background values significantly differ 

from each other in (n+1)st and (n-m)th frames, then this means that background 

has changed. Pixels satisfying: 

  |Bn+1 (x,y) - Bn-m(x,y)|  > Th                                                  (3.5)                  

belong to left or removed objects during the time corresponding to the 

adjustable duration parameter m. The threshold value Th is a positive integer.  

Once all pixels satisfying (3.5) are determined, the union of the neighboring 

pixels on the image In is obtained to determine the left or removed object(s) in 

the video. The number of left objects is equal to the number of disjoint regions 

obtained as a result of the union operation. 

If the intensity of a pixel at (x,y) location, In(x,y), satisfies (3.4) but the 

corresponding background value Bn+1(x,y) does not satisfy (3.5), this means 

that this pixel does not belong to a left or a removed object. It is the pixel of a 

moving object in transition in In. The union of the neighboring pixels satisfying 

(3.4) in In determines the moving object(s) in the video. Similarly, the number 

of moving objects is equal to the number of disjoint regions obtained as a result 

of the union operation. 

Figure 3.1 is a block diagram illustrating the present invention for 

characterizing the motion of moving objects in a video consisting of a sequence 
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of images. The block diagrams and flow diagrams illustrated herein are 

preferably implemented using software on any suitable general-purpose 

computer or the like, having microprocessor, memory, and appropriate 

peripherals, where the software is implemented with program instructions 

stored on a computer readable medium (memory device, CDROM or 

DVDROM, magnetic disk, etc.).  The block diagrams and methods can 

alternatively be implemented using hardware (logic gates, etc.) or a 

combination of hardware and software. 

The current image frame In and estimated background image Bn are 

input to a background estimating system which determines the next estimate 

Bn+1 as described above. This system may have a memory and may use not 

only In but also other past frames In-k, k=1,2,… The comparator may simply 

take the difference of In and Bn and the difference of Bn+1 and Bn-m to determine 

if there is a change in pixel values. Pixels satisfying (3.4) and (3.5) are 

determined. The motion classifier determines if a pixel belongs to a moving 

object or a left object. If (3.5) is satisfied at the pixel location (x,y) then the 

corresponding pixel at (x,y) belongs to a left object. If a pixel at (x,y) satisfies 

(3.4) but the corresponding background pixel value Bn+1(x,y) does not satisfy 

(3.5), this means that this pixel does not belong to a left object. It is the pixel of 

a moving object in transition in In. 
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Figure 3.1 Block diagram illustrating the proposed system for characterizing 

the motion of moving regions in an image sequence forming a video by 

comparing the current image with the background image estimated from the 

current and past images of the video. 
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 3.2 Detection in Wavelet Domain 
 

Above arguments are valid in compressed data domain as well [6]. In 

our case, a wavelet transform based coder is used for data compression. The 

wavelet transform of the background scene can be estimated from the wavelet 

coefficients of past image frames, which do not change in time, whereas 

foreground objects and their wavelet coefficients change in time. Such wavelet 

coefficients belong to the background because the background of the scene is 

temporally stationary. Non-stationary wavelet coefficients over time 

correspond to the foreground of the scene and they contain motion information. 

If the viewing range of the camera is observed for some time, then the wavelet 

transform of the entire background can be estimated because moving regions 

and objects occupy only some parts of the scene in a typical image of a video 

and they disappear over time. 

Wavelet transforms have substantial advantages over conventional 

Fourier transforms for analyzing nonlinear and non-stationary time series 

because wavelet transform contains both time and frequency information 

whereas Fourier Transform contains only frequency information of the original 

signal [9]. These transforms are used in a variety of applications, some of 

which include data smoothing, data compression, and image reconstruction, 

among many others. [23] and [7] are examples of image and video coding 

methods using the wavelet transform. In addition, the so called JPEG2000 

image compression standard (ISO/IEC 15444-1:2000) is also based on the 

wavelet transform. A video consisting of a plurality of images can be encoded 

using JPEG2000 standard by compressing each image of the video using 

JPEG2000 standard. 
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Wavelet transforms such as the Discrete Wavelet Transform (DWT) 

can process a signal to provide discrete coefficients, and many of these 

coefficients can be discarded to greatly reduce the amount of information 

needed to describe the signal. The DWT can be used to reduce the size of an 

image without losing much of the resolution.  For example, for a given image, 

the DWT of each row can be computed, and all the values in the DWT that are 

less than a certain threshold can be discarded.  Only those DWT coefficients 

that are above the threshold are saved for each row.  When the original image 

is to be reconstructed, each row can be padded with as many zeros as the 

number of discarded coefficients, and the inverse Discrete Wavelet Transform 

(IDWT) can be used to reconstruct each row of the original image.  Or, the 

image can be analyzed at different scales corresponding to various frequency 

bands, and the original image reconstructed by using only the coefficients that 

are of a particular band. 

 
 
 
 
                                     
                                          
 
 
 
 

 
 

Original 
 

Image 

 
LL(1) 

 
LH(1) 

 
 

HL(1) 

 
 

HH(1) 

 
Figure 3.2 Diagrammatic illustration of the transformation of an image into a 

one-level wavelet transformed image. 

Figure 3.2 illustrates the transformation of an original image of the 

video into a one-level subsampled image. Wavelet transforms can decompose 

an original image into sub-images in various scales each sub-image 

representing a frequency subset of the original image.  Wavelet transforms use 
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a bank of filters processing the image pixels to decompose the original image 

into high-frequency and low-frequency components. This operation can be 

successively applied to decompose the original image into a low-frequency, 

various medium-band frequency, and high-frequency components. After each 

stage of filtering data can be subsampled without losing any information 

because of the special nature of the wavelet filters. One level of two 

dimensional dyadic wavelet transform creates four subsampled separate 

quarters, each containing different sets of information about the image.  It is 

conventional to name the top left quarter Low-Low (LL) – containing low-

frequency horizontal and low-frequency vertical information; the top right 

quarter High-Horizontal (HH) or (LH)  – containing high-frequency horizontal 

information; the bottom left quarter High-Vertical (HV) or (HL) – containing 

high-frequency vertical information; and the bottom right quarter High-

Diagonal (HD) or (HH) – containing high-frequency diagonal information. The 

level of transform is denoted by a number suffix following the two-letter code.  

For example, LL(1) refers to the first level of transform and denotes the top left 

corner of the subsampled image by a factor of two in both horizontal and 

vertical dimensions. 

Typically, wavelet transforms are performed for more than one level. 

For our case, we use up to the fifth level in this study. Figure 3.3 illustrates 

further transforms that have been performed on the LL quarter of the 

subsampled image to create additional subsampled images. The second 

transform performed on the LL(1) quarter produces four second level quarters 

within the LL(1) quarter which are similar to the first level quarters, where the 

second level quarters are labeled as LL(2), LH(2), HH(2), and HL(2).  A third 

transform performed on the LL(2) quarter produces four third level quarters 

labeled as LL(3), LH(3), HH(3), and HL(3), and so on.  Additional transforms 

can be performed to create subsampled images at lower levels.   
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Figure 3.3: Wavelet transform up to fifth level is performed to the original 

image on the left. The wavelet transform tree corresponding to the original 

image, depicting third, fourth and fifth levels is on the right. 

A hierarchy of subsampled images from wavelet transforms, such as the 

three levels of transform shown in Figure 3.3, is also known as a “wavelet 

transform tree.” A typical three scale discrete wavelet transform (DWT) of the 

image I is defined as WI = {LL(5), LH(5), HH(5), HL(5), LH(4), HH(4), HL(4), 

LH(3), HH(3), HL(3)}. The DWT of the image I may be defined to contain 

LL(3) and LL(4) as well. In fact the so called subband images LL(5), LH(5), 

HH(5), and HL(5) uniquely define the subband image LL(4), and LL(4), LH(4), 

HH(4), and HL(4) uniquely define the so called low-low image LL(3). 

