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Position Invariance for Wearables:
Interchangeability and Single-Unit Usage

via Machine Learning
Aras Yurtman , Billur Barshan , and Soydan Redif , Senior Member, IEEE

Abstract—We propose a new methodology to attain invariance
to the positioning of body-worn motion-sensor units for recog-
nizing everyday and sports activities. We first consider random
interchangeability of the sensor units so that the user does not
need to distinguish between them before wearing. To this end, we
propose to use the compact singular value decomposition (SVD)
that significantly reduces the accuracy degradation caused by
random interchanging of the units. Second, we employ three
variants of a generalized classifier that requires wearing only
a single sensor unit on any one of the body parts to classify
the activities. We combine both approaches with our previously
developed methods to achieve invariance to both position and ori-
entation, which ultimately allows the user significant flexibility in
sensor-unit placement (position and orientation). We assess the
performance of our proposed approach on a publicly available
activity data set recorded by body-worn motion-sensor units. The
experimental results suggest that there is a tolerable reduction
in accuracy, which is justified by the significant flexibility and
convenience offered to users when placing the units.

Index Terms—Accelerometer, activity monitoring and classi-
fication, gyroscope, inertial sensors, Internet of Things (IoT),
machine learning classifiers, magnetometer, motion sensors, ori-
entation invariance, pattern recognition, position invariance,
wearable sensing.

I. INTRODUCTION

W ITH the growth and proliferation of devices in homes,
factories, hospitals, vehicles, etc., there is an ever

increasing need for solutions to device/data integration and
management. Wearables containing devices such as motion
sensors are considered a key element of Internet of Things
(IoT), which play a significant role in ambient intelligence
and assistive technology [1], [2]. Pervasiveness of communi-
cating sensors and computing intelligence has facilitated the
integration of motion sensors in devices or accessories used in
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everyday life. Through a network of intelligent sensors, valu-
able information about the user state and well being can be
obtained.

Designing context-aware systems that can monitor, under-
stand, and classify human activities correctly is essential to
improve the user’s quality of life. Monitoring daily living
activities and detecting unexpected behavior or circumstances
to support the elderly population or those with special needs
are challenging research issues [3], [4]. Personal safety and
comfort of the user must not be compromised by limiting their
independence, restricting their mobility, invading their privacy,
and/or degrading their quality of life.

Superior in several respects to complementary sensors-based
smart environments [5], recognizing human activity using
wearable motion sensors has recently received growing atten-
tion. Wearable systems offer a more feasible solution, both
in terms of cost and infrastructure [6]. Body-worn sensors
have become smaller, lighter, less costly, wireless, and portable
with reduced power consumption. The concerns related to dis-
comfort, portability, and affordability are lessened with such
improvements. Wearables can be readily integrated with pop-
ular user devices and accessories, such as mobile phones
and smart watches, as explored in, e.g., [7] and [8]. In [8],
for example, an IoT-based wireless system (SmartPANTS) is
developed as a smart home-rehabilitation platform for use in
the physical therapy of recovering stroke patients.

A. Main Focus

Overall, wearing sensors is a suitable option for auto-
mated monitoring and recognition of activities, as advocated
in our earlier works [9]–[11] and championed in this study.
However, a pertinent issue, related to the focus of this article,
is the proper attachment of the wearables by users. Wearable
systems often require the user to affix multiple sensor units
to predetermined positions and orientations on their body.
However, sensor-unit affixment deviates from the ideal config-
uration from user to user, which can degrade wearable system
performance. Expecting the user to identify and place multiple
units correctly each time at predetermined positions and ori-
entations can be restrictive, tedious, and overwhelming. This
is especially true for elderly, injured, or disabled users in
daily activity monitoring and fall detection [12], [13] or for
telerehabilitation [14].

Even with correctly affixed sensor units, their placement
(position and orientation) may inevitably change with time
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due to movement, vibrations, impacts on the body, etc. If
the devices are not directly worn on the skin but affixed to
the user’s clothing or accessories, the problem becomes more
severe. Sensor-unit placement poses a significant issue involv-
ing smartphones due to the obvious variability in position and
orientation of the phone [15]–[17]. In [17], a smartphone-
based activity recognition method is described where there are
a limited number of allowable positions/orientations to distin-
guish four daily activities. Note that the consideration of only
a restricted set of predetermined positions and/or orientations
is a trait found in most previous studies.

Hence, it is clear that when affixing sensors, the need
to provide positional and/or orientational flexibility to users
of wearable-based activity recognition systems arises [18].
Furthermore, this would reduce the demand on the amount of
training data/time since the wearable system would not need
to be trained for every possible sensor-unit placement.

B. Related Work

Activity recognition methods that are robust to errors due
to sensor-unit placement uncertainty have received limited
attention [19]. Our recent works have addressed the problem
of invariance to position [20] and to orientation [21], [22]
of body-worn motion-sensor units, ultimately providing users
with a degree of pliability and freedom.

A detailed survey on methods for attaining invariance to
the positioning of body-worn motion-sensor units is pro-
vided in [20] and [24]. One type of method gains invariance
to sensor-unit positioning by transforming the sensory data
and extracting heuristic features based on the transformed
data [25], [26].

Alternatively, one could train classifiers to distinguish
between different sensor-unit positions. One way of accom-
plishing this is to use a single generalized classifier to
aggregate all sensor-data features for all possible sensor-unit
positions.

A number of works have also utilized differing sensor-
placement configurations at different times and/or places,
and/or from different subjects [27]–[30].

Chavarriaga et al. [31] and Förster et al. [32] claim that
class means are shifted in the feature space as a consequence of
position variations. Acceptable results are obtained for position
shifts; however, unsatisfactory classification is observed when
the sensor units are moved across different body parts, which
is expected.

Another group of studies is based on the assumption that a
priori information about the sensor units and their positions
is available, which is not realistic [33]. Invariance to sensor-
unit orientation is achieved via the use of the magnitude of
the acceleration vector [34]. Multistage processing has also
been employed, where a stage is used for classifying the dif-
ferent sensor-unit positions and another stage used for activity
recognition [35]–[37].

Earlier-developed methods focusing on position invariance
are not comparable with each other due to a number of reasons,
such as sensor type and placement configuration, classifica-
tion, and cross-validation process. In addition, the effect of
the proposed approach on the activity recognition rate is not

always made clear. Another issue is that existing studies on
position invariance make different assumptions about the unit
orientation [32], [35], [38], [39].

Some studies consider a very limited number of activi-
ties [28] or consider only the simple ones, even though these
may impact classification accuracy greatly [30]. Activities that
are difficult to classify and often confused with others are
commonly merged into fewer classes to bolster classification
accuracy [29], [34], [40]. Conversely, in this article, we con-
sider a data set comprising a broad range of static (stationary)
as well as dynamic activities (see Section V-A). To simulta-
neously classify these types of activity is more difficult than
those considered in studies to date. Unlike most existing works
that rely on solely accelerometer data, we also use gyroscope
as well as magnetometer data to gain invariance to sensor-unit
placement in activity recognition.

C. Main Contributions and Structure

In this article, we develop techniques that improve the
flexibility offered to the user in the positioning of wearable
motion-sensor units on different rigid-body parts. Specifically,
the salient features of this article are fourfold.

1) A technique for gaining position invariance, in terms of
sensor-unit interchangeability on body parts. As such,
the user need not keep track of the various unit locations.

2) A method for activity classification using only a single
sensor unit without exploiting a priori information about
which body part the unit is affixed. This is in line with
the recent trend of using only a single sensor unit.

3) A methodology to accommodate shifting in sensor-unit
positions while still on the same rigid body part, with
ideal orientations maintained [20].

4) A technique for both position and orientation invariance
on a broad range of static (stationary) and dynamic activ-
ities in our activity data set, made available in IEEE
DataPort [23]. The simultaneous classification of such
activities is a more challenging problem compared to
those considered in most studies to date. The proposed
method can provide invariance over a continuum of
different positions and orientations.

These contributions constitute a generic framework for the
provision of significant flexibility in the placement of sen-
sor units on the body, which has been lacking in existing
approaches till now.

The remainder of this article is organized as follows.
Section II provides essential background material. The
proposed algorithm, based on the compact singular value
decomposition (SVD), is described in Section III. Section IV
presents three variants of a generalized activity classi-
fier that uses only a single sensor unit. The data set
and our activity recognition methodology are detailed in
Section V. The proposed schemes are evaluated in Sections VI
and VII. Discussion and concluding remarks are provided in
Section VIII.

