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Bidirectional Transfer Learning Between
Activity and User Identity Recognition Tasks

via 2D CNN-LSTM Model for Wearables
Billur Barshan and Enes Koşar

Abstract—We implement transfer learning (TL) to attain
efficiency in training and feature extraction by freezing the
connection weights of shallow layers of deep learning (DL)
models, already trained for a given task, to be used in another.
This eliminates the need to retrain the whole model from
scratch for the new task, resulting in significantly reduced
training times, while maintaining the classification accuracy at
acceptable levels. Specifically, we investigate bidirectional feature
transfer between the human activity recognition (HAR) and user
identity recognition (UIR) tasks through the use of wearable
motion sensors. Both tasks have recently drawn considerable
attention and are significant because of their relevance in a broad
range of applications. Knowledge transfer between tasks via
TL brings many advantages. We employ the features extracted
by our recently proposed hybrid DL model which has proven
superior to commonly used state-of-the-art (SoTA) DL models.
The model can extract features more effectively because of
its parallel-running 2D convolutional neural network (CNN)
and long short-term memory (LSTM) branches that receive
complementary input types, unlike many hybrid models that
implement a series connection that receives a single type of
input. To our knowledge, TL between the above-mentioned
tasks has not been implemented to date. We demonstrate high-
accuracy bidirectional feature transfer between the HAR and
UIR domains that shortens the training time by a factor that
varies between 14.3–34.4, without much degradation in the
classification accuracy. To provide a typical figure, the accuracy
degrades by 2.45% for a group of three dynamic activities.
The key technical challenge of this work is maintaining the
classification accuracy at acceptable levels while benefiting from
the advantages that TL offers. We expect the results of this work
to have impact by way of reducing the demanding computational
requirements in training resource-limited wearable edge devices.

Index Terms—Convolutional neural network (CNN), deep
learning (DL), feature extraction, human activity recognition
(HAR), hybrid DL models, long short-term memory (LSTM),
machine learning (ML), transfer learning (TL), user identity
recognition (UIR), wearable motion sensors.

I. INTRODUCTION

ADVANCEMENTS in ubiquitous (pervasive) computing
and computational intelligence have accelerated the inte-

gration of sensors in devices, accessories, and textiles used on

Received 21 February 2025; revised 19 April 2025; accepted 9 May 2025.
Date of publication 9 June 2025; date of current version 7 November 2025.
(Corresponding author: Billur Barshan.)

The authors are with the Department of Electrical and Electronics
Engineering, Bilkent University, 06800 Ankara, Türkiye (e-mail: billur@
ee.bilkent.edu.tr; enes.kosar@bilkent.edu.tr).

Digital Object Identifier 10.1109/JIOT.2025.3577925

a daily basis. Wearable sensors are one of the key elements
of the Internet of Things (IoT). With the development of
the micro-electro-mechanical systems (MEMS) technology,
wearables have become more compact, lighter, and less
costly, making them more convenient to use and, hence,
more conducive to the IoT. Data acquired from wearable
sensors are highly informative about the user state, well being,
activities, and identity. Real-time processing and analysis of
the recorded data enables informed and improved decision
making. However, involvement of wearable sensors in IoT
entails multiple challenges, such as dealing with their limited
resources, management of data acquired from a network of
communicating sensors, interoperability of different sensor
modalities, and ensuring the security and privacy of per-
sonal/sensitive data.

A research area that has benefitted considerably from the
rapid developments in wearable technology and sensor ana-
lytics is human activity recognition (HAR) [1]. HAR pertains
to automated detection and monitoring of activities through
the processing of sensory input [2]. Wearable motion sensors
are affixed to different body parts (e.g., torso and limbs),
where each body part is considered to be rigid. Movements
of the body parts during activities are directly captured in 3D
and transformed into signal patterns which are recorded. To
be able to discern the activities by way of machine learning
(ML) or deep learning (DL), ideally, each different motion
type or activity of interest must be associated with a distinct
signal pattern. Since the recordings are 1D time sequences, this
approach eliminates the correspondence problem, occlusion
effects, and any privacy issues that may arise when using
camera systems.

Accelerometers, gyroscopes, and magnetometers are among
the widely employed wearable motion sensor types. Besides
wearables-based solutions, activities can be recognized by
specially designed smart environments as well [3]. However,
such environments confine the user to a limited space, typ-
ically indoors, while wearables can be used both indoors
and outdoors without any restriction. HAR finds a broad
range of applications in ambient intelligence, context-aware
systems, digital well-being and healthcare, assistive tech-
nologies, biomechanics, sports science, entertainment, and
ergonomics [4].

User identity recognition (UIR) is another recognition task
of interest that aims to detect user identities automatically
based on their biometric features or activities. Recognizing
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BARSHAN AND KOŞAR: BIDIRECTIONAL TL BETWEEN ACTIVITY AND UIR TASKS VIA 2D CNN-LSTM MODEL 46749

Fig. 1. Overview of bidirectional TL between the HAR and UIR domains. The upper pipeline illustrates the use of TL in a scenario where a pretrained
model is available for the HAR task but not for UIR; in this case, only the final layers of the HAR model need to be fine-tuned for the UIR task. Conversely,
the lower pipeline depicts how TL is exploited for the HAR task in a scenario where a pretrained model exists for the UIR task but not for HAR.

user identities may be necessary to prevent third party access
to certain services, devices, vehicles, buildings, inventories,
and other facilities. Recordings of daily and sports activities,
gait and sleep patterns, heart and respiration rates contain
identifying information about individuals. Wearable devices,
such as smart watches and bracelets offer convenient access
to services, such as electronic payment systems and social
media. However, the personal and sensitive nature of the
data they handle raises significant concerns regarding authen-
tication, security, and privacy. Therefore, developing robust,
efficient, and user-friendly UIR systems is essential. Some
of the application areas of UIR are digital security and
surveillance systems [5], detection of crime and violence [6],
personalized services and technologies [7], [8], [9], digital
healthcare [10], [11], and telemedicine [12].