In wavelet transform based image encoders, many of the small valued 

wavelet coefficients are discarded to reduce the amount of data to be stored. 

When the original image is to be reconstructed the discarded coefficients are 

replaced with zeros. A video is composed of a series of still images (frames) 

that are displayed to the user one at a time at a specified rate. Video sequences 

can take up a lot of memory or storage space when stored, and therefore can be 

compressed so that they can be stored in smaller spaces. In video data 

compression, each image frame of the video can be compressed using a 

wavelet coder. In addition, some portions of image frames or entire frames can 
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be discarded especially when an image frame is positioned between two other 

frames in which most of the features of these frames remain unchanged. 

If the video data is stored in wavelet domain as discussed in the above 

paragraphs, then the proposed method compares the wavelet coefficients of the 

subband images corresponding to the current image In, with the wavelet 

coefficients of the subband images corresponding to the previous image frame, 

In-1, to detect motion and moving regions in the current image without 

performing an inverse wavelet transform operation. Moving regions and 

objects can be detected by comparing the wavelet coefficients of the subband 

image corresponding to the current image with the wavelet coefficients of the 

subband image corresponding to the background scene Bn which can be 

estimated from the subband images of the current and past image frames. If 

there is a significant difference between the two subband images, then this 

means that there is motion in the video. If there is no motion, then the wavelet 

coefficients of the subband image corresponding to the current image, In, and 

the background image Bn, ideally should be equal to each other. 

The subband image corresponding to the background scene, can be 

estimated from the wavelet coefficients of past image frames. These 

coefficients do not change in time, whereas foreground objects and their 

wavelet coefficients change in time. Such wavelet coefficients belong to the 

background because background of the scene is temporally stationary. Non-

stationary wavelet coefficients over time correspond to the foreground of the 

scene and they contain motion information. If the viewing range of the camera 

is observed for some time then the wavelet transform of the entire background 

can be estimated because moving regions and objects occupy only a portion of 

the scene in a typical image of a video and they disappear over time. 
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A simple approach to estimate the wavelet coefficients of the subband 

image corresponding to the background image, is to average the wavelet 

coefficients of the observed image frames. Since moving objects and regions 

occupy only a small portion of the image, they can conceal a part of the 

background scene and their effect in the wavelet domain is cancelled over time 

by averaging. 

Any one of the space domain approaches for background estimation can 

be implemented in wavelet domain. For example, the method in [3] reviewed 

above, can be implemented by simply performing (3.1) for the wavelet 

coefficients corresponding to the relevant subband images. Let Dn denote a 

subband image of the background image Bn at time instant n. Dn may be any 

one of the subband images described on page 21 and depicted in Figure 3.3. 

The estimated subband image of the background for the subband image Dn is 

denoted by Dn+1 and calculated as: 

n n
n + 1

n

aD (i, j) + (1- a)J (i, j)   if  (i, j) is non - moving
D (i, j) = 

  D (i, j)                        if  (i, j) is moving




      (3.6) 

where Jn is the corresponding subband image of the current image frame In. 

The update parameter a is a positive real number close to one. Initial subband 

image of the background, D0, is assigned to be the corresponding subband 

image of the first image of the video I0.  

In (3.1) - (3.5), (x,y)’s correspond to original image’s pixel locations, 

whereas in (3.6) and in all the equations in this section, (i,j)’s correspond to 

locations of subband images’ wavelet coefficients.  
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A wavelet coefficient at the position (i,j) in a subband image is assumed 

to be  moving if 

|Jn (i,j) - Jn-1(i,j)|  > Tn(i,j)                              (3.7) 

where Tn(i,j) is a threshold recursively updated for each wavelet coefficient as 

follows: 

n n n
n + 1

n

aT (i, j) +(1- a)(b | J (i, j) - D (i, j) |)  if  (i, j) is non - moving
T =

  T (i, j)                                                if  (i, j) is moving
(i, j) 




 (3.8) 

where b is a real number greater than one and the update parameter a is a 

positive real number close to one. Initial threshold values can be 

experimentally determined. As it can be seen from the above equation, the 

higher the parameter b, higher the threshold or lower the sensitivity of 

detection scheme. 

Estimated subband image of the background is subtracted from the 

corresponding subband image of the current image to detect the moving 

wavelet coefficients and consequently moving objects as it is assumed that the 

regions different from the background are the moving regions. In other words, 

all of the wavelet coefficients satisfying the inequality 

                      | Jn (i,j) - Dn(i,j)|  > Tn(i,j)                                  (3.9)                  

are determined. 

We also compare the subband image of the estimated background for 

the (n+1)st image, Dn+1 and corresponding subband image of m frame previous 

background image, Dn-m to determine the change in background. The duration 

parameter m is adjusted by the user to classify if an object is moving or left as 

discussed before. If there are wavelet coefficients whose values significantly 

  



CHAPTER 3. MOVING AND LEFT OBJECT DETECTOR 25

differ from each other in Dn+1 and Dn-m, then this means that background has 

changed. Wavelet coefficients satisfying the inequality: 

| Dn+1 (i,j) - Dn-m(i,j)|  > Th                                                  (3.10) 

belong to left or removed objects during the time corresponding to the 

adjustable duration parameter m. The threshold value Th is a positive integer.  

Th may be different from the threshold value used in (3.5). It can be also 

recursively determined as the threshold used in (3.9). 

Once all the wavelet coefficients satisfying the above inequalities are 

determined and classified accordingly, locations of corresponding regions on 

the original image are determined. If a single stage Haar wavelet transform is 

used in data compression then a wavelet coefficient satisfying (3.9) 

corresponds to a two by two block in the original image frame In. For example, 

if (i,j)th coefficient of the subband image HHn(1) (or other subband images 

HLn(1), LHn(1), LLn (1)) of In satisfies (3.4), then this means that there exists 

motion in a two pixel by two pixel region in the original image, In(k,m), k=2x, 

2x-1, m=2y, 2y-1  because of the subsampling operation in the discrete wavelet 

transform computation. Similarly, if the (i,j)th coefficient of the subband image 

HHn(2) (or other second scale subband images HLn(2), LHn(2), LLn(2)) satisfies 

(3.9) then this means that there exists motion in a four pixel by four pixel 

region in the original image, In(k,m), k=4x, 4x-1, 4x-2, 4x-3 and m=4y, 4y-1, 

4y-2, 4y-3. In general a change in the lth level wavelet coefficient corresponds 

to a 2l by 2l region in the original image. 

In fact we do not take the wavelet transforms. We feed the compressed 

data to our system in the format of Aware Inc.’s Motion Wavelet Codec[35]. It 

uses Daubechies’ 9/7 biorthogonal wavelet [24] whose filter coefficients are 
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presented at Table 3.1. These coefficients for the analysis part are obtained by 

applying the factorization scheme presented in [34]. 

Table 3.1: Lowpass and Highpass filter coefficients 

9 Low-pass filter coefficients  7 High-pass filter coefficients  

0.02674875741081  

-0.01686411844287  

-0.07822326652899  

0.26686411844287  

0.60294901823636  

0.26686411844288  

-0.07822326652899  

-0.01686411844288  

0.02674875741081

0.04563588155713 

-0.02877176311425 

-0.29563588155713 

0.55754352622850 

-0.29563588155712 

-0.02877176311425 

0.04563588155713 

 

For this biorthogonal transform, the number of pixels forming a wavelet 

coefficient is larger than four but most of the contribution comes from the 

immediate neighborhood of the pixel In(k,m)=(2x,2y) in the first level wavelet 

decomposition, and (k,m)=(2lx,2ly) in lth level wavelet decomposition, 

respectively. Therefore, in this study, we classify the immediate neighborhood 

of (2x,2y) in a single stage wavelet decomposition or in general (2lx,2ly) in  lth 

level wavelet decomposition as a moving region in the current image frame, 

respectively. 

