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A Novel Heuristic Fall-Detection Algorithm
Based on Double Thresholding, Fuzzy Logic,
and Wearable Motion Sensor Data

Billur Barshan

Abstract—We present a novel heuristic fall-detection algorithm
based on combining double thresholding of two simple features
with fuzzy logic techniques. We extract the features from the
acceleration and gyroscopic data recorded from a waist-worn
motion sensor unit. We compare the proposed algorithm to 15
state-of-the-art heuristic fall-detection algorithms in terms of five
performance metrics and runtime on a vast benchmarking fall
data set that is publicly available. The data set comprises record-
ings from 2880 short experiments (1600 fall and 1280 non-fall
trials) with 16 participants. The proposed algorithm exhibits
superior average accuracy (98.45%), sensitivity (98.31%), and
F-measure (98.59%) performance metrics with a runtime that
allows real-time operation. Besides proposing a novel heuristic
fall-detection algorithm, this work has comparative value in that
it provides a fair comparison on the relative performances of a
considerably large number of existing heuristic algorithms with
the proposed one, based on the same data set. The results of
this research are encouraging in the development of fall-detection
systems that can function in the real world for reliable and rapid
fall detection.

Index Terms—Accelerometer, double thresholding, fall detec-
tion, fall-detection algorithms, fuzzy logic techniques, gyroscope,
heuristic (rule-based) algorithms, inertial sensors, magnetometer,
motion sensors, wearable sensors, wearables.

I. INTRODUCTION

HE UNITED Nations has projected that over the next

30 years, the population of older persons in the world will
more than double, reaching 1.5 billion (22%) in 2050 [1]. This
means that one out of six people worldwide will be over the
age of 64. In many areas of the world, a significant percent-
age of elderly live alone which compounds the risks this age
group already faces. As a result, ambulatory monitoring of the
elderly has emerged as an important area of inter-disciplinary
research.
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Falls are unstable hazardous events where the faller uninten-
tionally ends up on the ground or other lower level [2]. Direct
injury from contact with the floor or the extended period of
lying on the floor may lead to serious medical conditions,
injury or even death when emergency healthcare is not pro-
vided rapidly [3]. Statistically, falls are the most common
cause of injury-related deaths for people over the age of 79 [4].
Besides older people who face the most serious danger related
to falls, disabled people, patients with visual, neurological, bal-
ance, gait, and orthopedic disorders, workers, mountaineers,
athletes, and children also suffer from falls. Some of the long-
term physical, psychological, and social consequences of falls
are reduced mobility, independence, and social life. Regardless
of the nature of the faller, falling is a serious, costly, and life-
threatening public health problem [5], [6], [7], [8]. Developing
effective and reliable fall-detection systems is vital in mitigat-
ing the severe medical and economical consequences of falls
to individuals in the fall risk groups, healthcare systems, and
society [9], [10], [11].

Falls often occur unexpectedly in between activities of daily
living (ADLs) or during transitions between two body postures
(e.g., sitting-to-standing and standing-to-lying down) [12].
Consequently, falls and ADLs are usually considered together.
A fall-detection system should not fail to recognize fall events
because missing a fall (missed detection) would mean that pro-
viding prompt medical attention will not be possible. On the
other hand, activities that produce high acceleration (crouch-
ing, sitting down rapidly on a bed or sofa, jumping, etc.)
can be easily misclassified as falls. Such non-fall activi-
ties should not be labeled as falls (false alarm) because
false alarms can be disturbing and frustrating to the user.
In addition, rapid detection of falls is crucial since the
severity of fall-related health risks generally increases with
the initial response time. Developing algorithms with lower
computational complexity will yield faster response times,
allowing (near) real-time operability. In short, fall-detection
algorithms need to be sophisticated enough to accurately
differentiate between falls and ADLs, while at the same
time be sufficiently simple to be computationally efficient
and fast.

Besides the essential requirements mentioned above,
a functional fall-detection system should have addi-
tional qualities to fulfill its crucial role on a daily
basis.
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1) Since fall-detection systems aim to reduce the direct
and indirect costs of falls to the people in the fall
risk groups and to the national healthcare system,
they need to be affordable, while sustaining high
performance.

2) Considering that fall detectors are expected to mon-
itor the user continuously, they need to have low
power consumption, especially when energy is limited
or costly [13], [14].