II. BACKGROUND

Rigid body motion in 3-D can be decomposed into trans-
lational and rotational components [41]. Translations and
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rotations are rigid body transformations during which the dis-
tance between any two arbitrary points on the rigid body is
preserved. In our context, the relative position between any
two arbitrary points on the same body part does not change
with respect to time during motion. Accordingly, the head,
torso, and lower/upper limbs would be considered to be rigid
body parts.

Motion-sensor units produce outputs that are directly related
to the linear and angular motion of the structure to which
they are affixed. If the structure is rigid, all of the points
comprising the rigid body have identical linear and identical
angular velocity. The magnitude of the 3 × 1 angular veloc-
ity (rate) vector ω corresponds to the rate of rotation and the
instantaneous axis of rotation of the structure determines its
direction. Accelerometers, gyroscopes, and magnetometers are
commonly employed motion-sensor types, and are typically
combined in a wearable sensor unit. A gyroscope with three
mutually perpendicular axes directly provides the components
of the ω vector at its output.

A magnetometer detects the vectoral sum of the Earth’s
magnetic field vector m superimposed with external magnetic
fields or disturbances (if any). The vector m points to the
magnetic north and its magnitude and direction do not change
significantly with the position of the sensor unit not only on
a given rigid body part but throughout the human body. Thus,
the three components of the vector m, detected with reference
to the sensor-unit frame, do not depend on the position of the
magnetometer, but only on its orientation on the body.

Given that the angular velocity and magnetic field vec-
tors and their magnitudes (ω, m, |ω|, and |m|, respectively,
where | · | denotes the Euclidean norm of a vector) are not
dependent on how the sensor unit is positioned on a given
rigid body part, it is straightforward to use them directly to
attain position invariance in activity recognition. Contrarily,
the acceleration vector and its magnitude (a and |a|, respec-
tively) are dependent on position and the activity recognition
rate deteriorates when they are directly used for the same pur-
pose. In our earlier work on achieving position invariance for
activity recognition [20], [24], we have extracted and used
sequence combinations alternative to the raw acceleration vec-
tor a that are not influenced by the positioning of the sensor
unit on a given rigid body part. More specifically, we have
identified and used the projection of the total acceleration vec-
tor a in the direction of ω̇, the angular acceleration vector, as a
scalar position-invariant quantity that is approximately invari-
ant to position shifts of the sensor unit on a given rigid body
part but typically changes with time during motion

p � a · ω̇

|ω̇| . (1)

In our notation, a dot between two vectors denotes the inner
product of the two vectors and a dot above a vector indicates
the first derivative of that vector.

Another feature not influenced by the positioning of the sen-
sor unit on the body is sensor-unit orientation with reference
to the Earth frame E. Throughout this article, we estimate the
3-D orientation of the sensor unit at a given time sample using
the algorithm we newly developed and presented in [42] that

processes the instantaneous sensory data. The algorithm relies
on the efficient representation of 3-D orientation using a 4×1
quaternion q and provides higher activity recognition accu-
racy compared to state-of-the-art methods, with much shorter
computation time than most of them.

The unit quaternion q = [q1, q2, q3, q4]T with four elements
provides a convenient mathematical notation for represent-
ing orientations and rotations of objects in 3-D. Since a unit
quaternion has an Euclidean norm of unity (|q| = 1), only
three of its elements are independent. Compared to rotation
matrices (with nine elements), quaternions are more compact,
numerically more stable, and faster to compute. Unlike Euler
angles, they are simpler to compose and not susceptible to the
“gimbal lock” problem caused by singularities [43].

Thus, in our recent work, which focused on achieving
position invariance on individual rigid body parts for activ-
ity recognition, we investigated various arrangements of the
position-invariant time sequences ω, m, |ω|, |m|, p, and q [20].
We assessed their performances and identified those with supe-
rior performance when a sensor unit was randomly offset from
its ideal position on a certain rigid body part. The combina-
tions ωmp and ωmpq provided the most favourable results in
terms of classification accuracy and computational cost [20].
These sequence combinations are simply the concatenation of
the vector or scalar quantities that appear in the expressions.
In this article, we first consider position invariance among
different rigid body parts through the random interchangeabil-
ity of sensor units. This is followed by the usage of only
a single unit on any one of the body parts to classify the
activities. Afterwards, we combine the two ways of achieving
position invariance on different body parts that we develop
here with our earlier methodology to attain position invariance
on the same rigid body part using the sequence combina-
tions ωmp and ωmpq. We finally incorporate our previously
developed method on orientation invariance into this combined
position-invariant scheme.

III. ACHIEVING POSITION INVARIANCE THROUGH

INTERCHANGEABLE SENSOR UNITS

A. SVD-Based Method for Interchangeable Sensor Units

Interchanging the sensor units causes a permutation of the
axes corresponding to the time-domain data derived from the
different sensor units. If this interchange in sensor units is not
tracked and countered, activity recognition accuracy suffers
greatly. In this section, we propose a method that allows the
user the freedom to randomly interchange the sensor units with
minimal effect on activity classification performance.

The proposed method uses the SVD to generate an orthog-
onal transform for matrix factorization of the measurement
data, derived from the sensor units. The data have underly-
ing features that are typically linearly correlated. The SVD
converts this correlated data into a set of uncorrelated prin-
cipal components (axes) which accurately represents the time
evolution of the data. Moreover, projections of the data onto
the principal axes are invariant to row permutations in data
matrix, caused by, possibly random, interchanging of the sen-
sor units. This property importantly manifests as robustness to
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Fig. 1. Graphical illustration of the compact SVD operating on one segment of the acquired data to allow random interchangeability of the sensor units.

sensor-unit interchanging. Our approach for achieving position
invariance can be viewed as analogous to that adopted in [21]
for attaining sensor-unit orientation invariance.

Consider that the 3 × 1 column vectors ai[n], ωi[n], and
mi[n] contain a snap-shot (sample), at time n, n = 1, . . . , N,
of the x, y, z coordinate measurements from the ith sensor
unit, i = 1, . . . , Nu, comprising the accelerometer, gyroscope,
and magnetometer, respectively. Furthermore, consider that
these vectors are normalized to have unit variance. The nor-
malization is indicated by a hat (ˆ) symbol as in âi[n] =
[âxi[n], âyi [n], âzi [n]]T, where (·)T denotes the matrix trans-
pose. Then, for every N-sample segment of the acquired,
normalized, sensor-unit data, our approach consists of the
following steps.

1) Data Arrangement: Now, suppose that N samples of the
vectors âi[n], ω̂i[n], and m̂i[n], for the ith sensor unit
are concatenated into the row vector

di =
[
âT

i [1] . . . âT
i [N], ω̂T

i [1] . . . ω̂
T
i [N],

m̂T
i [1] . . . m̂T

i [N]
]

(2)

where di ∈ R
1×Nv and Nv = 3×3×N = 9N. Considering

that there are Nu sensor units, with Nu < Nv, then a data
matrix D ∈ R

Nu×Nv containing the segment of measure-
ment data from all the sensor units can be constructed
by stacking the row vectors di, thus

D = [
dT

1 dT
2 . . . dT

Nu

]T
. (3)

Note that when the sensor units are randomly inter-
changed, the rows of the data matrix D are permuted
accordingly.

2) Matrix Decomposition: The data matrix D in (3) can be
factored into a product of orthogonal matrices, namely,
U ∈ R

Nu×Nu and V ∈ R
Nv×Nv , and a diagonal matrix,

� ∈ R
Nu×Nv , by way of the SVD; that is

D = U � VT (4)

where U−1 = UT and V−1 = VT. Since D has only
Nu < Nv rows, its rank is at most Nu. Hence, assum-
ing then a rank of Nu, the factorization in (4) can be

expressed as the compact (or economical) SVD [44]

D = U
(
�Nu 0

)(VT
Nu

VT
0

)
= U �Nu VT

Nu
(5)

where 0 ∈ R
Nu×(Nv−Nu) is the zero matrix and �Nu ∈

R
Nu×Nu is a diagonal matrix containing the nonzero

singular values only, which are ordered as

σ1 ≥ σ2 ≥ · · · ≥ σNu > 0. (6)

The columns of U and VNu ∈ R
Nv×Nu are the respective

left and right singular vectors of D. The columns of �Nu

and VNu constitute an exact representation of D; and can
provide the best rank Nu approximation in terms of the
Frobenius norm [44].

3) Data Transformation: The principal components corre-
sponding to the data in D are given by

W = UTD = �Nu VT
Nu

(7)

where W has the same dimensions as D. In other words,
the transformed signals are a weighted linear combina-
tion of the sensor-signal snapshots, namely, d′

i, which
are the columns of D. Intuitively, the transformed sig-
nals may also be viewed as projections of d′

i onto the
Nu-dimensional principal axes.