Both the HAR and UIR problems involve classification
tasks (of activities and users, respectively) for which extraction
of discriminative features is essential [13]. In our recent
work [14], [15], we have investigated the best DL model
architecture to extract highly representative features for accurate
HAR, based on data acquired from wearable motion sensors.
In the present study, we first explore whether the proposed
model’s learning capacity extends beyond HAR and extracted
features are usable in another related problem domain—the
UIR domain—or not. We demonstrate that besides HAR, our
recently introduced hybrid [2D Convolutional Neural Network
(CNN)-long short-term memory (LSTM)] DL model attains
enhanced accuracy in the UIR task as well. Then, we employ
transfer learning (TL) and elaborate on bidirectional transfer of
features, extracted by our hybrid DL model, between the HAR
and UIR domains. This allows identification of salient features
that are common to both tasks without relinquishing high
classification accuracies. Our approach reduces the required
training effort considerably and the number of parameters to
some extent, while maintaining an acceptable level of accuracy.

An overview of the method we follow is depicted in Fig. 1.
We assume the existence of a pretrained model for one of two
tasks and adapt it for the other task by merely adjusting the
connection weights of its classification layers. For instance, if a
pretrained model for HAR is already available, we demonstrate
that by tuning the weights of only its final layers, the model
can be effectively adapted for the UIR task. Conversely, if
we start with a pretrained model for UIR, we demonstrate
that training only the last couple of layers enables successful
adaptation for the HAR task. For both scenarios—availability
of a pretrained model for HAR but not for UIR and vice
versa—instead of developing a completely new model from
scratch, we can efficiently repurpose the existing pretrained
model for the other task that the model is not trained for.

The key contributions of this study are multifold.
1) Wearable sensor-based HAR and UIR tasks are often

associated with limited computational resources and
small datasets. Using pretrained models for new tasks
can offer significant benefits. However, the lack of
studies that investigate feature transfer between the HAR
and UIR tasks presents a research gap in the wearable
sensing area. We demonstrate the feasibility of feature
transfer between these two tasks with our hybrid DL
model, setting a baseline for future research. This will
lead to more efficient training and inference, which is
crucial in fields with limited data and computing power.

2) We implement bidirectional TL between the HAR
and UIR domains for the first time which results in
considerably reduced training times without significant
degradation in the classification accuracy. Consequently,
the demanding requirements in training wearables with
low computational resources and limited memory space
can be considerably reduced.

3) We compare the results of bidirectional feature transfer
between the UIR and HAR domains using our DL
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model and four basic state-of-the-art (SoTA) models:
a) 1D CNN; b) 2D CNN; c) LSTM, which are single
models, and d) a standard 1D CNN-LSTM hybrid
model. Our results indicate that while most of the
comparison models do not generalize to the new domain
adequately, our model adapts well and maintains accept-
able accuracy levels, degraded by small amounts. This
extends our previous findings and demonstrates that our
model’s features are not only useful across datasets and
subjects but also for new tasks.

4) Effectively, we design a unified encoder capable of
handling both the HAR and UIR tasks within a sin-
gle framework. This streamlined approach significantly
reduces the memory burden on wearable edge devices
that have limited processing and storage capabilities.
By consolidating the feature extraction process for
both tasks into a single encoder, we simplify the
system architecture while improving the efficiency and
practicality of deploying advanced functionalities on
resource-constrained wearables.

In the next section, we provide background and overview
the related work on UIR, DL, and TL, based on processing
wearable motion sensor signals. In Section III, we investigate
the feasibility of feature transfer from the HAR domain to the
UIR domain. In Section IV, we describe the implementation
details of bidirectional TL between the HAR and UIR domains
and present our results. We summarize, draw conclusions, and
specify some future research directions in the final section.

II. RELATED WORK

A. Related Work on User Identity Recognition

UIR systems rely on user characteristics that fall under three
categories: 1) Physiological biometrics (such as fingerprint
scans or heartbeat measurements); 2) behavioral biometrics
(e.g., walking styles or other activity-based movement pat-
terns); and 3) physical fingerprints (such as device hardware
that are commonly used in the IoT) [16]. UIR studies based
on behavioral biometrics tend to employ wearable motion
sensors for signal acquisition. Acquired signals are usually
preprocessed via signal processing techniques, followed by
the application of ML/DL methods for feature extraction and
signal classification, to identify users [17].

Analysis of gait patterns of individuals has proven to be
a reliable source of information for UIR in a number of
studies. The work reported in [18] uses an LSTM network
with an attention mechanism to extract gait-related features
from the recordings of an inertial measurement unit (IMU).
Reference [19] formulates the problem as an image clas-
sification task where smart phone-embedded accelerometer
signals are converted into spectro-temporal image represen-
tations by using the short-time Fourier transform (STFT).
The study reported in [20] presents a similar approach.
Although IMUs embedded in smart phones, smart watches,
and other wearables simplify system implementation, the
authors of [21] argue that these devices are unable to acquire
the detailed biomechanical information necessary for reliable
UIR. Therefore, besides an IMU, they install 10 force sensors

into specific locations in the user’s shoes to capture compre-
hensive kinetic and kinematic information.

Activity types other than gait can also produce distinct
signal patterns that allow the identification of individuals. The
work reported in [5] demonstrates that common daily activities
and fall states can be used for accurate UIR, based on process-
ing two open-access benchmark activity datasets [University of
California Irvine HAR (UCI HAR) and University of Milano
Bicocca Smartphone-based HAR (UniMiB SHAR) Datasets].
The authors of [22] and [23] have implemented a variety of
ML/DL techniques as feature extractors and classifiers for
UIR, processing recorded activity signals. Most studies train
the models only once, with minimal end-user involvement.
This results in static models that cannot be updated in time. To
address this issue, Reference [24] proposes an interactive UIR
method based on reinforcement learning. Because employing
particular movement signals for UIR imposes a limitation,
Reference [25] proposes a method for activity-free UIR that
combines HAR with UIR based on computer vision techniques
and wearables. This approach allows greater flexibility in UIR
since it does not restrict the users to particular movement
types.

B. Related Work on Deep Learning

DL models have recently attracted much attention from the
research community and achieved favorable outcomes in many
different fields. Compared to ML techniques, they possess
the ability to automatically extract discriminative and diverse
sets of features that are data-informed, based on recorded
sensor data. However, DL models need high computational
resources, large amounts of quality data, and long training
times. Despite these demanding requirements, DL models
display higher robustness and superior classification capabil-
ity. Single and hybrid DL models have been developed for
various purposes. While single LSTM architectures exhibit
outstanding performance on time-series data, single CNN
models are superior in processing images. The input to the
latter can be real images or time sequences represented in the
form of images [26]. Hybrid structures combine the strengths
of single CNN and LSTM models and typically involve a
cascaded (series) connection of CNN and LSTM units, such
as CNN followed by LSTM (CNN-LSTM) or vice versa
(LSTM-CNN), in which the output of the initial module in
the sequential arrangement is provided as input to the second
one.