Once all wavelet coefficients satisfying (3.9) and (3.10) are determined, 

the union of the corresponding regions on the original image is obtained to 

locate the moving and left or removed object(s) in the video. The number of 

moving regions or left objects is equal to the number of disjoint regions 

obtained as a result of the union operation. The number of the moving and left 
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object(s) is estimated from the union of the image regions producing the 

wavelet coefficients satisfying (3.9) and (3.10), respectively. 

Figure 3.4 is a block diagram illustrating the proposed system for 

characterizing the motion of moving regions in wavelet compressed video. The 

Figure 3.4 is similar to the Figure 3.1 except that the operations are carried out 

in the wavelet domain. Let Jn and Dn be the wavelet transforms of the current 

image frame In and estimated background image frame Bn, respectively. The 

wavelet transform of  the current image Jn and the estimated wavelet transform 

of the background scene Dn are input to the background estimator in wavelet 

domain. The system implements the above equations to estimate Dn+1. The 

comparator may simply take the difference of Jn and Dn  and the difference of 

Dn+1-Dn-m to determine if there is a change in wavelet coefficient values. 

Coefficients satisfying (3.9) and (3.10) are determined. The motion classifier 

determines if a pixel belongs to a moving object or a left object. If (3.10) is 

satisfied then the corresponding wavelet coefficient Jn(i,j) belongs to a left 

object. If a wavelet coefficient Jn(i,j) satisfies (3.9) but the corresponding 

background coefficient Dn+1(i,j) does not satisfy (3.10), this means that this 

coefficient does not belong to a left object or a removed object. It is the 

coefficient of a moving object in transition at time n.  
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Figure 3.4: A block diagram illustrating the proposed system for characterizing 

the motion of moving regions in wavelet compressed video by comparing the 

wavelet transform of the current image with the wavelet transform of 

background image estimated from the current and past images of the video. 
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In other transform based methods including the Discrete Cosine 

Transform (DCT) and Fourier Transform based methods, transform of the 

background can be estimated as in the case of wavelet transform either by time 

averaging of the transforms of images forming the video or by recursive 

estimation as described above or by other means reported in the literature. 

After estimation of the transform of the background image, (3.4) and (3.5) can 

be realized in the transform domain to characterize the nature of the motion in 

video. It should be pointed out that the present system is applicable to the video 

encoded using internationally standardized coding schemes such as MPEG-1, 

MPEG-2, MPEG-4 and H261 which are all based on DCT and motion 

compensated prediction of image frames. In addition, the system can be 

equally applied to video coded by other linear transforms including the 

Hadamard transform, Karhunen-Loeve Transform, and vector quantization, etc. 

In some image and video coding methods images are divided into 

blocks and transforms of the blocks are computed. In this case background 

estimation can be carried out block by block. In addition, a coarse estimate of 

an image frame can be obtained from the DC value of each block in DCT and 

Fourier Transform. Therefore a coarse estimate of the background can also be 

estimated from the DC coefficients of blocks forming the image. For example, 

if DCT is computed in 8 pixel by 8 pixel blocks, then an image whose height 

and width are 1/8th of the original image can be estimated from the DC 

coefficients. Consequently, a coarse background image whose height and width 

are 1/8th of the actual background image can be estimated from the DC 

coefficients as well. As described in 3.1, (3.4) and (3.5) can be realized 

according to the new image size and the motion of moving objects can be 

characterized. 
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In vector quantization based image and video coding, blocks forming 

an image frame are quantized. In this case, background image can be estimated 

over the quantized image blocks. 

A background image can be also estimated from blocks, which do not 

move or equivalently from blocks whose motion vectors are below a threshold. 

If the camera capturing the video moves, then the motion of the camera must 

be compensated to determine the blocks, which do not move. Widely used 

transforms, DCT and Discrete Fourier Transform are linear transforms, and 

coefficients obtained after transformation operation can be real or complex 

number depending on the nature of the transform. Subtraction and addition 

operations described above for background estimation can be implemented 

using transform domain coefficients inside blocks in the compressed data 

domain. In vector quantization, coefficients of the vector quantized blocks are 

real and they are pixels or pixel-like quantities. Differencing and addition 

operations described above for background estimation can be implemented 

using the coefficients of the vector quantized blocks. 

 

3.3 Detection Results and Discussion 
 

We implemented the system explained above with Microsoft Visual C++ 6.0, 

running on Windows XP, with a Pentium 4 processor. The compressed data fed 

to our system is in the format of Aware Inc.’s Motion Wavelet Codec[35]. It 

uses Daubechies’ 9/7 biorthogonal wavelet whose filter coefficients are 

presented at Table 3.1. 
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 A typical distribution of the detected moving regions are depicted in 

Figure 3.5. Reddish colored pixels around the walking man are classified as 

moving after processed with the system proposed in the previous section. 

       

Figure 3.5: Moving pixels detected by the system are shown.  

These moving pixels are processed by a region growing algorithm to 

include the pixels located at immediate neighborhood of them. The immediate 

neighborhood of a pixel located at (i,j) is shown in Figure 3.6.  

 

(i-1,j-1) (i,j-1) (i+1,j-1) 

(i-1,j) (i,j) (i+1,j) 

(i-1,j+1) (i,j+1) (i+1,j+1)

 

Figure 3.6: Immediate neighborhood of pixel located at (i,j) 
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The region growing algorithm checks whether the following condition 

is met for these pixels: 

| Jn (i+m,j+m) - Dn(i+m,j+m)|  > kTn(i+m,j+m)               (3.11) 

where m=-1,+1, and 0<k<1, k∈ . If this condition is satisfied, then that 

particular pixel is also classified as moving. By applying this condition, in a 

way, we lower the threshold values for neighboring pixels and facilitate the 

classification of them as moving pixels, thus growing the moving region. 

R

After this classification of pixels, moving objects are formed and 

encapsulated by their minimum bounding boxes. Corresponding boxing of the 

above object is presented in Figure 3.7. Note that data fed to the system is 

720x288 (Figure 3.6), whereas displayed image (Figure 3.7) is  360x270.  

                   

Figure 3.7: Minimum bounding box encapsulating the pixels classified as 

moving. 

Making use of different levels of the compression tree and playing with 

the b parameter in the threshold update equation (3.8), we obtained a 
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continuum of sensitivity levels. According to the usage of the levels in the 

compression tree, there are mainly three levels of sensitivities. In the lowest 

sensitivity level, only the fifth low-low coefficients are used to detect the 

moving bodies. In the middle sensitivity level, fourth layer’s high subband 

coefficients are also used. Only the third low-low coefficients are used in order 

to obtain the highest level of sensitivity for detecting moving regions.  

There are a total of one hundred different sensitivity levels among 

which first thirty-three belong to the lowest level, up to sixty-six belong to 

medium level and the upper thirty-three to the highest sensitivity level. 

Timing comparisons for these three main sensitivities are presented in 

the Table 3.2. As it can be seen from the table, considering more levels for 

detection increases the cardinality of the data to be processed, and this 

consequently increases the time spent per frame for detection.  

Table 3.2 : Time performance comparison between three main sensitivity 

levels. 

 

Sensitivity 20 60 80 

Time to feed the frame (msec.) 0.343 1.171 3.476 

Time for detection (msec./frame) 0.985 2.577 9.007 

Total Time per frame (msec.) 1.328 3.745 12.483 

 

As it can be seen in the Table 3.2, much of the time spent per frame is 

for the detection and it increases with increasing sensitivity. Various sequences 

show similar performance results. Performance comparison of another 

sequence whose total number of detected objects is less than the one for the 
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sequence of Table 3.2, is given in Table 3.3. The results presented in Table 3.3 

are obtained by using IBM Rational’s Purify Performance Analysis software 

and figures correspond to the code’s release version.  

Table 3.3 : Performance comparison between sensitivity levels for another 

sequence. 