4) Transformed-Data Reorganization: The transformed
data in W are partitioned according to the three sets
of measurement data in (2). In effect, we reverse the
concatenation operations involved in step 2 so that the
transformed data have the same relevance as the raw
measurements, and so can be fed to the standard activ-
ity recognition system without the need for further
processing.

The four steps of the algorithm outlined above are executed
on a block-by-block basis. Specifically, the sensor data are first
split into short segments; the SVD and thus the principal com-
ponents are computed for each segment, independent from all
other segments. This process is illustrated, for one segment of
the acquired data, in Fig. 1. In this way, our method is able to
accommodate for a random rearrangement of the sensor units
each time the system considers a new segment of motion data,
both during training and testing. Note that the principal com-
ponents are calculated for the training, as well as the test data,
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for activity classification. This enables a matching between the
two types of data, and hence, improves activity recognition
accuracy.

B. Interchangeability Coupled With Position Invariance on a
Given Rigid-Body Part

In a previous investigation of the invariance to position
changes on the same rigid-body part [20], [24], we have
employed two different sequence combinations, ωmp and
ωmpq, involving ω, m, p, and possibly q, with the respective
dimensions 3 × 1, 3 × 1, 1 × 1, and 4 × 1.

To allow random interchangeability of the sensor units and
simultaneously attain invariance to position shifts on a given
rigid body part, we apply SVD on one of the two sequence
combinations. Note that the sequence combination transformed
by SVD is no longer ωma, directly acquired from the three
different sensor types in each unit. Instead, we replace the
sequence a with either p or pq derived from the recorded
sensory data to obtain either ωmp or ωmpq. We handle the
modified sequence combinations in the same way as we treat
the raw sequence combination ωma when applying the SVD
as described in Section III-A (except for the difference in
dimensionality).

C. Interchangeability Coupled With Placement Invariance on
a Given Rigid-Body Part

Using the SVD allows random interchangeability of the
sensor units affixed to different rigid body parts (see
Section III-A). We have also combined it with our former
approach to additionally achieve position invariance as the sen-
sor units are shifted while still on the same rigid body part
in Section III-B. In this section, we extend the flexibility yet
further by permitting arbitrary placement of the sensor units at
any orientation as well. In doing so, we can achieve invariance
to both position and orientation simultaneously while main-
taining a good level of accuracy. To this end, the same SVD
used to enable interchangeable units is applied to the modi-
fied sequence combination ωEmEp δq, proposed earlier in [20]
and [24] to achieve position as well as orientation invariance.
Note that the first two members of this sequence combina-
tion are expressed in the Earth frame E, the third member is
a scalar quantity, and the last member δq is the differential
quaternion. To obtain this modified sequence combination, we
first need to estimate the 3-D orientation of the sensor unit
with reference to frame E based on the sensor readings [42].
Employing the method in [42], the first two sequences of the
sequence combination ωmpq, originally acquired in the sensor
unit frame, can be transformed to frame E. Furthermore, we
use the differential orientation quaternion δq that represents
changes in orientation in place of the orientation quaternion q.
In calculating δq, we first compute a measure of the sensor-
unit-frame rotation, namely, the differential rotation matrix
Rn, relative to frame E between successive sample times, n
and n + 1 [22]. Using a 3 × 3 matrix (with nine elements)
to represent a 3-D rotational transformation lacks efficiency
since any 3-D rotation can be expressed in terms of three
Euler angles. However, such three-angle representation has

a singularity problem; therefore, we represent the rotational
transformation described by the differential rotation matrix
Rn compactly by a 4 × 1 differential quaternion δqn with
reference to frame E [45]. Thus, given the elements of Rn,
rij i, j = {1, 2, 3},

δqn =

⎡
⎢⎢⎣

δq1
δq2
δq3
δq4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
1 + r11 + r22 + r33

2
r32 − r23

4
√

1 + r11 + r22 + r33
r13 − r31

4
√

1 + r11 + r22 + r33
r21 − r12

4
√

1 + r11 + r22 + r33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

For brevity’s sake, we have not shown the dependence of the
elements of Rn and δqn on n here. Finally, we remove the
subscript n in δqn as well, and simply use δq in what follows.

Once the sequence combination ωEmEp δq is obtained from
the recorded data, we apply the SVD to this sequence combi-
nation with the respective dimensions 3 × 1, 3 × 1, 1 × 1, and
4×1 in the first step of the approach outlined in Section III-A.

IV. ACTIVITY CLASSIFICATION WITH A SINGLE UNIT

A. Three Variants of Single Unit-Based Classification

Another flexibility and simplification that the user of the
wearable system can benefit from is to recognize activities
processing the data recorded by only a single sensor unit. In
this scenario, the activity recognition system is trained with
sensory data collected from multiple sensor units worn on dif-
ferent rigid body parts (head, torso, and lower/upper limbs).
Data acquired from all of the available positions are used for
training. However, activities are recognized based on the test
data acquired from only a single sensor unit that is affixed to
any one of these body parts. Once the training of the system is
completed, this approach provides the user the pliability and
freedom to affix the unit to any preferable or convenient body
part. In the test phase, the user does not need to provide any
information to the activity recognition system about to which
of these multiple positions the unit is affixed. In the following,
we will consider three variants of a methodology that we will
refer to as single unit-based classification (SUBC).

SUBC1: Here, we adopt a generalized classifier for training
the first variant. Consider the column vector f(j)i that contains
the features extracted from the jth data segment derived from
the ith sensor unit, for i ∈ {1, . . . , Nu} and j ∈ {1, . . . , Ns},
where Ns denotes the total number of data segments used
for training. We consider the collection of features extracted
from each unit as a distinct training instance and construct the
training set as

T SUBC1 =
[
f(1)
1 , f(1)

2 , . . . , f(1)
Nu

, f(2)
1 , f(2)

2 , . . . , f(2)
Nu

,

. . . , f(Ns)
1 , f(Ns)

2 , . . . , f(Ns)
Nu

]
. (9)

On the other hand, consider stacking the features related to
all sensor units in a vector, thus

f(j) =
[(

f(j)1

)T
,
(

f(j)2

)T
, . . . ,

(
f(j)Nu

)T
]T

. (10)
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The training set T ref = [f(1), f(2), . . . , f(Ns)], comprising Ns

training vectors, serves as our reference case.
In both cases, the training feature vectors have true labels

associated with the activities to which they belong, so that
there are as many classes as the number of activities, Na. Thus,
in the generalized classifier, we have Nu × Ns feature vectors
for training, which are Nu times more in number and Nu times
smaller in size than in the reference case.

Through the use of the generalized classifier, we catego-
rize the test vectors and assign to appropriate activity classes
in the test phase based on only one sensor unit; hence, we
have distinct test feature vectors associated with each unit as
in the training set. This is done without needing to know to
which body part the unit was affixed. Because the training set
comprises feature vectors associated with all the sensor unit
positions from which data were acquired, we expect the clas-
sifier to match the given test feature vector extracted from a
single sensor unit position with these training feature vectors.
This is not a trivial task due to the variability of the data within
the activity classes since different participants tend to perform
the activities in their own way [46].

SUBC2: The second variant involves a two-stage activity
recognition procedure [35].

In the first stage, we classify the position of the sensor unit
into one of the positions used for acquiring the data set. We
adhere to the same classification scheme as in activity recog-
nition, with the number of classes being equal to Nu instead
of Na.

In the second stage, we train as many activity classifiers as
the number of sensor unit positions Nu, where each activity
classifier is specialized on a particular unit position. The set
of training vectors for the ith unit position is constructed as

T SUBC2, i =
[
f(1)
i , f(2)

i , . . . , f(Ns)
i

]
, i ∈ {1, . . . , Nu}. (11)

Making use of the unit position identified in the first stage, we
deploy the activity classifier trained for that particular position
to recognize the activity.

SUBC3: In the third variant, we attempt to classify the sen-
sor unit position and the activity type at the same time [39]
by considering each unit position and activity combination as
a distinct class. The number of classes becomes Nu × Na. We
form the training set in the same way as in SUBC1, see (9),
except that in this case, the training labels contain both the
sensor unit position and the activity type [see the class labels
in the legend of Fig. 5(c)].

B. Single Unit Usage Coupled With Position Invariance on a
Given Rigid-Body Part

We apply each of the three variants of SUBC by extract-
ing features from either ωmp or ωmpq to gain invariance to
position shifts as the sensor unit is moved on the surface of
the same rigid body part. This scheme requires to place only
a single sensor unit anywhere on any one of the rigid body
parts (at proper orientation) on which a sensor unit was placed
and data were acquired during the training phase.