3) Fall-detection systems that require the user to wear
or carry around bulky equipment inconvenience the
user and become obtrusive. As the amount of equip-
ment to be carried increases, the user comfort deterio-
rates. Therefore, fall detectors need to be compact and
ergonomic.

4) Privacy issues are an additional concern for fall-
detection systems. People may be reluctant to use
systems that intrude into their personal lives through
video or audio recordings. Privacy issues may be
addressed by selecting a suitable sensing modality
or issuing protocols that prohibit monitoring of sen-
sory data outside the scope of the fall-detection
algorithm.

5) Finally, a fall-detection system needs to be capable of
handling scenarios which may involve multiple people,
pets, or objects in the environment that hinder proper
data acquisition. Some sensor modalities are inherently
robust to these issues in that they record data only
from the subject of interest (Sol) whereas others may
require additional processing of the data to extract the
information that belongs to the Sol, or special configura-
tions and constraints to ensure acquisition of informative
data.

One class of systems that meets most of the above cri-
teria is based on wearable sensors (Fig. 1). Through the
pervasiveness of a communicating network of interconnected
devices and computing intelligence, wearables have become
one of the essential elements of the Internet of Things (IoT)
ecosystem. Continuous streaming of conveniently accessi-
ble signals, acquired from sensors embedded in wearable
devices, provide vast amounts of data that carry valuable
information about the user state and well being [15]. Proper
processing of these data allows developing innovative solu-
tions to challenging problems. Fall detection through the
use of wearables has been an active research area for
several decades, resulting in considerable amount of aca-
demic work and some commercial products on this class of
systems [16], [17], [18]. However, existing issues and chal-
lenges still need to be addressed to develop effective and
robust algorithms that can operate reliably in (near) real
time [19].

Regarding the evaluation of the existing fall-detection
systems, most of the works reported until now have treated
the subject in an uncoordinated and piece-wise fashion.
The available literature is rather fragmented and incongru-
ent, without much common basis for comparison among the
different studies. Specifically, the literature lacks standards
on the choice of participants, fall types, activities, data set
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Fig. 1. Examples of wearable systems: (a) Elderly support system. (b) Sensor
units with strap set on mannequin [20].

collection procedures, and evaluation methods [21], [22]. Most
research groups process their custom data sets to evaluate their
algorithms [23] to acquire which, a certain modality and con-
figuration of sensors are selected without clear justification.
Some studies report only one or two of the five well-known
performance metrics which makes comparison even more dif-
ficult. Furthermore, most of the earlier work do not present
the algorithm runtime or address the real-time implementation
of their systems.

Hauer et al. [24] identify considerable heterogeneity in
existing fall definitions and the way falls are documented
and analyzed. The article suggests standardizing definitions
and the methods of collecting and summarizing falls data.
Chaccour et al. [25] provide a comprehensive review on fall
prevention and detection systems and proposes a four-level
common ground classification of fall-related systems based
on their sensor deployment. Noury et al. [26] propose proto-
cols for designing and conducting fall-detection experiments,
whereas Abbate et al. [27] set out the most important crite-
ria to consider while designing fall-detection systems. Even
though there is a limited number of works that follow the
proposed experimental protocols [28], [29], [30], [31], [32] or
provide comparison of different algorithms based on the same
data set(s) [33], [34], [35], [36], the majority of the existing
studies does not present comparable evaluation methods and
results. The current situation, then, brings about the need to
compare the existing fall-detection techniques using a sizeable
and rich data set as common basis. A systematic and unified
treatment of the subject is essential.

Kangas et al. [33] compare three threshold-based heuristic
algorithms of low complexity. Aziz et al. [34] compare five
heuristic and five machine learning (ML)-based fall-detection
algorithms employing waist-worn tri-axial accelerometers on
their custom data set. Quadros et al. [35] compare several
threshold-based and five ML-based techniques for a wrist-
worn device encapsulating an accelerometer, a gyroscope, and
a magnetometer. Hussain et al. [36] compare three ML algo-
rithms for fall detection based on accelerometer, gyroscope,
and accelerometer plus gyroscope data. This article builds
up on those articles by proposing a novel heuristic algorithm
based on double thresholding and the use of fuzzy logic tech-
niques to detect falls with a single waist-worn motion sensor
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Fig. 2. Overview of the proposed fall-detection scheme.