 

Sensitivity 20 60 80 

Time to feed the frame (msec.) 0.07 0.27 1.07 

Time for detection (msec./frame) 0.81 1.89 4.71 

Total Time per frame (msec.) 0.88 2.16 5.78 

 

Differences in the figures between sequences’ timing performances 

result from the difference between total number of detected regions. More 

regions detected require more calculations. Another reason for the gap between 

the results especially for the higher sensitivity case is that the analysis 

corresponding to Table 3.3 is performed for the release code, not the debug 

version as for Table 3.2. 

  



  

 

 

Chapter 4 

 

Object Tracker 

 

 
Tracking of the detected objects is the most crucial and the hardest part of a 

surveillance system [13]. It is crucial because all high level descriptions 

including activities such as entering, stopping, or exiting scene, are based on 

the information gained by tracking the moving bodies. It is hard to track 

objects in video because: 

• image changes, such as noise, shadows, light changes, reflection, and 

clutter, that can obscure object features to mislead tracking,  

• the presence of multiple moving objects, especially when objects have 

similar features, when their paths cross, or when they occlude each 

other,  

• the presence of non-rigid and articulated objects and their non-uniform 

features, 

 35  



CHAPTER 4. OBJECT TRACKER 36

• inaccurate object segmentation,  

• changing object features, e.g., due to object deformation or scale 

change,  

• application related requirements, such as real-time processing. 

Numerous methods for motion analysis and tracking of video objects have 

been proposed for applications in surveillance systems [5,8,10,15,25-33]. Two 

strategies can be distinguished among them: one uses correspondence to match 

objects between successive images and the other performs explicit tracking 

using a position prediction strategy or motion estimation.  

Explicit tracking approaches model occlusion implicitly but have difficulty 

detecting entering objects without delay and to track multiple objects 

simultaneously. Furthermore, they assume that object features remain invariant 

in time. Most of these methods have high computational costs and are not 

suitable for real-time applications as in our case.  

Tracking based on correspondence tracks object, either by estimating their 

trajectory or by matching their features. In both cases some form of object 

prediction is used. Prediction techniques incoporated in these methods can be 

based on Kalman filters or on motion estimation and compensation. The use of 

a Kalman filter relies on an explicit trajectory model which is difficult in 

complex scenes and can not be easily generalized. Extended Kalman filters can 

estimate tracks in some occlusion cases but have difficulty when the number of 

objects and artifacts increases [10]. Few methods have considered real 

environments with multiple rigid and/or articulated objects and limited 

solutions to the occlusion problem exist. In addition, many methods are 

designed for special applications (e.g., tracking based on body part models or 

vehicle models) or impose constraints regarding camera or object motion (e.g., 
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upright motion). Many object tracking approaches based on feature extraction 

assume that the object topology is fixed throughout the image sequence. 

However in our study, we want to have a moderate tracker to keep track of the 

detected moving bodies acceptably without any restrictions on the detected 

objects.  

Generalized object tracking and video content understanding are key 

components in most video surveillance systems that present a compromise 

between real-time performance and system accuracy. For example, pixel 

accurate boundary tracking is usually essential for the purposes of video 

editing. This level of precision has traditionally necessitated extensive or 

complex models and/or human interaction, thus preventing these approaches 

from achieving real-time performance. The field of video surveillance, 

however, is one that often requires robust, but not necessarily pixel accurate, 

multiple object tracking. Our proposed video surveillance system with its 

tracker functionality is one such example. 

To achieve this kind of real-time performance/system-accuracy balance, we 

chose to implement our tracker with two easy-to-implement approaches. One is 

the Voting-Based method presented by Amer [11], and the other is our method 

of linear-cost-function based scheme. Although we have similar results for 

both of the methods at high sensitivities, linear-cost-function based approach 

yielded better and more reliable results. 

Voting-based approach has its robustness to changing conditions by 

spreading the importance of object features and accumulating them in 

similarity and dissimilarity bins. In this way, loosing the accuracy of a feature 

at some frame in the sequence does not affect the overall performance of the 

system much. On the other hand, linear-cost-function based method is much 

simple to use and more reliable than the voting-based approach. Its simplicity 
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comes from the nature of it. It is just a weighted sum of the differences 

between various features of the current and previous frame objects.  

By applying either of the methods, we have a raw matching between the 

current and previous frame objects. Raw in the sense that, one object belonging 

to one of the sets (previous frame or current frame) may be assigned to more 

than one object from the other set. To cope with this over matching problem, 

some kind of conflict resolution mechanism has to be implemented. For the 

voting-based scheme, it is correspondence voting that takes care of multiple 

matching. For the linear-cost-based matching scheme, we model this situation 

as a minimum cost flow network problem and implemented an algorithm called 

successive shortest path for the solution of it.   

Our method for tracking mainly consists of three steps including the object 

detection and segmentation phases accomplished by the proposed system 

presented in Chapter 3: moving object detection and segmentation, object 

matching and conflict resolution as shown in Figure 4.1. 
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Moving Object Detection 
and 

Segmentation 

Object Matching 
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Figure 4.1: Framework of the tracker. Current, In, and previous, In-1, frames are 

fed into the detection part producing the current, On, and previous, On-1, 

objects. At the output of the tracker, object trajectories are determined. 
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 The framework for the tracker is the same for both types of approaches. 

The difference between them is in the implementations of Step 2 and Step 3. 

Object matching is achieved by object voting in the voting based approach, 

whereas objects are matched to each other considering linear-cost-function 

values corresponding to them in the other method. For conflict resolution step, 

linear-cost-function based method uses a successive shortest path algorithm. 

Correspondence voting is the alternative for the voting scheme as conflict 

resolver. 

 Tracking is activated once an object enters the scene. An entering object 

is immediately detected by the detection module. Then the segmentation 

module extracts the relevant features for the matching (correspondence) 

module. While tracking objects, the segmentation module keeps looking for 

new objects entering the scene. Once an object is in the scene, it is assigned a 

new trajectory. Objects that have no correspondence are assumed to be new, 

entering or appearing, and are assigned new trajectory. Segmentation results 

from the first step are subject to change with the occlusion handling and 

stopped object decision parts of the second step. Consequently, an update may 

be required for re-segmenting the moving regions into moving objects. After 

conflict resolution, the trajectories of the objects are decided and updated 

accordingly. 

 Step 1 in the tracker module mainly assigns selected features of objects. 

The features are listed and explained in 4.1. After feature selection, at Step 2 

these features are integrated based on voting or linear cost function to realize 

the matching between the objects of previous and current frames. Detailed 

explanations are given in 4.2 and 4.3. Occluding and occluded objects are also 

determined at this step and action is taken for these object pairs. Slowing and 

stopped objects are marked using a similar method to the one described for left 
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object detection in 3.2. Results of the tests and comparisons between these two 

trackers are presented in 4.6. 

 

4.1 Features for Tracking 
 

In the first step, spatio-temporal object features or descriptors are extracted 

and selected. The implemented descriptors are simple but efficient when 

combined. In the following, let Oi represent an object of the current image In 

and Op an object in the previous image In-1. 

• Size: the size is described by the area Ai of the object Oi, width Wi (i.e., 

the maximum horizontal extent of Oi), and height Hi (i.e., the maximum 

vertical extent of Oi).  

• Shape: the following descriptors are used 

1. Minimum bounding box (MBB) BOi : the MBB of an object is the 

smallest rectangle that includes the object; 

2.   Extent ratio: ei = Hi/Wi 

• Motion: object motion is described by the current 

displacement vector wi = (wx; wy) of Oi. 

• Distance: the Euclidean distance between the centroid of an 

object Oi of In and an object Op of In-1. 

• Brightness: minimum, maximum and average brightness 

values of the current frame objects are assigned. For a 

current frame object Oi, these values are mbi, Mbi, abi, 

respectively. Since we are in the wavelet domain, these 
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values are set from the corresponding fifth low-low wavelet 

coefficients. 

These descriptive features form the basis for matching. This much feature 

has turned out to be enough for reaching the goal of having a general tracker. 