Authors have recently introduced a novel 2D CNN-LSTM
hybrid DL model that demonstrates superior performance
in HAR by processing data acquired from wearable motion
sensors [14], [15]. The model, illustrated in Fig. 2, can
extract features more effectively because of its parallel-running
2D CNN and LSTM branches, unlike many hybrid models
that implement a series connection. While providing the raw
time sequences to the LSTM branch, the 2D CNN branch
receives the spectrogram images of the raw time sequences
as input. We have compared the HAR performance of our
2D CNN-LSTM DL model to those of six well-known DL
architectures. These are three single (1D CNN, 2D CNN, and
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Fig. 2. Structure of the 2D CNN-LSTM hybrid DL model [14].

LSTM) and three hybrid models (standard 1D CNN-LSTM,
Ordóñez & Roggen’s 1D CNN-LSTM [27], and the alternative
1D CNN-LSTM [28]). In the first two of the hybrid models,
the 1D CNN and LSTM modules are connected in series
whereas in the third, they are connected in parallel, forming the
two branches of the model architecture. After implementing all
seven models, we have tuned their hyperparameters and tested
their generalization capability and robustness for the HAR task
on two open-access datasets. The datasets contain data from
multiple (19 and 30) subjects. Our 2D CNN-LSTM hybrid DL
model has proven superior with respect to four performance
metrics, mainly because of its two parallel-running branches
receiving inputs of inherently different nature. This enables
extracting a broader range of representative and generalizable
features compared to existing SoTA architectures [14], [15].
In comparison to the alternatives, the model offers an accept-
able level of complexity measured by the number of model
parameters, training time, and occupied memory space. For
these reasons, the DL model that we use in this work is the
same as the model that we have proposed in [14].

C. Transfer Learning for Human Activity Recognition

The research and development phase of DL models involves
a large number of experiments to evaluate different design
alternatives and parameter settings. Training a DL model
is a computationally intensive and time-consuming task that
requires large quantities of labeled data. The more complex
and deeper a DL model is, the larger the amount of training
data needed to adequately learn the discerning features for
a particular task. However, such vast quantities of data may

not always be available in every domain. In the realm of
wearables, data are scarce, computational power is low, and
memory space is limited, slowing down the training process.
Under such conditions, it would be advantageous to transfer
knowledge from a domain where vast quantity of data is
available to another domain where it is not. TL helps reduce
the burden by enabling faster experimentation with smaller,
more efficient models, allowing researchers to iterate quickly
and improve model design more effectively. Besides, given the
pervasiveness of DL applications, it would not be practical to
train a separate model from scratch for each and every new
DL task.

To overcome the above-mentioned challenges, employing
pretrained models in conjunction with TL offers considerable
benefits. Many well-established pretrained models exist for
vision and language tasks, providing a solid foundation for
unexplored research topics. These models, which have been
extensively trained to serve as feature extractors, can be
fine-tuned for specific tasks and datasets. The use of TL
may alleviate the heavy computational burden of training DL
models by employing previously learned knowledge in a given
domain (the source domain) to train a model in another domain
(the target domain) [29], [30], [31]. In other words, TL can
facilitate a learning task in the target domain by exploiting the
knowledge acquired from the source domain. Feature transfer
from the source domain to the target domain enables bypassing
the feature extraction stage of model training which signifi-
cantly reduces the computational requirements.

Feature extraction in deep neural networks (DNNs) is
conducted in a hierarchical way, meaning that while the
initial layers extract elementary or primitive features, the last
few layers bring out the more complex and domain-specific
features [32], [33]. Thus, the earlier layers of DNNs operate as
feature extractors while the last few handle the classification
process. When the tasks and problem types have sufficient
similarity, different DL models can benefit from using the
same feature extraction layers and the features extracted by
them. Based on this concept, parameter control strategy [34]
proposes that for similar tasks, many of the layers of a DNN,
trained in the source domain, can be frozen and only the last
few layers of the network need to be tuned for the task in the
target domain.

HAR has benefitted from TL techniques to overcome some
of the challenges in this area. Within the HAR context, TL can
be implemented in the form of cross-body part, cross-sensor,
cross-dataset, cross-user (cross-subject), and cross-activity
knowledge transfer [15], [35], [36].

Users carry smart bracelets, smart watches, and smart
phones on their body at different configurations. However, the
way these devices are worn on the body affects the resulting
signal patterns considerably. In our earlier work, we have
investigated the effect of position and orientation changes of
motion sensor units on the HAR accuracy [37], [38], [39], [40].
In those works, we have developed algorithms that employ
features that are invariant to position and orientation shifts
and also investigated the interchangeability of sensor units
carried on different body parts. Within the context of TL,
it is highly advantageous if a model trained for HAR with
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a particular sensor configuration on a certain body part is
capable of transferring the acquired knowledge to alternative
sensor configurations and other body parts. These would be
examples of cross-body part and cross-sensor TL.

Cross-user (cross-subject) TL is the most commonly
exploited type of TL for HAR [41]. Since the age, gender,
height, weight, and physical state of individuals affect the
way they perform activities, ML/DL models trained on a
group of subjects’ data may not perform sufficiently well
on new (unseen) users [42]. A number of studies have
demonstrated favorable results in cross-user TL to improve
model performance on new users [43], [44], [45].

III. FEASIBILITY OF FEATURE TRANSFER FROM THE HAR
DOMAIN TO THE UIR DOMAIN

Since individuals perform physical activities in their own
characteristic style, signals recorded from wearable motion
sensors contain cues for recognizing the person. To investigate
the feasibility of feature transfer from the HAR domain to
the UIR domain, we first consider each activity type in the
two datasets separately to recognize user identities, employing
our recently proposed hybrid DL model which we have
developed for the HAR task [14], [15]. This also helps to
identify the activity types that are informative and useful for
the UIR task, which we will address later in Section IV-A4.
We kept the layer structure of our hybrid DL model the
same as in [14] and [15] but trained it from scratch with
only the signals recorded from a particular activity type and
evaluated the UIR accuracy for that activity. While training
the model for UIR, we label the activity recordings with
the corresponding user labels and provide them as input to
the model. Table I presents the resulting accuracies. (The
reader is referred to [14], [15], [46], [47], [48], and [49]
for detailed descriptions of the UCI HAR and DSA Datasets
that we have used in this study. DSA: Daily and Sports
Activities.) The results in Table I(a), obtained by processing
the UCI HAR Dataset, indicate that while we attain UIR
accuracies above 93.4% with the three dynamic (walking
related) activities, static activities (sitting, standing, and laying
down) result in accuracies below 54.6%. On the other hand,
Table I(b) shows that all the UIR accuracies that we have
obtained by processing the DSA Dataset are above 84.7%.
The reason for this difference between the results of the
two datasets could be that while the UCI HAR Dataset
was collected using only a single waist-worn sensor unit
embedded in a smart phone, the DSA Dataset was acquired
with a total of five sensor units, each placed on a different
body part (the torso and each of the four limbs). Besides,
the five sensor units contain an additional sensor modality
which is the magnetometer. This allows extraction of addi-
tional information from the activity signals that supports the
recognition of users as they perform both static and dynamic
activities.