unit that encapsulates three sensor types. We compare the
proposed algorithm to 15 state-of-the-art heuristic algorithms
on our publicly available extensive data set that comprises
recordings from 2880 short experiments (1600 fall and 1280
non-fall trials) performed by 16 participants. Fig. 2 provides
an overview of the proposed scheme. The main contributions
of this article are, thus, 1) developing an effective and novel
heuristic fall-detection algorithm, employing a combination of
double thresholding with fuzzy logic techniques and 2) pro-
viding valuable insight on the relative performances of the
state-of-the-art heuristic fall-detection algorithms through a
fair comparison in terms of five performance metrics and their
runtimes based on a benchmarking data set.

The organization of the remainder of this article is as
follows: Section II provides the background and a sum-
mary of the related work on fall detection. We describe
the proposed heuristic algorithm in Section III and give the
details of the data set that we have employed in Section IV.
Section V, which is on the comparative evaluation of 15 state-
of-the-art heuristic algorithms, is divided into five subsections:
Section V-A briefly outlines each of the heuristic algorithms.
We provide the comparison methodology in Section V-B
followed by the section on the results of the comparative
evaluation (Section V-C). The next section (Section V-D) is
dedicated to the analysis of the algorithm runtime. The final
section is on the discussion of the results (Section V-E).
Finally, Section VI provides a summary, draws conclusions,
and identifies some future research directions.

II. BACKGROUND AND RELATED WORK

With advancements in multiple enabling technologies
among which are embedded and context-aware systems [37],
sensor technology, wearables, and IoT, the field of fall

HIGHLIGHTS
Proposed algorithm achieves 98.5% fall-detection accuracy.
We compare it to 15 state-of-the-art heuristic algorithms

membershis Fuzzy Logic Membership Assignment

1

feature 1

detection has made significant progress [38], [39]. Numerous
academic works have addressed accurate and reliable fall
detection using a variety of sensor modalities, each tackling
some aspects of the wide scope of the problem. Most of the
existing works on fall detection fall under one of two cate-
gories [40], [41]: 1) ambient (external) sensor and 2) wearable
sensor-based systems. Hybrid systems are a combination of
the two. In the first category, smart environments are designed
by installing ambient sensors in the user’s environment [42].
These could be in the form of cameras, force and pressure
sensors, microphones, vibration sensors, infrared proximity
sensors, micro-Doppler radars, etc., to capture information-
bearing signals about the activity and the state of the user.
Smart floor mats, furniture, and equipment can be designed
this way. Multiple sensor types can improve the performance
by eliminating the drawbacks a single-sensor solution might
entail. Non-vision type ambient sensors are advantageous over
camera systems because of their low cost, simpler processing
requirements, and elimination of privacy concerns. Once the
necessary hardware is installed, more than one user (e.g., an
elderly couple) in need of such systems can benefit from the
smart environment at the same time. The main disadvantage of
smart environments is the constraints they bring on the user’s
mobility because the system can function only in the restricted
environment equipped with sensors.

Systems based on wearable technology employ a variety
of sensor types (e.g., accelerometers, gyroscopes, magnetome-
ters, and barometers) worn on various body parts to capture
the defining characteristics of the movements [43]. With
the advancement of the micro electro-mechanical systems
(MEMS) technology, these devices have become lighter,
smaller, more compact, embeddable, wireless and less costly,
while also consuming less and less power.
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Wearable sensors have virtually limitless range; the Sol can
be monitored wherever s/he might go indoors and outdoors.
This is due to the small, light, and compact nature of wearable
devices, which are therefore easily embeddable in clothing, daily
accessories, and portable devices. Wearables directly acquire
and record the data of only the Sol in 3-D without any occlu-
sion or noise effects caused by other people, pets, or objects.
Furthermore, this class of systems does not make video or
audio recordings from the users, eliminating any privacy con-
cerns. Since the acquired data typically comprise multiple 1-D
time sequences, required processing is simpler and faster. One
of the drawbacks of wearable systems is that the user may
be reluctant or forgetful in wearing them or may not wear
them properly [44], [45]. Besides, depending on their design
and bulkiness, wearables can be inconvenient and obtrusive,
causing discomfort to the user. Battery maintenance is another
problem which can be resolved by using systems that harvest
their own energy [46]. Overall, the advantages of wearable fall-
detection systems outweigh their disadvantages when compared
to smart environments designed for the same purpose.