TABLE I
INVARIANCE AND INTERCHANGEABILITY PROPERTIES OF THE PROPOSED

DATA TRANSFORMATION TECHNIQUES. PI: POSITION INVARIANCE AND

OI: ORIENTATION INVARIANCE

C. Single Unit Usage Coupled With Placement Invariance
on a Given Rigid-Body Part

We apply the three variants of SUBC that are detailed in
Section IV-A on the sequence combination ωEmEp δq, which
can achieve position as well as orientation invariance on a
given rigid body part. This allows classifying the activities by
processing the data acquired from only a single sensor unit
that is affixed to any position and orientation on any one of
the rigid body parts from which data were acquired during the
training phase.

Table I summarizes the invariance and unit-
interchangeability properties of the proposed data
transformation techniques described in Sections III and IV.

V. DATA SET AND THE ACTIVITY RECOGNITION

METHODOLOGY

A. Data set

To assess the performance of our activity recognition system
with invariance property to the positioning of the units, we pro-
cessed the activity data set that was recorded by our research
team and that is publicly available [23], [47]. In the exper-
iments, eight voluntary participants wore five Xsens MTx
motion-sensor units [48] at the center of their chest, on the
right and left wrist, and on the outer sides of right and left
knee, as depicted in Fig. 2(a). The orientations of the axes of
each sensor unit are illustrated in Fig. 2(b). We received the
approval of the Local Ethics Committee of Bilkent University
to conduct experiments with human participants. The par-
ticipants were healthy subjects, free from any movement
disorders, and submitted their written informed consent prior
to the experiments. The physical attributes (profiles) of the
participants are provided in Table II.
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TABLE II
PROFILES OF PARTICIPANTS IN THE EXPERIMENTS

Fig. 2. (a) Placement and (b) wiring of the body-worn motion-sensor units.
(The body sketch in (b) is from http://www.clker.com/clipart-male-figure-
outline.html; the motion-sensor units, their wiring, and the Xbus Master were
added by the authors.)

The experiments were conducted in an outdoor parking lot,
possessing a flat, level surface, in the Electrical and Electronics
Engineering Building, and at the Physical Education and
Sports Center, all within the confines of the Bilkent University
campus. Each participant performed 19 types of daily and
sports activities, each for 5 min. They were not given any
specific instructions, and were free to perform these activities
in their own way, as naturally as possible.

Sitting (A1); standing (A2); supine (A3); reclined-
right side (A4); climbing (A5) and descending stairs
(A6); in an elevator, upright & still (A7) and walk-
ing (A8); pacing in the car park (A9); 4 km/h walking
pace on a flat treadmill (A10); 4 km/h walking pace
on a 15◦-inclined treadmill (A11); 8 km/h running
pace on a level treadmill (A12); exercising on a:
stepper (A13), cross trainer (A14), bicycle in horizon-
tal (A15) and vertical (A16) positions; rowing (A17);
jumping (A18); playing basketball (A19).

The activities listed above can be divided into two broad
categories: 1) static and 2) dynamic. Postures, such as sitting,
standing, or lying down, belong to the first category, in which
the body limbs remain static. Dynamic activities can be further
divided into two categories, namely, quasiperiodic and erratic,
where some body limbs move with almost periodic and non-
periodic patterns, respectively. Thus, depending on the activity
type and the subject’s personal style, the recorded motion pat-
tern at a given limb can be static, quasiperiodic, or erratic

dynamic. Among the listed activities, we consider A1–A4 as
static activities, A7, A8, and A19 to be erratic dynamic, and
all the remaining ones as quasiperiodic activities. Depending
on the way the jumping activity is performed, A18 can be
quasiperiodic or erratic dynamic. In our data set, it is quasi
periodic.

Given that three triaxial sensors (an accelerometer, a gyro-
scope, and a magnetometer) are enclosed in each body-worn
sensor unit, the data recorded consisted of 45 (=5 sensor
units × 3 sensor types × 3 dimensions) time-domain sequences
for each activity performed by each subject using a uniform
sampling frequency of 25 Hz. Since each subject performed
each activity for 5 min, initially, 5-min recordings were made,
each containing 7500 (=5 min × 60 sec/min × 25 samples/sec)
time samples.

B. Methodology for Activity Classification

The standard activity classification scheme, which we have
followed here, involves the basic stages of segmentation of the
data, extraction, normalization, and reduction of the features,
and the classification based on (possibly transformed) data [9],
[11], [22]. This scheme has been employed in various studies.
For example, in [8], a similar procedure was used to the one
employed here, the differences being: 1) a 50% overlap in the
segments of 2 s is considered; 2) a smaller set of features
is extracted from the time-domain signals; and 3) five types
of rehabilitation exercises are recognized by a single random
forest (RF) classifier, trained with 66% percentage split. In
this study, we partition the 5-min recordings into 5-s long
segments that do not overlap. Using the segmented data in
its original, unprocessed form corresponds to the reference
case. As described in Sections III-A and IV-A, respectively,
the segmented data can also be processed using the SVD or
SUBC to gain an effective level of invariance to sensor-unit
positioning on body parts.

The following statistical quantities were extracted from the
time series corresponding to each segment of data: the two
extrema; mean and variance; autocorrelation-function terms
corresponding to the ten lags 5, 10, 15, . . . , 50; skewness
and kurtosis; and the five largest values and corresponding
frequencies of the discrete Fourier transform, with frequency
separation of at least 11 samples. We extracted 26 features
from each data segment. For each segment, the feature vec-
tors comprised the concatenation of the 26 features from five
sensor units having nine axes, resulting in 1170-element fea-
ture vectors. These vectors were used with the reference case,
which processes the raw sequence combination ωma without
aiming to enforce position invariance.

Note that the number of (feature) elements of a feature
vector is determined by the number of scalar values and vec-
tor entries corresponding to a sequence combination. For the
sequence combination ωmp, the number of features in each
feature vector was 910 (=5 sensor units × 7 dimensions × 26
features), and for ωmpq, it was 1430 (=5 sensor units × 11
dimensions × 26 features). Transforming the sequences to
frame E does not change the size of the feature vector.
Principal component analysis (PCA) [49] was employed to
reduce the feature space to that corresponding to the 30 most
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dominant features, where data from each subject were normal-
ized such that values fell between 0 and 1, inclusive. This is an
orthogonal transformation, which aims to identify the most dis-
criminative features and sorts the variances of the transformed
features in descending order.

We use the following machine learning algorithms to clas-
sify activities.

Support Vector Machines (SVMs): With use of the
well-known Gaussian radial basis function (RBF) kernel,
GRBF(f1, f2) = e−γ ‖f1−f2‖2

for any two reduced feature vectors
f1 and f2, the feature space is mapped to a higher-dimensional
space to be partitioned into hyperplanes. Two parameters are
involved. Jointly optimized via a two-level grid search, the
optimal values of the kernel γ and penalty C parameters
[see (1) in [50]], C = 5 and γ = 0.1, are employed for
this classifier in the remainder of this article. After training a
binary SVM for each class pair, the highest confidence level
is taken for the decision [51]. We used the MATLAB toolbox
LibSVM [52] to implement the SVM classifier.

Artificial Neural Networks (ANNs): Our multilayered ANN
consists of three layers of neurons where each neuron is acti-
vated by a sigmoid-type activation function. The number of
neurons in the: 1) input (first) layer is 30, i.e., the reduced
number of features; 2) output (third) layer is K = 19, the
number of classes; and 3) hidden (second) layer is given by
	< log (2K)/log 2, 2K−1 >
 where < . , . > denotes the sam-
ple average of its two arguments and floor/ceiling operation
on the average fetches the nearest integer. The first argument
of the averaging operator corresponds to hyperplanes inter-
secting at different positions (optimistic case) and the second
to hyperplanes in parallel (pessimistic case). Starting from
a random initialization in the [0, 0.2] interval, while train-
ing, the weights and bias defining interconnecting neurons are
tuned via backpropagation [53] with a learning rate of 0.3.
Once the error falls by 0.01 below the mean error, taken over
the last ten epochs, the algorithm terminates. The class deci-
sion is given by the dominant neuron—indicated by a scalar
quantity—when fed with a test feature vector during the test
phase.

Bayesian Decision Making (BDM): A BDM was setup
with feature vectors drawn from a multivariate Gaussian dis-
tribution. The training feature vectors, for each class, were
approximated by arbitrary-covariance, multivariate Gaussian
distributions when in the training phase. Maximum likelihood
estimation (MLE) was employed to estimate the covariance
matrix and mean vector from the training vectors; and clas-
sification was performed based on the maximum a posteriori
decision rule. The mean vector and covariances were com-
puted via the MLE as, respectively, the arithmetic mean of
the feature vectors and sample covariance matrix. In the test-
ing phase, a conditional probability was computed from each
class’s test vector. Utilizing the maximum a posteriori deci-
sion rule, the activity class associated with the maximum
conditional probability was chosen [49], [54].