The generally high UIR accuracy values that we have
obtained employing a DL model developed for the HAR task

TABLE I
UIR ACCURACY PLUS/MINUS ONE STANDARD DEVIATION FOR EACH

TYPE OF ACTIVITY, BASED ON PROCESSING THE (A) UCI HAR DATASET

(B) DSA DATASET

(a)

(b)

indicate that HAR and UIR tasks have some features in com-
mon and it is worthwhile to transfer features from the HAR
domain to the UIR domain. Note that the experiments reported
in this section were conducted solely to explore the feasibility
of TL between the two domains. We have investigated which
activity signals provide the most informative representations
for UIR. These experiments are not intended to be part of the
bidirectional TL scheme between the two domains in a real-
world application. In the following section, we elaborate on
bidirectional feature transfer between these two domains.

IV. BIDIRECTIONAL TRANSFER LEARNING BETWEEN THE

HAR AND UIR DOMAINS

In this section, we demonstrate through TL that the features
extracted by our hybrid DL model, originally developed for the
HAR task, can provide high quality representations for another
recognition task (which is UIR based on user activities), and
vice versa. To do this, we implement a single encoder for
joint feature extraction for both HAR and UIR instead of two
separate encoders for HAR and UIR, enabling TL between
the two tasks (Fig. 3). Assuming the availability of a model
already trained using our encoder for one task (HAR), we
directly use the features it extracts to train only a minimal
classifier for the other task (UIR), and vice versa. This way,
we attain efficiency in training and feature extraction and
demonstrate the practical utility of reusing a pretrained model
across these two domains. Our approach eliminates the need
to retrain the whole model from scratch as well as the use of
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Fig. 3. Feature extraction via encoders: (a) two separate encoders for HAR
and UIR, and (b) a single unified encoder for joint feature extraction for both
HAR and UIR.

two encoders, as in Fig. 3(a), for feature extraction, which is
critical for resource-limited wearables. Consequently, training
times and memory space are considerably reduced, while an
acceptable level of accuracy is maintained.

In Section IV-A, we investigate feature transfer from the
HAR domain to the UIR domain, whereas in Section IV-B,
we explore feature transfer in the opposite direction.

A. Feature Transfer from HAR Domain to UIR Domain

To transfer features from the HAR domain to the UIR
domain, we use our recently proposed hybrid DL model,
developed for the HAR task [14], [15]. Note that in the cited
work, a separate DL model is developed for each of the two
datasets, trained with all of the activities of the corresponding
dataset.

1) Selecting the Features to be Transferred: We need to
determine at which layer of each branch of the model to
transfer the extracted features from the HAR domain to the
UIR domain. Transferring features only from a couple of
shallow layers may require retraining a larger part of the DL
model for the new task, which is costly. On the other hand,
since the last few layers of the network extract more domain-
specific features, it is usually not feasible to use those features
for another task. Thus, there is an inevitable tradeoff between
the depth of the layers whose features will be transferred to
the UIR domain (by freezing their weights) and the required
training time.

To identify the best layers for feature transfer, we have
conducted experiments by using features of each possible
layer combination of the two parallel-running branches of our
DL model. We form the layer combinations by taking one
layer from each branch and present the resulting accuracies
in Table II. Rows and columns of Table II(a), respectively,
represent the 2D CNN and LSTM branch layers of our hybrid
DL model developed by processing the UCI HAR Dataset.
The top left corner of the table corresponds to the shallowest
layers of the model that extract more elementary or primitive
features, while the bottom right corner corresponds to the
deepest layers and more advanced, domain-specific features.
For the 2D CNN-LSTM model illustrated on the left side of

Fig. 4. TL from the HAR domain to the UIR domain for the (a) UCI HAR
Dataset (b) DSA Dataset.

Fig. 4(a), we obtain the maximum classification accuracy by
using the features extracted after dropout layer 1 which is the
second layer of the 2D CNN branch and dropout layer 6 which
is the second-to-last layer of the LSTM branch. This indicates
that only one 2D CNN layer is sufficient to extract useful
features for HAR and the features extracted by the 2D CNN
branch of the network (with spectrograms given as input) start
becoming domain specific after the second layer. On the other
hand, the LSTM branch extracts more generalizable features
well into the deeper layers of the network. We attain the
highest accuracy with the features extracted after the three
LSTM layers.

Rows and columns of Table II(b), respectively, represent
the 2D CNN and LSTM branch layers of our DL model
developed by processing the DSA Dataset. Note that in the
rows of Table II(b), we omit the 2D CNN layer because
the 2D output of the 2D CNN layer is not compatible with
the 1D output of the LSTM branch for concatenation and needs
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TABLE II
UIR ACCURACY PLUS/MINUS ONE STANDARD DEVIATION (%) WITH FEATURES EXTRACTED FROM EACH LAYER COMBINATION OF THE MODEL’S

TWO BRANCHES, BASED ON PROCESSING THE (A) UCI HAR DATASET (B) DSA DATASET

(a)

(b)

to be converted to a 1D vector first. Since the flatten layer that
follows the 2D CNN layer handles this conversion, the rows
of the subtable start with the flatten layer. As in Table II(a),
the top left corner of the table corresponds to the initial layers
of the model that extract rather elementary features and the
bottom right corner displays the results from the deepest layers
that extract more complex features. Fig. 4(b) illustrates the
feature transfer for the DSA Dataset. We achieve the highest
accuracy with the features extracted after the flatten layer of
the 2D CNN branch and the dense layer 2 of the LSTM
branch. Thus, the results from both datasets indicate that the
shallow layers of the 2D CNN branch and the deep layers of
the LSTM branch extract informative and useful features for
TL from the HAR domain to the UIR domain. The subtable
on the right side of Table II(b) displays the UIR accuracies
starting with the concatenation layer for the DSA Dataset.
Note that these results correspond to the DL model on the
left side of Fig. 4(b). We observe that concatenated features,
when transferred to the UIR domain, cannot provide high
accuracies, indicating that the extracted features become too
domain specific after concatenation. Therefore, features need
to be transferred prior to concatenation.