More descriptive attributes may be assigned to objects, like features exploiting 

color information, in order to have a more sophisticated surveillance system 

that is to be used for behavioral analysis for example. 

 

4.2 Voting Based Scheme 
 

In the voting based matching, spatial and temporal features are combined using 

a non-linear scheme consisting of two steps: voting for object features of two 

objects (object voting) and voting for features of two correspondences in the 

case one object is matched to two objects (correspondence voting).  

Each voting step is first divided into m sub-votes v1, v2, …vm with m 

object features. Since features can become harmful or occluded, the value m 

varies spatially (objects) and temporally (throughout the image sequence) 

depending on a spatial and temporal filtering. This means that, at various 

frames, various features are voted. Then each sub-vote, vi, is performed 

separately using an appropriate voting function. 

A voting function basically compares a feature of an object pair Oi-Op, 

where Oi is an object of the current frame and Op is an object of the previous 

frame. According to this comparison, either a similarity variable s or a non-

similarity variable d is increased. Depending on the number of features in a 

sub-vote, vi, s or d may increase by one or more.  
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Finally, a majority rule compares the two variables and decides about the 

final vote. In the case of zero match, i.e., no object in In-1 can be matched to an 

object in In, a new object is declared entering or appearing into the scene 

depending on its location. In the case of reverse zero match, i.e., no object in 

I(n) can be matched to an object in I(n-1), Op is declared disappearing or 

exiting the scene which depends on its location. The voting system used 

requires the definition of some thresholds. These thresholds are important to 

allow variations due to feature estimation errors. The thresholds are adapted to 

the image and object size. 

 

4.2.1 Object Voting 

 

In object voting as proposed in [11], we voted four main features of the objects 

from previous and current frames; size, shape, motion and brightness.  

For each of the current frame objects Oi, we compared its height Hi, 

width Wi and area Ai with those of all the previous frame objects Op, as size 

features. As shape feature, respective extent ratios ei are voted. For the motion 

parameter, displacement vector wi comparison and voting is realized. 

Brightness voting is carried out by determining the maximum, minimum and 

average wavelet coefficient values corresponding to the objects at the fifth low-

low level in the wavelet transform tree. Using these features, s and d 

parameters are calculated.  

For each object pair Oi-Op, a vote confidence ζ is defined as ζ= s
d

. Mip 

is a boolean variable and it represents a match between Oi and Op. M ip  is also 

a boolean variable and takes true value if a mis-match between Oi and Op is 
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determined. If di is the distance between the centroids of Oi and Op, if wmax is 

the magnitude of the maximum possible displacement vector, tr  is the search 

area around Oi, then for a threshold value tm ∈ R + 

i iy (w  < 

,x wi iy

:

:
v d

s

s

<

≥

 
 

ip i r x xmax ymax m

ip

M    :  (d  < t )  (w  < w ) w )  (  > t )
 M   :  otherwise

ζ∧ ∧ ∧
               (4.1) 

where displacement vector of Oi is wi = ( ). w

Vote confidence parameter ζ enables matching between Oi-Op pair, even 

if s<d depending on tm. That is, matching may occur even if number of the 

similarity votes is less than that of dissimilarity votes. This results in multiple 

matches between previous frame objects and current frame objects. This 

multiple match conflict has to be solved. This is accomplished by 

correspondence voting. 

 

4.2.2 Correspondence Voting 
  

For each Oi-Op pair, another confidence measure ζip is defined.  

m

ip

m

d s t
v d

s d t
ζ

−
=  −


                                 (4.2)               

Here v is the total number of votes. This measure is more strict than the 

vote confidence ζ and is an indicator of how Oi is close to Op. If Oj is also an 

object in the current frame, and both Oi and Oj are matched to the same 

previous frame object Op, then a comparison of the following form is useful to 

determine the real match: 

  



CHAPTER 4. OBJECT TRACKER 45

:
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                                        (4.3)  

where si is the similarity votes between Oi-Op pair and sj is that of between Oj-

Op pair. Thus, the similarity vote of either Oi or Oj is increased by one in 

correspondence voting. The values of corresponding confidence measures 

determine whose similarity votes are to be increased, Oi’s or Oj’s. 

After increasing one of the similarity values for Oi or Oj, a majority rule 

of the form: 

:
:

ip i j

jp i j

M s s
M s s

>
≤

                                                (4.4) 

determines the real match of Op in the current frame. If Mip is true, Op is 

matched to Oi. If Mjp is true, Op is matched to Oj. This way, we fix the number 

of matches for a previous frame object to exactly one current frame object. The 

unmatched previous frame objects are taken for treatment in the stopped or 

slow object identification module. 

 However, this conflict resolution method does not guarantee the one-to-

one match of the current frame objects with previous frame objects. That is, an 

object in the current frame may still be matched with multiple previous frame 

objects. For the linear-cost-function based method, we achieved to eliminate 

the multiple matching problem for both previous frame objects and the current 

frame objects. 
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4.3 Linear Cost Function Scheme 
  

Using the features listed in section 4.1, we formulate a weighted sum of 

absolute differences between corresponding attributes of the objects from 

previous and current frames. The cost function, in a way, stands for a distance 

value who has contributions from apparently all descriptors of the objects 

under consideration. 

 

4.3.1 Linear Cost Function 

At each frame, for all Oi-Op pairs, we calculate the corresponding value of 

linear cost function Cip, whose explicit form is given below, (4.5).  

Let dip be the Euclidean distance between the centroids of Oi and Op. Let 

Wip=|Wi – Wp| and Hip=|Hi – Hp|. Let mbip=|mbi-mbp|, Mbip=|Mbi-Mbp| and 

abip=|abi-abp|. These difference values are calculated using the descriptors 

defined in Section 4.1. Brightness values, used in these absolute differences 

correspond to fifth low-low wavelet coefficients.  

For some weight values kj, j∈ { }0,1,2,3,4,5 , linear cost function Cip, for 

an Oi-Op pair is defined as: 

ip 0 . ip 1 . ip 2 . ip 3 .  ip 4 . ip 5 . ipC =k d  + k W  + k H  + k mb  + k Mb  + k ab                   (4.5) 

          This cost value between Oi and Op is then normalized by the area of Oi, 

Ai, in order to be a meaningful and an objective criterion to be based on for the 

matching decision. 
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4.3.2 Matching and Conflict Resolution 

Using the linear cost values calculated for all Oi-Op pairs in a frame, an 

assignment between previous and current frame objects are made. The 

assignment is based on matching the closest objects. However this way of 

assignment may result in multiple matches.  

To overcome this issue, we model the situation as a minimum cost flow 

problem from network flows theory. Among all alternative assignments, we 

choose the one having minimum total cost. A network representation of the 

problem is shown in Figure 4.2. 

                        Previous objects             Current objects                

    

                                                                  

t s

           np                                      nc 

Figure 4.2: A directed network representation of the assignment problem. 

In the network, ‘s’ is the source, and ‘t’ is the sink node which are 

hypothetical. The intermediate nodes of the network correspond to np many 

previous and nc many current frame objects. All the arcs emanating from the 

source node terminates at the nodes representing previous frame objects. All 

the arcs terminating at the sink node, emanate from the nodes representing 

current frame objects. The flow values xip in the intermediate arcs, that are 

emanating from previous object nodes and terminating at current object nodes, 

represent a match if xip = 1, and a mis-match if xip = 0. All the arc costs, Cip’s, 

are set to zero except for the intermediate arcs, which are set to the 
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corresponding linear cost function values Cip’s. These determine the final 

matching, indeed. Lower bound of arc capacity for all arcs are zero, and upper 

bound of arc capacities for all arcs are one. The total flow U that will be passed 

from source to sink through the network, i.e., the total number of matching for 

the situation under consideration, is set to the ( )c pmin n ,n . That is, 

U= . The source node is the only excess node in the network having 

an excess value of the total flow U. The only deficit node is the sink node 

which has a deficit value of the negative of the maximum flow value U.  