Linear Discriminant Classifier (LDC): The main difference
of LDC from BDM is that in LDC, the average of the
covariance matrices, individually calculated for each class, is

used overall. Hence, the normal distributions modeling the
distribution of the feature vectors in each class have identical
covariance matrices but different mean vectors so that they are
centered at different points in the feature space. Thus, the deci-
sion boundaries in the feature space correspond to hyperplanes,
permitting linearly separable activity classes [54].

k-Nearest Neighbor (k-NN): The sole requirement for the
training of the k-NN classifier is to store the training instances
(feature vectors) together with their class labels. The selection
of the parameter k is important since it corresponds to the
number of nearest neighbors of a given test vector to use. We
have considered the range 1 ≤ k ≤ 30 and selected k = 7.
During the test phase, we identified those k training vectors
with the smallest Euclidean distance to the test vector [54].
The class decision is reached by identifying the class that the
majority of these k vectors belong to [54].

Random Forest (RF): Using multiple decision trees, an RF
classifier can be obtained [55] where training of each tree is
done by random and independent sampling of the training data.
Normalized information gain is used as the splitting criterion
at each node. Class decision is based on majority voting over
the tree decisions. We have employed 100 decision trees and
noted that increasing the number does not boost the classifica-
tion rate significantly, while increasing the computational load
considerably.

Orthogonal Matching Pursuit (OMP): The training phase
is very simple and exactly the same as in k-NN. During test-
ing, however, the OMP algorithm [56] is used in an iterative
manner to create a sparse representation of every test signal,
each of which is a composite of vectors from an extremely
small subset of the training set that adhere to a desired error
bound. At each iteration, an additional training signal is cho-
sen until the targeted error level for the representation (10−3)

is attained at termination. The class associated with the small-
est residual error is selected. This minimized residual error is
obtained by selecting the composite test signal, generated as
a linear combination of the training signals, which gives rise
to smallest reconstruction error, for each class.

Cross-Validation Techniques: We have employed two cross-
validation techniques, P-fold and leave-one-subject-out (L1O),
to evaluate the outputs of the classifiers. In P-fold, we ran-
domly segment the dataset into P = 10 equal partitions. We
classified the feature vectors in each partition, deploying one
of the seven machine learning classifiers trained by the feature
vectors in the rest of the partitions, and calculated the average
of the accuracies for each partition to get the overall accuracy.
In L1O, we performed the partitioning in a subjectwise man-
ner (instead of randomly) so that the data in each partition
belong to only one of the eight subjects [54]. This means that
there were eight partitions in L1O at each round, the feature
vectors of a given subject were omitted while the classifier was
trained with the remaining subjects’ feature vectors. We then
employed the omitted subject’s feature vectors during the clas-
sification (testing) stage. We repeated the same procedure for
every subject and averaged out the results. L1O cross valida-
tion is more demanding and highly sensitive to the variability
in the data between the subjects because the training and test
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Fig. 3. Pairwise scatter plots of the first three features selected by PCA
for (a) ideally affixed units, (b) RIU, and (c) SVD operating directly on the
originally acquired sequences ωma.

sets are associated with different subjects, typically with more
variability among them [57]. L1O is often used for assessing
the generalization capability of the classifier to subjects that
the classifier was not trained for and preferred to P-fold in
scenarios where it is not possible to acquire training instances
from eventual end users of the system.

VI. RESULTS

In this section, two reference cases are of interest to compare
the accuracy results of our proposed approaches.

1) Ideally Affixed Units: Each unit properly placed on the
associated body part at its ideal position and orientation.

2) Randomly Interchanged Units (RIU): The units ran-
domly interchanged among themselves and placed on
body parts at ideal position and orientation.

The first case is an idealization, which is difficult to realize
in practice. On the other hand, the second case is considered
to represent a worst case scenario where the user completely

mixes up their units; however, this convenient situation is not
desirable since the mixage of the units is not countered in any
way to avoid accuracy degradation. In both cases, no counter-
measures are taken to attain any kind of invariance (position
and/or orientation) to deviations in sensor-unit placement from
the ideal (on the same body part). Thus, both are highly vulner-
able in this respect, which is expected to cause severe accuracy
degradation. We have considered both cases for benchmark-
ing to evaluate the performance of our proposed position (and
orientation) invariance techniques.

Our SVD-based method, for countering unit interchange-
ability, is evaluated with both cases 1) and 2); whereas the
performance of our SUBC-based technique, for single unit
usage, is assessed with case 1) only, since 2) is not relevant
for SUBC.

A. Results of Interchangeable Sensor Units

1) Results of Randomly Interchanged Units: We randomly
and independently interchanged the data from the five sensor
units at the start of each 5-s segment of test data. When a test
feature vector is extracted from the recordings of sensor units
that are arranged differently than in the training phase, this
renders into shuffling of the feature elements in the feature
vectors. The activity recognition rate is expected to degrade
considerably unless this is tracked and countered.

The pairwise scatter plots of the first three features, after
feature reduction via PCA, are provided in Fig. 3. The high
correlation between features 1 and 2 is striking for certain
types of activity, in addition to the great degrees of over-
lap/separation for certain others. Specifically, in Fig. 3(a),
notice the significant overlap coupled with the pronounced
elongation for activities A13–A18, which indicates consider-
able similarity between the activities and the two features; this
group, however, is clearly separated from, e.g., A19, whose dull
rounded shape is indicative of a low degree of similarity since
it corresponds to activity that is erratic dynamic in nature, as
defined in Section V-A. More interestingly, there is a notice-
able reduction in the overall correlations and overlaps between
features 2 and 3 in Fig. 3(b); e.g., there are clear separations
between activities A13–A18.

The results for the reference case with ideally affixed units
are provided in the topmost bars of each group of bars in
Fig. 4, with 98.2% and 87.2% classification accuracy for P-
fold and L1O cross validation. We provide the impact of RIU
on the activity classification performance in the same figure in
the second bars from the top of each group of bars. Randomly
interchanging the units degrades the accuracy abruptly by
57.4% for P-fold and 52.8% for L1O cross validation com-
pared to the reference case with ideally affixed units. This is
directly attributed to the shuffling in the data due to randomly
interchanging units and no precautions being taken to counter
this with a view to alleviating accuracy degradation.

2) Results of SVD: Pairwise scatter plots of the first three
features after feature reduction through PCA are provided
in Fig. 3(c) for SVD operating directly on the unprocessed
sequences ωma. Expectedly, we see that similarities between
the activities A13–A18 are preserved with SVD processing.
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Fig. 4. Activity recognition accuracy for ideally affixed units, RIU, and
the SVD operating on the sequence combinations ωma, ωmp, ωmpq, and
ωEmEp δq. The lengths of the bars indicate the accuracy values. The thin
error bars represent ±1 standard deviation over the cross-validation iterations
at the top and over the classifiers at the bottom part of the figure.

In Fig. 4, we provide the activity recognition accuracies
comparatively for ideally affixed units (as described above),
RIU, and SVD operating on various sequence combinations.
The activity recognition rate for SVD operating on the directly
acquired sequences ωma corresponds to the third bar from the
top for each group of bars in the figure. Unlike RIU, classi-
fication results were not significantly affected by the random
interchanging of the sensor units when SVD was used to trans-
form the sensory data. Hence, when the units are randomly
interchanged, the accuracy is considerably improved with the
use of SVD, compared to RIU, by 53.3% and 37.9% for P-
fold and L1O cross validation, respectively. This improvement
is due to the fact that the principal components from the SVD
provide a basis for the data that is invariant to the interchang-
ing/reordering of the units. It directly follows that working
with the principal components, rather than the data itself, has
a positive impact on activity recognition. Compared to the ref-
erence case with ideally affixed units, SVD processing on the
originally acquired sequences ωma results in a degradation of
the accuracy to some extent: by 4.1% for P-fold and 14.9%
for L1O cross validation. The reduction in accuracy is more
than justified by the flexibility offered to the user (see Table I).