A considerable number of researchers have investigated the
optimal sensor configuration on the body for automatic fall
detection. The work reported in [47], based on the same data set
as in this article, reveals that the best location to affix motion
sensors is the waist area of the subject. Ntanasis et al. [48], also
using the same data set, stated that the subject’s waist and thigh
are the ideal positions. Pannurat et al. [49] disclose that when
post-impact activity information is not available, the chest and
the side of the waist are the best sensor locations, followed by
the head, front of the waist, wrist, ankle, thigh, and upper arm. If
such information becomes available, the optimal sensor location
is the side of the waist, followed by the head, wrist, front of
the waist, thigh, chest, ankle, and upper arm. Dai et al. [50]
and Fang et al. [51] consider the chest, waist, and thigh of the
participants to affix sensor units and report that they attain better
results with the chest-worn sensor units. On the other hand,
Bourke et al. [52] state that the torso (trunk) is the ideal position
to carry fall-detection devices. Lindemann et al. [53] claim that
a single sensor unit on the head is the most useful since rapid
head motions are more likely to be caused by falls. Multiple
studies consistently agree that the limbs are not suitable body
parts to attach motion sensors since they are associated with
relatively more chaotic acceleration patterns, generally with
higher acceleration values [54]. In summary, majority of the
earlier studies have reached the conclusion that the waist or the
chest area are the best places to affix wearable motion sensor
units for fall detection. We believe that the waist area is a
suitable location to place the units due to its proximity to the
center of mass of the human body. This, in turn, means that the
recorded acceleration and angular velocity signals provide a
better reflection of the subject’s bodily motion. Thus, although
the data set was originally acquired from sensor units at six
different positions on the body, in this work, we only process
the multi-modal data recorded by the sensor unit worn on the
waist.

An issue relevant to fall-detection systems is the seg-
mentation of the acquired sensor sequences. Several studies
have conducted event-based segmentation of fall records into
natural phases, such as pre-fall, fall, and post-fall, to identify
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some features of falls [55]. However, most existing works
employ static sliding window segmentation. This technique
involves taking sequences within a time window of pre-
determined size and the algorithm processes the windows one
at a time. The successive windows may or may not overlap
with each other. While using overlapping windows has the
disadvantage of higher computational complexity, employing
non-overlapping windows is likely to cause some falls to be
missed. Using overlapping windows is the more commonly
encountered approach in robust fall-detection systems.

We can group the algorithms that are used to make infer-
ences about the captured motion and distinguish falls from
ADLs under two categories: 1) heuristic (rule-based) algo-
rithms and 2) machine/deep learning (ML/DL) techniques.

Heuristic algorithms are based on defining hand-crafted
rules (e.g., if-then-else type) which often involve pre-set con-
stant threshold levels [56], [57]. Prior to designing this type
of algorithm, it is necessary to closely scrutinize the acquired
sensory data from non-fall and fall scenarios. Features unique
to only fall events need to be identified to develop a set of
rules that lead to proper classification. Since the rules are typ-
ically not complex ones and training is not required, heuristic
algorithms generally operate faster than ML/DL classifiers and
are more flexible. Often, thresholding techniques are used,
wherein raw sensor data or extracted features are compared
with a single or multiple pre-set threshold levels to detect a
fall. Heuristic algorithms are favorable especially when, due
to the scarcity of fall occurrences, training data may not be
sufficient or not be available. Nonetheless, this class of algo-
rithms may need either domain knowledge or data analysis
techniques to tune their parameters or set suitable threshold
levels for a given user or application [58].

The most commonly used feature in heuristic algorithms
is the magnitude of the total acceleration. This is followed
by vertical acceleration, body posture angles, total angular
velocity (angular rate), and speed of impact which are highly
favored features as well. These features are capable of iden-
tifying the main characteristics of falls: high impact with
the ground, a brief free fall phase prior to the impact, and
sudden body posture changes. Several works have consid-
ered exploiting the distinctive acceleration profile of falls as a
whole [59].