( c pmin n ,n )

Given the definitions, the problem is formulated as follows: 
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                          (4.6)            

The objective is to minimize the total cost after matching. Also, by the 

formulation, maximum flow on an arc is restricted to be less than or equal to 

one. This in turn solves the conflict of having multiple matches. 

For the solution of the above formulated problem, there are several 

polynomial-time algorithms well known in the literature that are applicable to 

any network topology. We choose to implement successive shortest path 

algorithm [12] . The successive shortest path algorithm is a pseudo-polynomial 

time algorithm for the minimum cost flow problem since it is polynomial in the 
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total number of nodes which is equal to nc + np + 2, total number of arcs which 

is equal to (nc . np) + nc + np and U. This algorithm is, however, polynomial 

time for the assignment problem which is exactly our case. Since we have a 

fixed network topology shown in Figure 4.2, even a simpler version of it is 

implemented. 

The successive shortest path algorithm maintains optimality of the 

solution at every step and tries to attain feasibility by checking a set of 

parameters through iterations. These parameters are the node potentials and 

reduced costs of the arcs. Node potential is a concept that stems from duality in 

linear optimization theory. Reduced costs are values updated at every iteration 

with respect to the node potentials. We denote the node potentials by the vector 

Π and reduced cost of an arc (i,p) is computed as Cip - π(i) + π(p).  

The optimality condition for a minimum cost flow problem is the non-

negativity of the reduced costs in the network. Successive shortest path 

algorithm maintains non-negative reduced cost from the beginning to the end 

and tries to reach a feasible solution, which is compliant with the conditions 

stated in the formulation of the minimum cost flow problem. 

The basic idea of the algorithm is to send unit flows at each iteration 

through the shortest path from ‘s’ to ‘t’ with respect to the reduced cost values. 

After this flow is sent, in each iteration, the flow vector x and residual network 

are updated accordingly. Residual network is the network comprising of the 

nodes and arcs of the original network who have still room for sending new 

flow. The algorithm terminates when nothing to send from the source is left, 

and that corresponds to a zero deficit value reached at the sink node. 

Residual network is set to the original network at the first iteration. 

Augmenting a one unit of flow through the shortest path from source to sink 
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results in a residual network that does not include the arcs of the shortest path, 

since their arc capacity upper bounds are reached. Augmenting another flow of 

one unit through the shortest path in the updated residual network and going on 

iterating, we come up with a situation like this after termination: all U units of 

flow are sent through the network from source node to the sink node along the 

arcs dictated by the flow vector x satisfying the minimum cost condition. 

The complexity of the algorithm mainly depends on finding all the 

shortest path distances from source node ‘s’ to all other nodes. This shortest 

path determination is updated U many times and U is bounded by half of the 

total number of nodes in the network. We find the shortest paths in O(n2) time. 

So the complexity of the conflict resolution step is O(n3). The algorithm as we 

implemented is shown in Figure 4.3. 

  

           

 

 

1.   

algorithm modified successive shortest path 
begin 
     x = 0, Π = 0; 
     while excess of s ≠ 0 and deficit of t ≠ 0; 
     begin 
         determine shortest paths distances d(.) from s to all   
    other nodes in residual network w.r.t. the reduced costs; 
          let P denote shortest path from s to node t; 
          update Π = Π - d; 
     augment one unit of flow along the path P; 
     update x and residual network; 
     end 
end 
        

 
   

   

Figure 4.3: Modified, rather simplified successive shortest path algorithm for 

our fix topology network 

 The conflict is resolved, but with some side effects. Among all matching 

possibilities, the algorithm chooses the one with the total cost minimum. For 
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that particular matching, for the sake of minimizing the total cost, some 

dissimilar object pairs may be assigned to each other. This may result in totally 

erroneous assignments. 

 With a simple comparison of one of the object features during 

assignment process, we eliminate the erroneous matching easily. The feature 

we use is the Euclidean distances, dip’s of the matched objects. If it is greater 

than a threshold value, which depends on the dimensions of the objects, we 

simply don’t assign those two with each other. Let Mip represents a match and 

ipM  a mis-match between the object pair Oi and Op, as before. Let td=c+ iA  

be a threshold where c is a constant. Then, according to the explanations thus 

far: 

: (( 1) (
:

ip ip ip d

ip

))M if x d t
M otherwise

== ∧ ≤
                        (4.7) 

 

4.4 Occlusion Handling 

We deal with the occlusion of two moving objects and develop a simple 

method to detect occlusion and cope with it. We exclude the cases where more 

than two moving bodies are occluded at the same time, and total occlusion. 

 At every frame, we check each detected object’s vicinity in the previous 

frame. If there were two objects in the previous frame where in the current 

frame only the object under consideration exist, then this current frame object 

is formed by the occlusion of those two previous frame objects. Figure 4-4 is 

an illustration of such a case.  
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           (n-1)st frame                nth frame  

Figure 4.4: Object in the nth frame is formed by the unification of the (n-1)st 

frame objects in its vicinity. 

 For a current frame object (green), its centre of mass being the centre and 

half of its the diagonal distance being the radius, we search in the previous 

frame for objects to be touched by this circle. If we encounter two objects 

somehow intersecting this circle, we conclude that these two previous frame 

objects (red and blue) are occluded. 

 Our assumption is that object motion is smooth and objects do not 

disappear or change direction suddenly. 

 Once we give the decision of occlusion for two objects, we keep the 

coordinates of the point around which occlusion has taken place (the centre of 

mass of the green object), the radius of occlusion (half the diagonal distance of 

the green object, r) and all the descriptive features of the occluding (red and 

blue) objects. Then we use this bundle of information for the decision of 

occlusion termination and in turn assignment of the occluding objects to the 

objects that are decided to be occlusion exiting. The decision of an occlusion 

termination is given as follows: at each frame, we check the vicinity(as defined 

by the circular search area) of all the occlusions that took place and have not 

yet terminated. If two objects are detected in this search area at the current 
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frame and if they ‘match’ with the occluded bodies, then an occlusion 

termination decision is taken and the current frame objects are assigned to their 

respective occluding objects. The current frame objects detected in the search 

area match the occluded objects with respect to their widths, heights and areas. 

In a way, if their sizes are comparable, we assign these objects to the occluded 

objects and terminate the occlusion. The comparison of the sizes is realized by 

the size voting of the objects. 

 

4.5 Stopped and Slow Object Detection 

Using the method for left object detection explained in section 3.2, we 

detect and continue to track the slow and stopped objects.  

         We detect a left object or equivalently a removed object from the scene, 

by comparing the current background with a past background. A user-defined 

time parameter alarm_time is incorporated to the system. This parameter 

determines for how long an object has to stay still to be considered as part of 

the background. If the difference between the current and past backgrounds is 

larger than the threshold value mentioned in section 3.1, i.e. if there exists a 

significant change in the background for longer than alarm_time seconds, then 

the difference is announced by means of alarming by the system.  

           If a moving object stops moving, after some time it is also marked as a 

left object after alarm_time seconds. If it keeps on staying there, it gradually 

dissolves into the background and become a part of it. However, it is not 

desired for a tracker to loose a moving and tracked object in the middle of the 

scene.  

 To add the capability of keeping on tracking the moving objects that are 

too slow to be tracked and the stopped objects to the system, we make use of 
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left object detection. Most of the parts of the objects in this type are detected by 

left object detection module, and a few pixels are detected by the moving 

object detector. Let M represent the set of moving objects, L represent the set 

of left object. Then the set of stopped/slow objects S can be determined by 

choosing the objects from the left object set and moving object set which has 

pixels belonging to ( . The union of the objects satisfying this, constitute 

the stopped/slow objects in that frame. 

)L M∩

 

4.6 Tracking Results and Discussion 

The tracker we use previously was a voting-based one. After testing with tens 

of sequences from indoor and outdoor environments, the need for a more 

robust assignment scheme arose and we implemented the linear-cost-function 

based method with conflict resolution as explained in detail. 