3) Results of SVD Coupled With Position Invariance on a
Given Rigid-Body Part: SVD is applied to the sequences ωmp
and ωmpq to attain position invariance as the position of an

interchanged unit is shifted on a given rigid body part. From
Fig. 4, it is clear that with both sequence combinations, we
achieve accuracies close to that of using SVD on the orig-
inally recorded sequences ωma with a small degradation in
the accuracy for P-fold, but with a more noticeable drop for
L1O cross validation. Specifically, compared to SVD oper-
ating on ωma, applying SVD on ωmp causes an accuracy
reduction of 9.2% and 12.4% for P-fold and L1O, respectively.
Employing SVD with ωmpq results in 6.7% and 9.3% respec-
tive degradation, for the same two cross-validation techniques.
However, note that these accuracy levels are still above that of
RIU by 44.1% and 25.5% for ωmp and by 46.6% and 28.6%
for ωmpq for the two cross-validation techniques in respec-
tive order. Overall, the inclusion of the quaternion q in the
sequence set brings an improvement to the results by enhanc-
ing the position-invariant trait of the sequence set. Therefore,
it is possible to randomly interchange the sensor units and still
achieve invariance to position shifts on a given rigid body part
with a moderate degradation in the activity classification rate.

4) Results of SVD Coupled With Placement Invariance on
a Given Rigid-Body Part: Fig. 4 also presents the results of
stand-alone use of the sequence combination ωEmEp δq to
attain position and orientation invariance on a given rigid body
part, and SVD operating on ωEmEp δq for the same purpose
when the units are randomly interchanged. The former, with-
out random interchangeability of the units, yields 3.2% and
6.2% lower accuracy compared to the reference case with ide-
ally affixed units. Allowing random unit interchangeability, for
the case where SVD is applied to ωma yields a degradation
in accuracy as compared to the stand-alone use of ωEmEp δq,
even though the difference is not significant for P-fold (0.9%).
Allowing both types of flexibility, i.e., random interchangeabil-
ity of the units in combination with placement invariance on a
certain rigid body part, through the use of SVD on ωEmEp δq,
further degrades the accuracy, as expected. In this case, the
accuracy is 14.0% and 23.8% lower compared to the stand-
alone use of ωEmEp δq, 17.2% and 30.0% lower compared to
ideally affixed units. Compared with RIU, where no counter-
measures are taken to achieve any kind of invariance, these
accuracy levels are 40.2% and 22.8% higher. In the last three
comparisons, the two percentages reported in each case are for
P-fold and L1O cross validation, respectively. We observe that
the improvement in the accuracy with respect to RIU is less
for L1O compared to P-fold. Note that when SVD operates
on ωEmEp δq, the sole requirement from the user is to affix
only one sensor unit at any position and orientation on each
one of the body parts on which sensor units were placed and
training data were acquired during the training phase.

Note that in all three cases of using SVD above, i.e., in
Section VI-A2 to Section VI-A4, the accuracy level of SVD
stays considerably above that of RIU, the minimum difference
being 40.2% and 22.8% for P-fold and L1O, respectively, in
the last case. These accuracies can be considered favourable,
given that, in the last case, position and orientation invariance
was also achieved by the appropriate choice of a sequence set,
which is unlike the case of RIU, where the units are ideally
placed on the body parts without taking any precautions to
achieve invariance.
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Fig. 5. Pairwise scatter plots of the first three features selected by PCA for
(a) SUBC1, (b) SUBC2, and (c) SUBC3. Ui: sensor unit i.

B. Results of Single Unit-Based Classification

1) Results of the Three Variants of SUBC: We provide the
scatter plots of the first three features after feature reduction
through PCA in Fig. 5 for the three variants of SUBC. The
large overlap between the features suggests that feature corre-
lations for the various activities are similar to those in Fig. 3.
In the left-hand plots, there is mainly low to moderate cor-
relation between the first two features, which is indicated by
the circular, clumped nature of these scatter plots. It is clear
that the features are segregated into more clusters with SUBC3
than with both SUBC1 and SUBC2. This is mainly because
there are five classes associated with each type of activity in
SUBC3.

In Fig. 6, the results for the reference case with ideally
affixed units are provided again in the topmost bars of each

Fig. 6. Activity recognition accuracy for ideally affixed units and the
three variants of SUBC employed on the sequence combinations ωma, ωmp,
ωmpq, and ωEmEp δq.

group of bars. The bars underneath the topmost one are
grouped into four sets of colors, each set comprising three
shades of the color. In these bars, the activity recognition
accuracies for the three variants of SUBC, namely, SUBC1,
SUBC2, and SUBC3, are compared. Each color group cor-
responds to the results of a different sequence combination
where features are extracted from that particular sequence
combination. The SUBC3 is able to discern between activi-
ties very well despite it having to consider many more classes
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TABLE III
AVERAGE PROCESSING TIME NEEDED TO TRANSFORM THE RAW

SEQUENCES ωma TO OBTAIN A NEW REPRESENTATION

PER 5-S TIME SEGMENT

(95 = 19 activities × 5 units) compared to the other two vari-
ants. This is verified by the superior recognition performance
of SUBC3 in Fig. 6. Note that results pertaining to activity
classification are presented here; the classification of sensor-
unit positions is beyond the scope of this study. When any
one of the three variants operate on the sequence combination
ωma, we obtained activity recognition rates that were con-
siderably lower than the reference case with ideally affixed
units, as expected. We observe that among the three variants
of SUBC, SUBC3 obtains the highest accuracy, followed by
SUBC2, for both types of cross validation. Note that in this
particular case, since the sequence combination ωma contain-
ing the raw data is being processed, we do not aim to attain
invariance to position and/or orientation regarding sensor-unit
placement.

2) Results of SUBC Coupled With Position Invariance on a
Given Rigid-Body Part: In Fig. 6, we also show the clas-
sification accuracies related to the three variants of SUBC
in the case where a single unit is used together with the
sequence combination ωmp, for position invariance on a given
rigid body part. In spite of the expected reduction in activity-
recognition performance for this case, when compared to the
reference case with ideally affixed sensor units, the use of
ωmp permits flexibility in sensor unit positioning and tolerates
deviations in position to an extent.

A striking result is the noticeable accuracy improvement
gained with the three variants of the SUBC approach on the
sequence combination ωmpq, even when compared with using
each variant together with the sequences ωma. The former
sequence combination removes the data components related
to the position of the units on the rigid body parts to which
they are affixed [20]. In this process, the information about the
position of the units on the body as a whole may also be being
partially removed, which may improve the accuracy when a
single unit is used for classification. This effect may be more
enhanced in the case of static activities where the body parts
ideally do not move with respect to each other.

3) Results of SUBC Coupled With Placement Invariance
on a Given Rigid-Body Part: In Fig. 6, we also show classi-
fication rates for the case where we employ the three SUBC

variants together with placement (position as well as orienta-
tion) invariance on a given rigid body part. We observe that
extracting features from the sequence combination ωEmEp δq
significantly degrades the accuracy compared to the reference
case with ideally affixed sensor units. The SUBC1 variant
performs the best when processing ωEmEp δq, followed by
SUBC3. Despite being somewhat low, the achieved recogni-
tion rate is still considerably better (by nearly an order of
magnitude) than randomized decision making, which has an
average accuracy level of 1/19 = 5.26% for 19 classes.

An overall observation related to the cross-validation pro-
cess is that for all the different cases considered in this article,
the classification accuracies obtained with L1O are lower than
those obtained with P-fold. Furthermore, the reductions in
accuracy are smaller in all cases of P-fold compared to L1O
cross validation when compared to the reference case with ide-
ally affixed units. (Note that both of these findings were also
observed for the SVD approach in Section VI-A.) This dif-
ference between the two cross-validation techniques is mainly
attributed to the subject-based partitioning of the data when
using L1O. Since there is some variability in the way the
different subjects perform the activities, the subjectwise par-
titions of L1O are less similar to each other compared to
the randomized partitions of P-fold even for ideally affixed
units. Combining data from different subjects in the same
partition improves the classification accuracy by making the
cross-validation process more robust to accuracy degradation.
In contrast, including only the data acquired from a single
subject in a given partition lowers the resulting accuracies.

VII. RUNTIME ANALYSIS

Table III provides the average processing times per 5-s
time segment to transform the originally recorded sequences
ωma into another sequence combination. The table covers
the two previously proposed sets of sequences (ωmp and
ωmpq) to obtain position invariance on a certain rigid body
part [20], [24], applying SVD on the sequence combinations
ωma, ωmp, ωmpq, and ωEmEp δq, and earlier proposed tech-
niques to achieve placement (position as well as orientation)
invariance on a given rigid body part [20], [24]. We processed
the data on a laptop computer with a quad-core Intel Core i7-
4720HQ processor at a clock speed of 2.6–3.6 GHz and 16 GB
of RAM running 64-bit MATLAB R2018b.