Based on the presented results, we have used the appropriate
initial layers of the DL models from each branch [see the scis-
sors cuts in dashed lines on the left sides of Fig. 4(a) and (b)]
which have already been trained for the HAR task, as the
shallow layers that will function as feature extractors for
the UIR task. We freeze the connection weights of these
layers and do not modify them during the training process for
UIR. We only need to train the weights of the newly added
layers.

Since the previously trained (frozen) layers operate as
feature extractors, the newly added layers effectively function
as classifiers. Therefore, we have designed the newly added
layers in the simplest possible form by including one dropout
layer (as regularizer) and one dense layer in each branch, and
one softmax layer after concatenation of features from the two
branches. The only purpose of the additional flatten layer on
the right side of Fig. 4(a) on the 2D CNN branch is to convert
the tensor shape to make it compatible with the next layer.

TABLE III
UIR ACCURACY PLUS/MINUS ONE STANDARD DEVIATION (%) AS THE

NUMBER OF DLNS AND THE DROPOUT PROBABILITY ARE VARIED,
BASED ON PROCESSING THE (A) UCI HAR DATASET (B) DSA DATASET

(a)

(b)

While training the weights of the newly added layers of
the transfer model for UIR, we label the activity recordings
with the corresponding user labels and provide them as input
to the network. In doing this, we have only processed the
data recorded from the dynamic activities of the UCI HAR
Dataset. When training the transfer model developed for the
DSA Dataset, we have used data from all the activity types of
that dataset.

2) Hyperparameter Selection of the Transfer Model: The
newly added layers of the DL network in the UIR domain have
two hyperparameters to be selected which are the number of
dense layer neurons (DLNs) and the dropout probability. Since
there is a small number of hyperparameters (only two), we
have conducted a grid search to select suitable values for these
hyperparameters. Table III displays the UIR accuracies as we
vary the values of the two hyperparameters while processing
each dataset. For the UCI HAR Dataset [Table III (a)], DLN
numbers of 128 and 256 result in the highest accuracy values
that do not differ much. Increasing the number of DLNs
beyond 512 causes accuracy degradation. We achieve the
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TABLE IV
NUMBER OF PARAMETERS, TRAINING TIME, AND THE UIR ACCURACY

OF THE FULLY TRAINED VERSUS TRANSFER NETWORK FROM THE HAR
DOMAIN TO THE UIR DOMAIN, BASED ON PROCESSING THE (A) UCI

HAR DATASET (B) DSA DATASET

(a)

(b)

maximum accuracy of 93.89% with 256 DLNs and a dropout
probability of 0.5. Considering the small differences between
the high accuracy values, we have set the number of DLNs
equal to 128 to keep the network complexity low. As for
the DSA Dataset [Table III (b)], DLN numbers greater than
or equal to 128 result in the best accuracy values, again
with rather small differences between them. With the same
considerations as for the UCI HAR Dataset, we have once
again set the number of DLNs equal to 128. Table III also
indicates that the dropout probability values of 0.5 and 0.7
are suitable choices for the UCI HAR and the DSA Datasets,
respectively.

3) Comparison of the Fully Trained and Transfer Models:
After identifying the salient features to be transferred to the
UIR domain and selecting suitable hyperparameter values for
the newly added layers of the transfer model, next, we evaluate
the performance of the UIR model that exploits the transferred
features.

Table IV shows the comparison between the fully trained
and transfer models for each dataset. Transfer models diminish
the number of parameters of the DL models by 6.60% for the
UCI HAR Dataset and by 38.03% for the DSA Dataset. More
importantly, using transfer models results in considerably
reduced training times. For the UCI HAR Dataset, the training
time of the transfer model is 14.7 times less than that of
the fully trained one, while for the DSA Dataset, it is 34.4
times lower. The main reason for the reduced training times
is, obviously, the elimination of the need to train the transfer
layers whose weights are frozen.

To provide a more quantitative result on the training times,
we have measured the time spent for training each layer of the
transfer networks approximately. To do this, we have excluded
the layers of each transfer network one at a time and measured
the time for training the remainder of the network. The
difference between the training time of the complete transfer
network and the measured value approximately corresponds to
the time required for training the excluded layer. The results
displayed in Table V indicate that bulk of the training time
is spent on the LSTM layers. This is because LSTM cells
require a large number of matrix operations to compute the cell
outputs. Besides, they operate recurrently which multiplies the
amount of computation time with the number of time steps in
the input sequences. Therefore, we can state that the transfer

TABLE V
TRAINING TIME OF EACH LAYER OF THE TRANSFER NETWORKS, BASED

ON PROCESSING THE (A) UCI HAR DATASET (B) DSA DATASET

(a) (b)

networks achieve reduction in the training times mainly by
eliminating the need to train the LSTM layers via freezing
their weights.

Referring to Table IV again, we observe that besides the
lower number of parameters and reduced training times, the
differences between the classification accuracies of the fully
trained and transfer networks are quite small. While the
accuracy of the transfer model is lower than that of the fully
trained model by 2.45% in processing the UCI HAR Dataset,
it is even higher for the DSA Dataset by 1.56%. This could be
for the same two reasons given in Section IV-A for the higher
UIR accuracies obtained with the DSA Dataset in Table I(b).

Parts (a) and (c) of Fig. 5 display the accuracy versus
epoch number plots during the training process of the fully
trained and transfer networks for the two datasets. Both parts
of the figure illustrate that the transfer models converge to
maximum accuracy values in earlier epochs compared to the
fully trained ones. This is because there is a smaller number
of layers and parameters to be trained in the transfer networks.
Consequently, the Adam optimizer can reach the optimal loss
point in earlier epochs.

Parts (b) and (d) of Fig. 5 depict the accuracy versus time
plots for the two datasets. Since the time-consuming task
of training the LSTM layers of the fully trained models is
eliminated, the training time spent on each epoch is reduced
considerably. As a result, the transfer models reach the
maximum accuracy level much faster compared to the fully
trained ones.