      The comparisons between two methods in terms of detection and tracking 

are made with various test sequences. All of the tests are performed on a 

system with Pentium 4 processor and 256 MB RAM. The parking lot test 

sequences are recorded at a frame rate of 5fps by fixed focal length CCD 

camera and directly fed to our system to be coded in motion wavelet format. 

There are a total of twelve parking lot sequences and six of them produce 

assignment problems when tracker is a voting based one. The assignment 

problem is solved if a linear-based tracker is used. For the rest of them the two 

methods produce nearly the same results. 

  We also recorded twelve toy car sequences at 25 fps. There is not much 

difference between their performances for tracking between the two methods. 
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In Table 4.1, we present a comparison between the methods for other 

sequences all of which are recorded at 5fps from a DVD player directly 

connected to our system. Assignment and tracking problems occur for voting 

based system, however tracking is carried out properly with linear-cost 

function based system. 

 

Table 4.1: Comparison for several sequences at 5fps 

DVD Movies Voting based Linear based 

Luggage 1 Assignment problems occur Color Assignments are made 
properly 

Luggage 2 Assignment problems occur Color Assignments are made 
properly 

Luggage 3  No difference 

Luggage 4 Assignment problems occur Color Assignments are made 
properly 

Highway to sell 1 Assignment problems occur 
Color Assignments are made 

properly, more moving objects are 
detected 

Highway to sell 2 Assignment problems occur Color Assignments are made 
properly 

Man in gray Lots of false alarms. Assignment 
problems occur 

No false alarms. 
Color Assignments are made 

properly 

RC Car Chase Assignment problems occur Color Assignments are made 
properly 

Robbery 1 Severe Assignment problems occur Color Assignments are made 
properly 

  

 The timing performance results for three sequences recorded at 5fps is 

presented in Table 4.2. The sensitivity levels are set to one hundred to perform 

the worst case analysis. The time values are in msec.  
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Table 4.2: Timing performance comparisons 

Sequence 

Name 

#of 

Frames 

#of 

Objects
Occlusion Time/frame(linear) Time/frame(voting)

Park 1 315 > 2 + 13.7 13.9 

Park 2 470 > 2 + 14.3 13.8 

Park 12 225 1 - 13 13.5 

 

These performance values are taken from the debug versions of the 

code. As it can be seen from the figures, there is not much difference in terms 

of timing performances. Also comparing these values with Table 3.2, at 

sensitivity eighty, the figures are also similar. This shows that tracking module 

extension to the system of moving object detection, does not affect the timing 

performance much. This is because the computational load of the total system 

depends mainly on the cardinality of the number of visual data fed to it. 

Tracking results from various sequences are presented in the following 

figures. These are the results of the system using the linear tracker with voting 

functions incorporated at the occlusion detection, termination decision making 

code segments and the final matching decision given according to the 

successive shortest path algorithm. 

At the last figure, a left object detection experiment is presented. 
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Figure 4.5: Occlusion examples.  

Occlusion in toy cars and people are detected and the occluded objects 

with different sizes are tracked correctly in figure above. During occlusion at 

frame 416 in the occluding people sequence, the occluded, unified object is 

detected to be the red man correctly.  
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Figure 4.6: A parking lot environment with lots of moving objects. 

In Figure 4.6, a parking lot environment performance is presented. The 

tracker tracks the dark gray boxed car on the left since its entrance into the 

scene from lower right even though it changed its direction by turning to the 

right. The people in the lower part are tracked properly as well. 

 

 

Figure 4.7: A car departing from the parking lot. 

The above figure is another performance example. In the middle frame, 

the car’s left place is detected and signed with a small box indicating an object 

removal. The car is continuously tracked even it moved slowly and waited for a 
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while in the junction between the parking lot and the main road(frame:279). 

Also the box indicating the place where car was parked is not detected any 

more, since that region has also become part of the background.  

 

 

Figure 4.8: Left object detection 

Figure 4.8 presents an example of abandoned object detection. A 

baggage is left to the street under the column. The left object detection module 

detects and gives an alarm by boxing the baggage with green, after four 

seconds which is an adjustable user parameter. The difference between 

backgrounds in a crowded place like the one above, may result in false alarms. 

We eliminated this by introducing a training time for the system to learn the 

background. After this training period, reference background contains only the 

stationary objects in the scene and the difference in the backgrounds results in 

correct detections. 

  



                   

 
 
 
Chapter 5 
 

Conclusion and Future Work 

 
 
In this study, we proposed and implemented a novel system for detecting 

moving objects and tracking them in intra-frame compressed wavelet coded 

video. It is computationally efficient to use the wavelet coefficients for the 

analysis of the visual data in surveillance systems. Besides, unlike DCT based 

schemes, wavelet transformed data preserves the spatial content of the image 

frames. This spatial information made it possible for us to develop a robust 

tracking mechanism.  

Tracking mechanism that system uses is designed to work properly in 

general scenarios with no constraints on the objects’ posture, movements, 

orientation, etc. The system presumes nothing about the objects to be detected 

and tracked. This provides us a flexibility of using the system in various 

applications. However, this affects negatively on the robustness of the system. 

The system may well be re-designed to be an application oriented one by 

feeding it with additional information and assumptions about the objects’ to be 

monitored.  
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We also implemented a left or removed object detector by background 

estimation. The reference background, that is used to be compared with the 

current background, is updated periodicaly with a user adjustable parameter. 

This parameter determines after how many frames a change in the background 

can be taken as a change in the reference background. A significant difference 

between current and reference backgrounds, results in an alarm indicating an 

abandoned or a removed object.  

 We carried out experiments and tested our system with real-time video 

recorded at various frame rates and from a fixed monocular CCD camera. Our 

experimental results show that we have a moderate general purpose tracker that 

can be used with wavelet transformed visual data with a superior timing 

performance than ordinary trackers using real pixel values. Our system is not 

one-pixel-accurate due to the inherent uncertanity of multi-resolution analysis. 

As we go further in the wavelet pyramid, we drastically decrease the 

computational cost. However we loose the spatial accuracy that is critical while 

tracking objects. As we increase the sensitivity, we have more spatial accuracy. 

Hence, the tracker of the system is recommended to be used with high 

sensitivity levels. 

As a compromise of not being a one-pixel-accurate system, it is a real-

time one, capable of identifying and tracking objects. It can process the video 

data coming from 16-cameras in parallel in a PC-based environment. 

Computational cost of the system is mostly due to the huge amount of visual 

data fed to it every second. This cost is already decreased by incorporating the 

wavelet coefficients of the image frames when detecting motion and tracking 

moving parts. The added tracking and left object modules constitute only a 

minor portion of the computational load of the system. 
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 We will extend our studies to more extensive analysis of the visual 

wavelet compressed data. Counting cars in a motorway, counting people in a 

building, unusual behaviour detections in parking lots, highways, stations, etc., 

are just a few of planned projects in the near future. Accomplishment of most 

of these topics depends on how robust we can track objects, handle occlusion 

and identify movements of objects. We will base our future work on the 

detector and tracker developed during this study. 

  

 

 

 

 

 

 

 

 

 

 

 

  



  
 

 

 

 

 

 

 

 

 

BIBLIOGRAPHY 
 

 

[1]  C. Regazzoni, V. Ramesh, G. L. Foresti, “Scanning the Issue/Technology”, 

Proceedings of the IEEE, 89(10), 1355-1365, October 2002. 

 

[2]   G. L. Foresti, P. Mahonen, C. Regazzoni, Multimedia Video-Based 

Surveillance  Systems. Kluwer, 2000.  

 

[3]  R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, 

D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt, L. Wixson “A System for 

Video Surveillance and Monitoring: VSAM Final Report” Tech. report 

CMU-RI-TR-00- 12, Carnegie Mellon University, May, 2000. 