Note that the processing time for the originally recorded
sequences ωma is null since this represents raw data, directly
acquired and recorded from the sensor units. Among the
data transformation techniques aimed to achieve only position
invariance (Table III, rows 2–7), using the sequence com-
bination ωmp is computationally the least costly. The SVD
used for random interchangeability of the units executes faster
when it processes the sequence combinations ωmp or ωma
compared to ωmpq. This is because of the calculation of
the quaternion q in the latter, which requires estimating the
sensor-unit orientation [42].

The sequence combinations in the last three rows of
Table III are expressed in the Earth frame E in order to
attain orientation invariance as well. Such representation again
requires the estimation of the sensor-unit orientation, which is
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TABLE IV
AVERAGE OF THE TOTAL RUNTIME, AVERAGE TRAINING TIME PER

CROSS-VALIDATION ITERATION, AND AVERAGE CLASSIFICATION TIME

PER TEST FEATURE VECTOR WITH ONE STANDARD DEVIATION IN

PARENTHESES

responsible for most of the processing time. Applying SVD
on ωEmEp δq takes longer to process than the following three
because of the calculations involved in the SVD. In any case,
the processing times we tabulate are all significantly less than
the duration of a single time segment (5 s), indicating that the
data transformations can be obtained in near real time.

Table IV displays the average runtimes of the machine
learning classifiers together with one standard deviation given
in parentheses over all sequence combinations considered
in this article (ideally affixed units, SVD, SUBC1, SUBC2,
and SUBC3, where each of the last four is individually
applied on the sequence combinations ωma, ωmp, ωmpq, and
ωEmEp δq).

The second column of Table IV provides the average total
runtime (comprising the training time, classification of all test
feature vectors in the test phase, and programming overheads)
per cross-validation iteration. It is notable that among the seven
classifiers, the average total runtime of the k-NN classifier is
the shortest whereas that of OMP is the longest.

The third column of Table IV displays the average training
times of the classifiers per cross-validation iteration. Since the
k-NN and OMP classifiers only store the training instances
(feature vectors) and their class labels, their training time is
zero. Contrarily, the RF classifier takes the longest to train.

The fourth column of Table IV lists the average classifi-
cation time per test feature vector associated with a 5-s time
segment. Even though all of the classifiers can label a test
feature vector in a time interval much shorter than the asso-
ciated time segment, the ANN and LDC classifiers can label
almost instantly, followed by k-NN, recognizing the activity
type in less than 0.13 ms. The OMP classifier, which exe-
cutes an iterative algorithm independently for each test feature
vector, takes the longest to classify an activity. However, its
runtime is still much shorter than the duration of one segment,
making near real-time execution possible.

VIII. DISCUSSION AND CONCLUSION

In this article, we have addressed the problems associated
with the placement of body-worn sensor units and proposed a
method that allows users to wear the sensor units interchange-
ably across different body parts. This is achieved through use
of the principal components of the data in the classification
stage, rather than the actual data itself. We have also developed
a generalized classifier that recognizes activities processing the

test data acquired from only a single sensor unit that is placed
at any one of the rigid body parts, while the training data had
to be acquired from multiple units on different body parts. We
have merged and extended both approaches with our former
methodology for achieving position invariance on the same
rigid body part.

We have further extended our methodology to attain invari-
ance to both the position and orientation of body-worn
motion-sensor units simultaneously. This permits the user to
wear the sensor units freely at any position and orientation on
a given rigid body part. This is achieved with the proviso that
data were collected from that body part with ideal sensor-unit
placement and the wearable system was trained with those
data. In the case of the generalized classifier, it is sufficient
to affix only one sensor unit at any position and orientation
on any one of the rigid body parts from which training data
were collected. More importantly, the proposed approaches
substantially reduce the amount of data/time required for train-
ing since it is no longer necessary to train the system for every
possible placement configuration (position and orientation) of
each sensor unit. Overall, we have observed that there is a
tradeoff to be made between the flexibility allowed to the user
in sensor-unit placement and activity classification rate.

We have assessed the performances of the proposed
approaches using our publicly available data set containing two
major activity categories where the activities are larger in num-
ber and more complicated than those considered in the existing
work. We have implemented seven state-of-the-art machine
learning classifiers and two cross-validation techniques to
demonstrate the performance of our methodology.

The accuracy values appear to be low for some of the
considered approaches. There are multiple factors that con-
tribute to this. First, some of the activities in the data set are
likely to be confused with each other especially when sen-
sor units are placed differently. For instance, it is difficult,
if not impossible, to distinguish the four stationary activi-
ties (sitting, standing, supine, and reclined-right side) from
each other when there is limited or no information about the
placement of the sensor unit on the body. Second, there are
activities that are inherently similar to each other. For instance,
walking on a flat and 15◦-inclined treadmill exhibit similar
body movements. Third, there is naturally significant vari-
ability in the activities performed by different subjects, which
is the main reason for the dissimilarities observed in P-fold
and L1O cross-validation results. When we allow flexibility
in the placement configuration of the sensor units, we essen-
tially remove the placement-related cues from the acquired
data, which makes it more challenging to handle the varia-
tions among subjects within the activities. This is why the
proposed methods perform better for P-fold than for L1O,
where the training and test sets in the latter are associated
with different subjects.

The methodology described in this article does not use
information on the activity types and the positions of the sen-
sor units because our aim is to propose sufficiently general
techniques, applicable to a broad range of wearable systems
and scenarios. The proposed sequence combinations were
derived from each data segment independently. This way,
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the effect of a sudden change or shift in the placement of
the sensor units was kept confined to the time segment dur-
ing which the change occurs and will not affect the system
performance in the subsequent time segments. The methodol-
ogy employs multidimensional time-domain sequences with
a structure similar to that of the originally acquired data,
which comprises nine time-domain sequences per sensor unit.
Thus, it is straightforward to integrate it into a wide variety of
wearables by preprocessing the sensory data without consider-
able effort. Consequently, the system can tolerate variability in
sensor-unit placement and its performance is relatively robust
to deviations in the positions and orientations of the sensor
units on the body.

It is possible to generalize our proposed methods to position
and orientation shifts within a rigid body part as well (rather
than being confined to random shifts on its surface). In [20],
although we validated our proposed position-invariance tech-
niques by simulating randomly displaced sensor units on the
surfaces of rigid body parts, the techniques do not exploit
this information and are expected to be generalizable in this
respect. However, wearable sensor units are typically displaced
and misoriented on the surface of the human body (on the skin
or clothing) unless they are implanted.

As future work, additional techniques to gain invariance to
the placement configuration of the sensor units on the body can
be investigated. Bilateral symmetry of the human body can be
exploited and differential signals between sensor units can be
considered. The study can be extended to achieve invariance to
placement configuration of other elements of IoT; e.g., sensors
embedded in smart environments as well as implanted sensors.
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[16] M. Shoaib, S. Bosch, Ö. D. İncel, H. Scholten, and P. J. M. Havinga,
“A survey of online activity recognition using mobile phones,” Sensors,
vol. 15, no. 1, pp. 2059–2085, Jan. 2015.

[17] I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “Smartphone-
based user activity recognition method for health remote monitoring
applications,” in Proc. 2nd Int. Conf. Pervasive Embedded Comput.
Commun. Syst. (PECCS), Rome, Italy, Feb. 2012, pp. 200–205.

[18] M. S. Siraj et al., “UPIC: User and position independent classical
approach for locomotion and transportation modes recognition,” in Proc.
ACM Int. Joint Conf. Pervasive Ubiquitous Comput. ACM Int. Symp.
Wearable Comput. (UbiComp/ISWC Adjunct), Virtual Event, Mexico,
Sep. 2020, pp. 340–345.

[19] K. Kunze and P. Lukowicz, “Sensor placement variations in wearable
activity recognition,” IEEE Pervasive Comput., vol. 13, no. 4, pp. 32–41,
Oct.–Dec. 2014.

[20] B. Barshan and A. Yurtman, “Classifying daily and sports activities
invariantly to the positioning of wearable motion sensor units,” IEEE
Internet Things J., vol. 7, no. 6, pp. 4801–4815, Jun. 2020.

[21] A. Yurtman and B. Barshan, “Activity recognition invariant to sen-
sor orientation with wearable motion sensors,” Sensors, vol. 17, no. 8,
Aug. 2017, Art. no. 1838.

[22] A. Yurtman, B. Barshan, and B. Fidan, “Activity recognition invariant
to wearable sensor unit orientation using differential rotational transfor-
mations represented by quaternions,” Sensors, vol. 18, no. 8, Aug. 2018,
Art. no. 2725.