4) Binary Classifier for Selecting Activities Informative
for UIR: We have achieved accurate UIR with fully trained
and transfer networks where the transfer networks require
significantly less training time and lower number of param-
eters. However, in the real world, users do not necessarily
perform activities that are discerning for UIR. Therefore, UIR
algorithms should be able to distinguish between activity
signals that are informative and noninformative for the UIR
task. Based on the results in Table I(a), we have labeled the
dynamic (walking-related) activities of the UCI HAR Dataset
as informative and the remaining three activities (which are
static) as noninformative for UIR. Referring to the results in
Table I (b), we have labeled 16 out of 19 activities of the DSA
Dataset as informative and considered the activities of moving
around in an elevator, rowing, jumping, and playing basketball
as noninformative. With activities labeled as such, we train a
binary classifier model to categorize activities into two classes
as informative and noninformative.
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Fig. 5. Convergence of UIR accuracy with respect to epoch numbers and time in TL from HAR to UIR domain. Parts (a), (b): UCI HAR Dataset results;
(c), (d): DSA Dataset results.

TABLE VI
NUMBER OF PARAMETERS, TRAINING TIME, AND THE

CLASSIFICATION ACCURACY OF THE BINARY CLASSIFIER OBTAINED BY

PROCESSING EACH OF THE TWO DATASETS

The proposed binary classifier employs the transferred
features that the frozen parts of the models in Fig. 4 have
extracted. In processing both datasets, we have used the same
structure, shown in Fig. 6. We have kept the layers of the
binary classifier simple by including only a single dense
layer in each branch. Each dense layer contains eight neurons
and the binary models trained with the UCI HAR and the
DSA Datasets have a total of 79,410 and 59,306 parameters,
respectively. We have classified the concatenated features with
a softmax layer. Table VI displays the number of parameters,
training time, and the accuracies of the binary classifers trained
using the two datasets. We have achieved the accuracy figures
of 100.00% and 98.92% by processing the UCI HAR and
the DSA Datasets, respectively. If the recorded activity signal
is classified as informative for UIR, then the proposed UIR
module is activated. If not, the activity signal is considered
noninformative and discarded. We illustrate the UIR scheme
in Fig. 7.

5) Comparison with a Recent Study: As reviewed in
Section II-A, a limited number of studies have addressed
the UIR problem by processing data acquired from wearable
motion sensors. Reference [50] presents a novel framework for

Fig. 6. Structure of the binary classifier designed to identify activities that
are informative for UIR.

Fig. 7. UIR scheme with wearable motion sensor data.

multiclass UIR based on recognizing daily activities through
the use of wearables and DL models. The study employs a
hierarchical ensemble of classifiers as a DL model for UIR and
tests it using the UCI HAR and the USC HAD Datasets (USC
HAD: University of Southern California Human Activity
Dataset). This allows us to compare our results based on the
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TABLE VII
COMPARISON OF THE UIR ACCURACY PLUS/MINUS ONE STANDARD DEVIATION RESULTS OF THE FULLY TRAINED AND TRANSFER MODELS WITH

THOSE IN [50], BASED ON PROCESSING THE UCI HAR DATASET

TABLE VIII
HAR ACCURACY PLUS/MINUS ONE STANDARD DEVIATION (%) WITH FEATURES EXTRACTED FROM EACH LAYER COMBINATION OF THE MODEL’S

TWO BRANCHES, BASED ON PROCESSING THE (A) UCI HAR DATASET (B) DSA DATASET

(a)

(b)

UCI HAR Dataset with those reported in [50] for the same
dataset.

Activities listed in the first three rows of Table VII are
static activities while those in the next three rows are dynamic
(walking-related) activities. Our hybrid DL model exhibits
superior performance with the dynamic activities both when
their signals are used individually and collectively. These are
the activities that achieve UIR with accuracies above 95.5%
with our fully trained DL model and above 91.2% with our
transfer model. Signals of the static activities are not as useful
for UIR and are discarded, as depicted in Fig. 7.

The best performing model in [50] is the cascaded (series)
1D CNN-LSTM architecture which achieves 92.44% accuracy
with the combination of the three walking-related dynamic
activities (see the last row of Table VII). Our proposed model
surpasses this score and achieves 96.83% and 94.38% accu-
racy, with the fully trained and transfer networks, respectively.

B. Feature Transfer from UIR Domain to HAR Domain

To this point, we have shown that the features extracted by
our DL models in the HAR domain are transferable to the
UIR domain. Thus, UIR models can directly use the shallow
layers of our DL models, developed for the HAR task, as
feature extractors in the UIR domain without further training.
Now, we consider feature transfer in the reverse direction and
investigate to what extent the features extracted by the DL
models trained for the UIR task can be employed for HAR.

1) Selecting the Features to be Transferred: Fig. 8 illus-
trates the feature transfer from the UIR domain to the HAR
domain. Note that the 2D CNN-LSTM models illustrated on

the left sides of the figure are the same two models as on
the left sides of Fig. 4(a) and (b). These models are taken to
be the base models for both directions of TL to implement
bidirectional feature transfer. Weights of the layers transferred
from the UIR domain are frozen and the weights of the rest of
the network are trained for the HAR task. Table VIII(a) shows
the resulting accuracies for the features extracted at each layer
in processing the UCI HAR Dataset. As in Table II, rows and
columns, respectively, correspond to the 2D CNN and LSTM
branches and the bottom right corner of the table represents
the deepest layers. We achieve the maximum HAR accuracy of
92.39% when we employ the features extracted after dropout
layers 1 and 4, which are the second shallowest layer of each
branch of the network. This is unlike the case for feature
transfer in the opposite direction (HAR to UIR). Recall that,
more advanced features, extracted by the deeper layers of
the LSTM branch, were more useful in knowledge transfer
from the HAR domain to the UIR domain. This indicates that,
compared to the HAR features, UIR features are getting to be
domain specific faster, especially along the LSTM branch.

Table VIII(b) displays the HAR accuracy results with the
features transferred from the UIR domain in processing the
DSA Dataset. The highest accuracy of 88.67% is obtained by
employing the features extracted by the flatten and LSTM lay-
ers which are the shallowest. The results in Table VIII(b) also
support that the features extracted in the UIR domain are more
domain specific while those in the HAR domain are more
generalizable.