ML/DL techniques have been recently used for fall detec-
tion as well. Supervised ML/DL classifiers where the models
are trained with labeled data beforehand are more common as
opposed to unsupervised ones [60], [61]. Usmani et al. [62]
overview the latest research trends in fall prevention and detec-
tion systems that use ML techniques. It analyzes the systems
on a variety parameters, such as the age distribution of par-
ticipants, sensor types and configuration for a specific task,
data set, and choice of ML algorithms. The work reported
in [63] attempts to identify and improve the optimal ML
method. Islam et al. [64] review the most effective state-of-
the-art DL techniques for fall detection, categorizing them into
three. DL models are advantageous in that they can handle fea-
ture extraction naturally whereas ML models require defining
hand-crafted features. Selecting/optimizing the hyperparame-
ters of ML/DL classifiers is another important implementation
issue that can be computationally intensive.
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Because ML/DL classifiers usually involve complex algo-
rithms that require training, they are computationally more
demanding compared to heuristic algorithms [65]. Majority
of the ML/DL-based works have focused only on improv-
ing the accuracy of fall detection without taking into account
the computational challenges in real-time applications [66].
Lowering the complexity of ML/DL-based models through
data pre-processing, data dimensionality reduction, and nor-
malization techniques is essential to make them operable in
the real world.

III. NOVEL HEURISTIC FALL-DETECTION ALGORITHM

An effective fall-detection algorithm is expected to be both
reliable and fast in order to detect falls in real time. Before
developing such an algorithm, it is paramount to closely examine
the raw signals acquired from a variety of activities. Thus, we
have started our study by inspecting the acceleration and angular
rate signals recorded during the non-fall and fall actions that took
place while creating the vast data set that we have employed in
this work. Fig. 3 depicts representative acceleration and angular
velocity profiles from one fall and three non-fall type activities.
In part a) of the figure, we observe a distinctive pattern that
many fall signals exhibit, characterized by an initial drop in
the acceleration during the free-fall phase and an acceleration
peak that occurs upon impact with the ground. Most non-
fall activities are also characterized by distinct acceleration
profiles, such as the quasi-periodic patterns with peaks and
troughs in the recordings of walking and running activities in
parts b) and c) of the figure. Fig. 3(d) illustrates acceleration
and angular velocity recordings from a fall-like ADL: posture
transition from a standing position to lying on bed. These profiles
indicate that some daily activities can also produce acceleration
peaks and troughs with high acceleration magnitudes. Even
though these exemplary signals of non-fall and fall actions
appear to be considerably distinct from one another at first,
discriminating between non-fall and fall events is not always
straightforward. Non-fall activities that resemble falls, such as
jumping, stumbling, and limping with high accelerations, and
fall activities, such as syncope and falling out of a bed, can
be easily confused with each other. When a vast range of non-
fall and fall activities is considered, adequately sophisticated
algorithms need to be developed to be able to capture every
possible non-fall and fall scenario. Thus, the need for an
extensive data set arises.

Having closely scrutinized the characteristics of raw sig-
nals produced by non-fall and fall activities and taken their
similarities and differences into account, we have developed
a heuristic fall-detection algorithm that employs two simple
features extracted from the data recorded from a waist-worn
motion sensor unit. The two features are based on the magni-
tude of the total acceleration Ay and the magnitude of the total
angular velocity 2, calculated based on the data acquired
from the motion sensor unit affixed to the faller’s waist. We
first define an integer i to index the sampling instances of the
data such that i = 1,..., N, and N is the length of the data
sequence (number of data samples) from a single experimental
trial. We calculate the Ay [i] and Q[i] sequences as follows:
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Fig. 3.  Acceleration and angular velocity recordings of (a) forward fall,

(b) walking (non-fall), (c) running (non-fall), and (d) posture transition from
standing to lying on bed (non-fall).

Quodlil = \/2lil + w2lil + w2li] where i=1,...,N.

Here, a,[i], ay[i], and a;[i] denote the linear acceleration along
the x, y, and z axes, and w,[i], wy[i], and w;,[i] correspond to
the angular velocity about the same three axes of the sensor
unit, respectively.

We employ two simple features, the maximum value of
the magnitude of the total acceleration sequence (Aot-max)
and the maximum value of the time sequence resulting from
the element-wise multiplication of the Ai[i] and Qoc[i]
sequences, which we have named as (AS2)max. We extract these
two features as follows:

Atot-max = max {Atot [l]} 2)
1<i<N
(A max = lrg?gv{Atot [1] - 2ot [1] } 3)
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Fig. 4. Assignment of fuzzy logic membership values.