[23] K. Altun and B. Barshan, Daily and Sports Activities Dataset, IEEE
Data Port, Feb. 2019, doi: 10.21227/at1v-6f84.

[24] A. Yurtman, “Activity recognition invariant to position and orientation of
wearable motion sensor units,” Ph.D. dissertation, Dept. Elect. Electron.
Eng., Bilkent Univ., Ankara, Turkey, Apr. 2019.

[25] T. Hur, J. Bang, D. Kim, O. Banos, and S. Lee, “Smartphone location-
independent physical activity recognition based on transportation natural
vibration analysis,” Sensors, vol. 17, no. 4, Apr. 2017, Art. no. 931.

[26] M. Jiang, H. Shang, Z. Wang, H. Li, and Y. Wang, “A method to deal
with installation errors of wearable accelerometers for human activity
recognition,” Physiol. Meas., vol. 32, no. 3, pp. 347–358, Feb. 2011.

[27] D. Ravì, C. Wong, B. Lo, and G.-Z. Yang, “A deep learning approach
to on-node sensor data analytics for mobile or wearable devices,” IEEE
J. Biomed. Health Inform., vol. 21, no. 1, pp. 56–64, Jan. 2017.

[28] A. M. Khan, M. H. Siddiqi, and S.-W. Lee, “Exploratory data analysis
of acceleration signals to select light-weight and accurate features for
real-time activity recognition on smartphones,” Sensors, vol. 13, no. 10,
pp. 13099–13122, Sep. 2013.

[29] A. M. Khan, A. Tufail, A. M. Khattak, and T. H. Laine, “Activity recog-
nition on smartphones via sensor-fusion and KDA-based SVMs,” Int. J.
Distrib. Sens. Netw., vol. 10, no. 5, May 2014, Art. no. 503291.

[30] O. Banos, M. A. Toth, M. Damas, H. Pomares, and I. Rojas, “Dealing
with the effects of sensor displacement in wearable activity recognition,”
Sensors, vol. 14, no. 6, pp. 9995–10023, Jun. 2014.

[31] R. Chavarriaga, H. Bayati, and J. del R. Millán, “Unsupervised adap-
tation for acceleration-based activity recognition: Robustness to sensor
displacement and rotation,” Pers. Ubiquitous Comput., vol. 17, no. 3,
pp. 479–490, Mar. 2013.

[32] K. Förster, D. Roggen, and G. Tröster, “Unsupervised classifier self-
calibration through repeated context occurrences: Is there robustness
against sensor displacement to gain?” in Proc. Int. Symp. Wearable
Comput., Linz, Austria, Sep. 2009, pp. 77–84.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on May 10,2021 at 06:55:45 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.21227/at1v-6f84


8342 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 10, MAY 15, 2021

[33] K. Kunze, P. Lukowicz, H. Junker, and G. Tröster, “Where am I:
Recognizing on-body positions of wearable sensors,” Location- and
Context-Awareness (LNCS 3479), T. Strang and C. Linnhoff-Popien,
Eds. Heidelberg, Germany: Springer, 2005, pp. 264–275.

[34] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell,
“The Jigsaw continuous sensing engine for mobile phone applica-
tions,” in Proc. 8th ACM Conf. Embedded Netw. Sensor Syst., Zürich,
Switzerland, Nov. 2010, pp. 71–84.

[35] H. Martín, A. M. Bernardos, J. Iglesias, and J. R. Casar, “Activity log-
ging using lightweight classification techniques in mobile devices,” Pers.
Ubiquitous Comput., vol. 17, no. 4, pp. 675–695, Apr. 2013.

[36] T. Sztyler and H. Stuckenschmidt, “On-body localization of wearable
devices: An investigation of position-aware activity recognition,” in
Proc. IEEE Int. Conf. Pervasive Comput. Commun. (PerCom), Sydney,
NSW, Australia, Mar. 2016.

[37] J. Wu and R. Jafari, “Orientation independent activity/gesture recogni-
tion using wearable motion sensors,” IEEE Internet Things J., vol. 6,
no. 2, pp. 1427–1437, Apr. 2019.

[38] K. Förster, P. Brem, D. Roggen, and G. Tröster, “Evolving discriminative
features robust to sensor displacement for activity recognition in body
area sensor networks,” in Proc. 5th Int. Conf. Intell. Sensors Sensor
Netw. Inf. Process. (ISSNIP), Melbourne, VIC, Australia, Dec. 2009,
pp. 43–48.

[39] W. Xu, M. Zhang, A. A. Sawchuk, and M. Sarrafzadeh, “Robust human
activity and sensor location corecognition via sparse signal represen-
tation,” IEEE Trans. Biomed. Eng., vol. 59, no. 11, pp. 3169–3176,
Nov. 2012.

[40] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava,
“Using mobile phones to determine transportation modes,” ACM Trans.
Sensor Netw., vol. 6, no. 2, Art. no. 13, Feb. 2010.

[41] J. L. Meriam, L. G. Kraige, and J. N. Bolton, Engineering Mechanics:
Dynamics, 9th ed. New York, NY, USA: Wiley, Mar. 2018.

[42] A. Yurtman and B. Barshan, “Novel non-iterative orientation estimation
for wearable motion sensor units acquiring accelerometer, gyroscope,
and magnetometer measurements,” IEEE Trans. Instrum. Meas., vol. 69,
no. 6, pp. 3206–3215, Jun. 2020.

[43] J. B. Kuipers, Quaternions and Rotation Sequences: A Primer With
Applications to Orbits, Aerospace, and Virtual Reality. Princeton, NJ,
USA: Princeton Univ. Press, 1999.

[44] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed.
Baltimore, MD, USA: John Hopkins Univ. Press, 2013.

[45] J. Diebel, “Representing attitude: Euler angles, unit quaternions,
and rotation vectors,” Dept. Aeronaut. Astronaut., Stanford Univ.,
Stanford, CA, USA, Rep., Oct. 2006. [Online]. Available: http:
//www.swarthmore.edu/NatSci/mzucker1/papers/diebel2006attitude.pdf

[46] B. Barshan and A. Yurtman, “Investigating inter-subject and inter-
activity variations in activity recognition using wearable motion sen-
sors,” Comput. J., vol. 59, no. 9, pp. 1345–1362, Sep. 2016.

[47] K. Altun and B. Barshan, Daily and Sports Activities Dataset,
UCI Mach. Learn. Repository, School Inf. Comput. Sci., Univ.
California at Irvine, Irvine, CA, USA, 2013. [Online]. Available: http:
//archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities

[48] MTi, MTx, and XM-B User Manual and Technical Documentation, Xsens
Technol. B.V., Enschede, The Netherlands, 2021. [Online]. Available:
http://www.xsens.com

[49] A. R. Webb, Statistical Pattern Recognition, 2nd ed. West Sussex, U.K.:
Wiley, 2002.

[50] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support
vector classification,” Dept. Comput. Sci., Nat. Taiwan Univ., Taipei,
Taiwan, Tech. Rep., 2003.

[51] K.-B. Duan and S. S. Keerthi, “Which is the best multiclass SVM
method? An empirical study,” Multiple Classifier Systems (LNCS 3541),
N. C. Oza, R. Polikar, J. Kittler, and F. Roli, Eds. Heidelberg, Germany:
Springer, 2005, pp. 278–285.

[52] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, Art. no. 27,
Apr. 2011. [Online]. Available: http://www.csie.ntu.edu.tw/ cjlin/libsvm/

[53] S. Haykin, Neural Networks: A Comprehensive Foundation, 3rd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, May 2007.

[54] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York, NY, USA: Wiley, 2000.

[55] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques, 4th ed. Cambridge, MA, USA:
Elsevier, 2016.

[56] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. 27th Asilomar Conf. Signals Syst. Comput.,
Pacific Grove, CA, USA, Nov. 1993, pp. 40–44.

[57] L. Wang, L. Cheng, and G. Zhao, Machine Learning for Human Motion
Analysis: Theory and Practice. Hershey, PA, USA: IGI Global, 2010.

Aras Yurtman received the B.S., M.S., and Ph.D.
degrees in electrical and electronics engineering
from Bilkent University, Ankara, Turkey, in 2010,
2012, and 2019, respectively.

He is currently a Postdoctoral Researcher with
the Declarative Languages and Artificial Intelligence
Research Group, Department of Computer Science,
Katholieke Universiteit at Leuven, Leuven, Belgium.
He was a Research and Teaching Assistant and
an Administrative Assistant with Bilkent University.
His current research interests include active learn-

ing, semisupervised clustering, explainable machine learning, and time-series
analysis.

Billur Barshan received the B.S. degrees in elec-
trical engineering and in physics from Boğaziçi
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