Comparing the maximum accuracy values in
Tables II and VIII, we also note that the maximum UIR
accuracies obtained in transferring features from the HAR
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Fig. 8. TL from the UIR domain to the HAR domain for the (a) UCI HAR
Dataset (b) DSA Dataset.

domain to the UIR domain (93.31% and 95.91%) are larger
than those from the UIR domain to the HAR domain (92.39%
and 88.67%), indicating that feature transfer in the former
direction is more favorable and advantageous.

2) Hyperparameter Selection of the Transfer Model: To
select suitable values for the two hyperparameters in the newly
added layers of the DL models in the HAR domain, we have
conducted another grid search. Table IX displays the HAR
accuracies as the number of DLNs and the dropout probability
are varied for the two datasets. For both datasets, we observe
that the accuracy does not change much with the number of
DLNs. This indicates that the learning capacities of the models
are sufficient to learn the data features and are not improved
by further increase in the number of DLNs. We selected the
number of DLNs as 64 and 128 for the UCI HAR and the
DSA Datasets, respectively. Although these are not the DLN
numbers that correspond to the maximum accuracies, since

TABLE IX
HAR ACCURACY PLUS/MINUS ONE STANDARD DEVIATION (%) AS THE

NUMBER OF DLNS AND THE DROPOUT PROBABILITY ARE VARIED,
BASED ON PROCESSING THE (A) UCI HAR DATASET (B) DSA DATASET

(a)

(b)

TABLE X
NUMBER OF PARAMETERS, TRAINING TIME, AND THE HAR ACCURACY

OF THE FULLY TRAINED VERSUS TRANSFER NETWORK FROM THE UIR
DOMAIN TO THE HAR DOMAIN, BASED ON PROCESSING THE (A) UCI

HAR DATASET (B) DSA DATASET

(a)

(b)

their resulting accuracies are quite close to the maximum, we
have chosen them to keep the model complexity low. We have
selected the dropout probability as 0.5 for both datasets since
this value provides the highest accuracy values as presented
in Table IX.

3) Comparison of the Fully Trained and Transfer Models:
Table X shows the comparison between the fully trained and
the transfer models in terms of the number of parameters,
training time, and the HAR accuracy. Training times of the
transfer networks are 15.7 and 8.7 times less than those of the
fully trained networks based on processing the UCI HAR and
the DSA Datasets, respectively. This considerable reduction in
the training time is accompanied by accuracy values degraded
by small margins (1.99% and 5.38%, respectively).

Parts (a) and (c) of Fig. 9 display the accuracy versus epoch
number plots during the training process of the fully trained
and transfer networks for the two datasets. Transfer networks
enable higher accuracies in the initial epochs and faster and
smoother convergence to the maximum accuracy values. We
achieve this through TL by eliminating the need to train the
shallow layers of the networks which are responsible for most
of the computational cost.

Parts (b) and (d) of Fig. 9 depict the accuracy versus time
plots during the training process of the two networks based on
the two datasets. Again, the transfer networks exhibit larger
accuracies, especially in the initial epochs, mainly because
of their faster converge rate compared to the fully trained
networks.
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Fig. 9. Convergence of HAR accuracy with respect to epoch number and time in TL from UIR to HAR domain. Parts (a), (b): UCI HAR Dataset results;
(c), (d): DSA Dataset results.

Considering the significant reduction in the training time
and the tolerable difference between the accuracies we
obtained with the fully trained and transfer networks, we can
conclude that the features extracted in the UIR domain can
be used in the HAR domain with satisfactory performance,
especially if the computational resources are limited.

V. COMPARISON WITH SOTA MODELS

A. Layer Selection

In this section, we compare the performance of our proposed
model with those of four of the six basic SoTA models that
we have considered and implemented in our earlier work for
the HAR task [14]. These are the 1D CNN, 2D CNN, LSTM,
which are single models, and a 1D CNN-LSTM which is a
hybrid model. In this standard hybrid model, the 1D CNN and
LSTM networks are connected in series and are provided with
raw time sequences as input. Note that all four comparison
models are made up of only a single branch with a series
combination of layers [14].

As before, we have conducted experiments to determine
the optimal layer depth for feature transfer for each of the
four comparison models by using the output of each layer
as the features for the transfer network. We have selected
the model layers whose features result in the maximum
classification accuracy, as the feature extraction layers. For
the proposed model, we have already provided the accuracy
values at each layer combination in Tables II and VIII.
Nevertheless, based on our experiments with all five models,
we tabulate the indices of the best feature extractor layers in
Table XI.

B. Hyperparameter Selection of the Transfer Model

We have conducted a grid search to tune the three hyperpa-
rameters of the transfer models, which are the learning rate,
the number of DLNs, and the dropout probability, over the
following sets of values.

1) Learning Rate: [0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005].
2) Number of DLNs: [25, 26, 27, 28, 29, 210, 211, 212].
3) Dropout Probability: [0.1, 0.3, 0.5, 0.7, 0.9].
We present the tuned hyperparameter values in Table XII.

Whenever the accuracy values were similar, we have selected
the smaller number of DLNs to avoid an unnecessary increase
in the number of model parameters. Note that, in the last col-
umn of Table XII, we have also included the hyperparameter
values used in the 2D CNN-LSTM model for complete-
ness. The DLN and dropout probability hyperparameters in
this column are previously optimized in Section IV-A2 (see
Table III) and Section IV-B2 (see Table IX). For the learning
rate hyperparameter of the HAR models, we have used the
values optimized in [14] while we used 0.001 for the UIR
models.

C. Results

The results in Tables XIII and XIV indicate that our DL
model consistently provides more generalizable features com-
pared to existing SoTA architectures, especially in processing
the UCI HAR Dataset. In the tables, we have highlighted
the largest two accuracy values using boldface fonts. In our
earlier work on HAR, the second-ranking model was the
2D CNN [14], [15]. Consistent with that, in the present TL
study, 2D CNN is again the second-ranking model, based on
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TABLE XI
INDICES OF THE SELECTED FEATURE EXTRACTOR LAYERS OF THE MODELS IN TL [INDEXING STARTS WITH THE INPUT LAYER(S)]

TABLE XII
TUNED HYPERPARAMETER VALUES IN TL (LEARNING RATE, NUMBER OF DLNS, AND DROPOUT PROBABILITY)

TABLE XIII
NUMBER OF PARAMETERS, TRAINING TIME, AND THE UIR ACCURACY PLUS/MINUS ONE STANDARD DEVIATION OF THE FULLY TRAINED VERSUS

TRANSFER NETWORKS FROM THE HAR DOMAIN TO THE UIR DOMAIN, BASED ON PROCESSING THE (A) UCI HAR DATASET (B) DSA DATASET

(a)

(b)

the accuracy results. The proposed model and the 2D CNN are
superior in generalizable feature extraction. The effect of TL
is, in general, to reduce the training time considerably. In most
cases, we also observe lower number of model parameters.