[4]   I. Burak Ozer, Wayne Wolf, `Hierarchical human detection system in 

(un)compressed domains,’ IEEE Transactions on Multimedia, June 2002. 

[5]  I. Haritaoglu, D. Harwood, and L. Davis, “W4: Who, When, Where, 

What: A Real Time System for De-tecting and Tracking People,” Third 

Face and Gesture Recognition Conference, 1998. 

[6]  M. Bagci, Y. Yardimci and A. E. Cetin, ‘Moving Object Detection Using 

Adaptive Subband Decomposition and Fractional Lower-Order Statistics 

in Video Sequences, Signal Processing, 82, 1941-1947, Dec. 2002.  

[7]  Zhang, et al. “Inter-frame wavelet transform coder for color video 

compression” U.S Patent. 5,495,292, 02.27.1996. 

 

63 
 
 
 



BIBLIOGRAPHY 64

[8]  F. Dufaux and F. Moscheni, “Segmentation-based motion estimation for   

second generation video coding techniques", Video coding: Second 

generation approach, L. Torres and M. Kunt, eds., 219-263, Kluwer 

Academic Publishers, 1996. 

 

 [9]  G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge 

Press, 1996. 

 

[10] S. L. Dockstader, A. M. Tekalp, On the Tracking of Articulated and 

Occluded Video Object Motion,  J.Real Time Imaging, 415-432, October 

2001. 

 

[11] A. Amer, Voting-Based Simultaneous Tracking of Multiple Video Objects, 

Proc., SPIE Int., Santa Clara, January 2003. 

 

[12]  R. K. Ahuja, T. L. Magnanti, J. B. Orlin “Network Flows, Theory, 

Algorithms and Applications”,  Prentice Hall, N.J, 1993. 

 

[13]  L. Wang, W. Hu, T. Tan, “Recent developments in human motion 

analysis”, Pattern Recognition, 36, 585-601, 2003. 

 

[14] Motion Wavelets, http:// www.aware.com/products/compression. 

 

[15] A. Mitiche, R. Feghali, A. Mansouri, “Motion Tracking as Spatio-Temporal 

Motion Boundary Detection”, Robotics and Autonomous Systems, 43, 39-

50, 2003. 

 

[16]  K. Toyama, J. Krumm, B. Brumitt, B. Meyers, “Wallflower: Principles and 

practice of background maintenance”, IEEE Int. Conf. Computer Vision, 

1999. 

  
 



BIBLIOGRAPHY 65

[17]  G.Plasberg, et al., Vorrichtung und Verfahren zur Erfassung von Objekten, 

German Patent DE20001050083, IPC Class G06K9/00,  April 4th, 2002.  

[18]  H.M.Jung, “Method and Apparatus for Detecting Motion Vectors Based on 

Hierarchical Motion Estimation” U.S Patent. 5,926,231, July 20th, 1999. 

[19]  Naoi et al., “Image Processing Apparatus” U.S Patent. 6,141,435, October 

31st, 2000. 

[20]  Yoneyama et al., “System for Moving Object Detection in Moving Picture” 

U.S Patent. 6,025,879, February 15th, 2000. 

[21]  Y.Taniguchi, “Moving Object Detection Apparatus and Method” U.S 

Patent. 5,991,428, November 23rd, 1999. 

[22]  H.Wang, A.Divakaran, A.Vetro, S.F.Chang, H.Sun, “Survey on 

Compressed-Domain Features Used in Video/Audio Indexing Analysis, 

http://vision.poly.edu:8080/~avetro/pub.html. 

[23]  J.M.Shapiro, “Data Compression System Including Successive 

Approximation Quantizer” U.S Patent. 5,321,776, June 14th, 1994. 

[24]  M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding    

using wavelet transform”, IEEE Transactions on Image Processing, 

1(2):205–220, April 1992. 

[25]  G. Legters and T. Young, “A mathematical model for computer image 

tracking," IEEE Trans. Pattern Anal. Machine Intell., 583-594,  

November 1982. 

[26]   K. Daniilidis, C. Krauss, M. Hansen, and G. Sommer, “Real time tracking  

of moving objects with an active camera", J. Real-Time Imaging, 3-20, 

February 1998. 

 

  
 

http://vision.poly.edu:8080/~avetro/pub.html


BIBLIOGRAPHY 66

[27]     M. Isard and A. Blake, “Contour tracking by stochastic propagation of    

conditional density," in Proc. European Conf. Computer Vision, 343-

356, 1996. 

[28]    C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder : Real - 

time  tracking of the human body”, IEEE Trans. on Pattern Analysis and 

Machine Intelligence, 19(7), 780-785, 1997. 

[29]    B. Bascle, P. Bouthemy, R. Deriche, and F. Meyer, “Tracking complex 

primitives in an image sequence", Proc. IEEE Int. Conf. Pattern 

Recognition, 426-431, Jerusalem, October  1994. 

[30]    S. Gil, R. Milanese, and T. Pun, “Feature selection for object tracking in 

traffic scenes" in Proc. SPIE Int. Symposium on Smart Highways, 253-

266, (Boston, MA), October 1994. 

[31]    S. Khan and M. Shah, “Tracking people in presence of occlusion",  in  

Proc. Asian Conf. on Computer Vision, 1132-1137, (Taipei, Taiwan), 

January 2000. 

[32]    A. Crétual, F. Chaumette, and P. Bouthemy, “Complex object tracking by    

visual servoing based on 2-D image motion," in Proc. IEEE Int. Conf.  

Pattern Recognition, 1251-1254, (Brisbane, IL), August 1998. 

[33]    A. Azarbayejani, C. Wren, and A. Pentland, “Real-time 3-D tracking of   

           the human body," in Proc. IM-AGE'COM, pp. 19-24, (Bordeaux,France),  

           M.I.T. TR No. 374, May 1996. 

[34]    I. Daubechies, W. Sweldens, “Factoring Wavelet Transforms into Lifting 

           Steps”, J. Fourier Anal. Appl., 4, 3, 247-269, 1998.     

[35]    MotionWavelets Real-Time Software Video Codec,  

           http://www.aware.com/products/compression/images/motionwavelets.pdf 

  
 


	ABSTRACT
	ÖZET
	Acknowledgement
	
	1Introduction                                                                                                   1
	3Moving and Left Object Detector                                                             11
	
	List of Figures



	Diagrammatic illustration of the transformation of an image into
	a one-level wavelet transformed image………………….…………..19

	Chapter 1_ilk.pdf
	Chapter 1
	Introduction

	Chapter 1.pdf
	Chapter 1
	Introduction

	Chapter 2_ilk.pdf
	Chapter 2
	Related Work

	Chapter 2.pdf
	Chapter 2
	Related Work

	Chapter 3_ilk.pdf
	Chapter 3
	Moving and Left Object Detector

	Chapter 3.pdf
	Chapter 3
	Moving and Left Object Detector
	3.3 Detection Results and Discussion

	Chapter 4_ilk.pdf
	Chapter 4
	Object Tracker


	Chapter 4.pdf
	Chapter 4
	Object Tracker

	Voting based
	Linear based

	Chapter 5_ilk.pdf
	Chapter 5
	Conclusion and Future Work

	Chapter 5.pdf
	Chapter 5
	Conclusion and Future Work

	Chapter 3.pdf
	Chapter 3
	Moving and Left Object Detector
	3.3 Detection Results and Discussion

	kapak.pdf
	ABSTRACT
	ÖZET
	Acknowledgement
	
	1Introduction                                                                                                   1
	3Moving and Left Object Detector                                                             11
	
	List of Figures



	Diagrammatic illustration of the transformation of an image into
	a one-level wavelet transformed image………………….…………..19


	Chapter 3.pdf
	Chapter 3
	Moving and Left Object Detector
	3.3 Detection Results and Discussion

	Chapter 3-2.pdf
	Chapter 3
	Moving and Left Object Detector
	3.3 Detection Results and Discussion