VI. IMPLEMENTATION AND RESOURCES

Some of the hyperparameters of the model layers, such as
the optimizer, loss and activation functions can be selected
through common practice. We have chosen to use the optimizer
Adam and the loss function Categorical Cross Entropy in
developing our hybrid DL model. While processing the UCI
HAR Dataset, we have employed the sigmoid and ReLU
activation functions for the dense and 2D CNN layers,
respectively. However, in processing the DSA Dataset, since
2D CNN layers without any activation functions yielded better
classification results, we have not used any activation functions
in those layers.

We have implemented both the fully trained and trans-
fer models using Python’s Keras and Tensorflow libraries.

Because hyperparameter tuning, training multiple models, and
processing the datasets are all computationally demanding
tasks, we have employed the T4 GPU with 15-GB RAM
provided by Google Colab platform. Our findings indicate
that the proposed DL model and feature transfer approach
enable rapid model training within a few minutes (for a single
model) on a standard CPU, eliminating the need for a GPU.
For time measurements, we have used the CPU provided
by the Amazon web services (AWS) platform with an EC2
p2.xlarge instance, as this platform offers more consistent time
measurements.

VII. DISCUSSION AND CONCLUSION

We have implemented bidirectional TL between the HAR
and UIR domains employing our recently proposed 2D CNN-
LSTM hybrid DL model. The high-accuracy HAR and UIR
results that we have achieved demonstrate the feasibility
of effective feature transfer between these two domains
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TABLE XIV
NUMBER OF PARAMETERS, TRAINING TIME, AND THE HAR ACCURACY PLUS/MINUS ONE STANDARD DEVIATION OF THE FULLY TRAINED VERSUS

TRANSFER NETWORKS FROM THE UIR DOMAIN TO THE HAR DOMAIN, BASED ON PROCESSING THE (A) UCI HAR DATASET (B) DSA DATASET

(a)

(b)

in both directions. This work is the first to attain suc-
cessful, high-accuracy TL between the HAR and UIR
domains, making a notable contribution in wearable sensing
research.

One of the key achievements of this work is illustrating
how a model pretrained in one domain can support training
in another domain, leveraging existing models to reduce the
need for training from scratch. This capability is particularly
valuable when a pretrained model does not exist for one task
but available for another, demonstrating a practical approach
to resource efficiency in model training.

To pave the way for TL between the HAR and UIR domains,
we have effectively developed a unified encoder that can extract
features jointly for the HAR and UIR tasks. This approach
eliminates the need to use two separate encoders for feature
extraction and the need to retrain the whole model from
scratch. As a result, the model architecture is simplified, training
times, and required memory space and energy are considerably
reduced, while an acceptable level of accuracy is maintained.
Thus, the overall complexity of the model is lower at the expense
of a small degradation in classification accuracy, pointing to the
tradeoff between complexity and accuracy. Such a lightweight
memory-efficient model that consumes less energy is well-suited
for deployment on resource-constrained edge devices. This is
the main motivation and reason for prioritizing training and
memory efficiency over accuracy in this study. Thus, we stress
the practical benefits of our proposed method in resource-limited
environments. Besides the use of a shared encoder being a
tangible contribution of our work, our results provide foundation
for future studies to explore additional practical advantages—
such as online learning on edge devices for retraining the
model on new users aiming better adaptation—of such a unified
learning framework.

Bidirectional transferability of features between two distinct
domains (HAR and UIR) further validates the superiority of
the 2D CNN-LSTM model that we have originally proposed
in [14] and [15] and employed in this study for feature extrac-
tion and transfer. We have compared the performances of the
best five out of the seven SoTA models that we have previously
implemented and evaluated [14]. Our recently proposed hybrid
DL model, which was among them, demonstrates superior
performance in bidirectional TL as well. Unlike existing basic
DL models which struggle to extract transferable features for
the HAR and UIR tasks, our model successfully extracts and
transfers robust features, exploitable across both domains.

The main benefit of feature transfer is the significant
reduction in the training times of the DL models. Besides, we
also observe a moderate reduction in the number of model
parameters. Feature transfer from the HAR domain to the UIR
domain shortens the training process by a factor of 14.7 and
34.4 for the UCI HAR and DSA Datasets, respectively, while
maintaining the accuracy at acceptable levels. Respective
factors for feature transfer from the UIR domain to the HAR
domain are 14.3 and 28.1, with a small accuracy degradation
compared to the fully trained models. Overall performance
is superior and performance gaps between the fully trained
and transfer networks are smaller for feature transfer from
the HAR domain to the UIR domain. This indicates that it
is possible to extract more generalizable features in the HAR
domain compared to the UIR domain, making feature transfer
in this direction more favorable and advantageous.

The key technical challenge of this work has been maintain-
ing an acceptable level of accuracy in activity/user recognition
while benefiting from the advantages of TL.

An additional contribution of this work is the binary
classifier module that we have integrated in our end-to-end
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UIR system to identify the activity signals that are particularly
informative for UIR. Inclusion of such a binary classifier
further enhances the UIR accuracy. We underline that we have
trained separate UIR models with different feature subsets only
as an off-line, one-time feasibility analysis task to identify
which features are most suitable for transfer. This procedure is
not intended to be part of the practical application pipeline and
does not need to be repeated. Once the informative features
and activity types are identified, the results can be directly used
in future applications without any additional computation.

The work presented in this article can be extended in several
directions. One future research topic could be investigating
whether the features extracted by our proposed DL network
architecture have sufficient representation capacity for problem
domains besides HAR and UIR or not. Features can be
transferred across different domains to achieve cross-body
part, cross-sensor, cross-user, cross-dataset, and cross-activity
knowledge transfer. DL models need to be energy efficient
for deployment on wearable edge devices that typically have
limited battery life. Energy consumption of the DL models
on embedded devices can be measured to develop models
with lower energy requirements. Our current work is focused
on reducing the complexity of the transfer models while
maintaining an acceptable level of accuracy.
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