We selected the two features, Aior-max and (AQ2)max because
falls are often associated with high acceleration and angular
motion on the faller’s trunk. While the first feature captures
high accelerations, the second one identifies those data points
associated with both high acceleration and high angular rate
at the faller’s waist. The results of our experiments demon-
strate that these two simple features bear sufficient information
to exhibit satisfactory performance without costing substan-
tial computational power and time to make the necessary
computations.

Once we obtain these two features, the algorithm employs
double thresholding where we set a lower and an upper thresh-
old level separately for each of the two features. We select
the two threshold levels for the proposed algorithm, as well
as those of the algorithms that it is compared to, through the
use of cross-validation techniques whose details we provide in
Section V-B. Once we set the individual threshold levels for
each of the two features, we directly assign data instances (fea-
ture vectors) whose first or second feature element is above the
corresponding upper threshold level with falls whereas iden-
tify those whose first or second feature element is below the
corresponding lower threshold level as non-fall activities with
complete certainty.

We use fuzzy logic techniques [67] to assign membership
values of the data instances to the two classes. Since the first
one of the two features (Aior-max) 1S more capable of differenti-
ating between non-fall and fall activities, the algorithm exploits
this feature first, followed by the second. Fig. 4 shows the
calculation of the non-fall and fall fuzzy membership values
for the first feature (F1: Feature 1). In the figure, Fl repre-
sents the lower threshold level, whereas Fly corresponds to
the upper one set for the first feature. Since we consider data
instances with Air.max Value greater than the upper threshold
as falls with complete certainty, we assign a fall membership
value of one and a non-fall membership value of zero to those
instances. Similarly, we assign a fall membership value of zero
and non-fall membership value of one to those data instances
whose Aior-max Value remains below the lower threshold level.
If either of these two extreme cases occur, the decision is made
and the algorithm terminates.
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For the remaining data instances whose first feature element
Ator-max lies between the lower and upper threshold levels, we
create a linear non-fall membership profile that takes the value
of one at the lower threshold and the value of zero at the upper
threshold, as well as another linear fall membership profile
with the reversed borderline values (Fig. 4). Thus, we assign
the first feature Apr-max non-fall and fall membership values
between zero and one that add up to one. We then check
the second feature (AS2)max and follow the same procedure as
we did for the first feature except that the lower and upper
threshold values are set differently for the second feature. If
the algorithm has not terminated after checking the second
feature, in the last phase of the algorithm, we average the
membership values assigned to the two features of every non-
extreme data instance to obtain a single non-fall and a single
fall membership value for that particular data instance. We
compare these two values with each other and assign the data
instance to the class whose average membership value is larger.

To provide more detail, Fig. 5 displays the flowchart of the
proposed algorithm in which we use Feature 1 (and F1) to
represent Apr-max and Feature 2 (and F2) instead of (AQ2)max
for compactness, while subscripts L and U indicate respec-
tive lower and upper threshold levels. The algorithm classifies
a data instance into one of the two classes upon reaching a
TERMINATE node in Fig. 5. If the first feature (A¢t-max) Of a
data instance is below F1y, or above Fly, it classifies the data
instance without even using the second feature (AQ2)max- If, on
the other hand, the Aor.max Of a data instance falls between F1y,
and Fly, the algorithm compares the (AQ2)max feature with
F21, and F2y. If the second feature is below F2p or above F2y,
it assigns the data instance to one of the two classes accord-
ingly, regardless of the fuzzy membership values based on
Atot-max- Only if both features of a data instance fall between
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TABLE I

PROPERTIES OF THE SIMULATED FALLS AND DAILY LIVING ACTIVITIES DATA SET

Feature

Description

Areas:

Life, Daily Living

Subject Categories:

Falls, Activities of Daily Living, Wearable Sensing, Motion Sensors,
Heuristic Algorithms, Thresholding-Based Algorithms, Fuzzy Logic Techniques

Associated Tasks:

Double Thresholding, Pattern Recognition, Pattern Classification

Dataset Characteristics:

Time-Series Data

Number of Sensor Units:

6 (wireless)

Sensor Types:

accelerometer, gyroscope, magnetometer (each being tri-axial)

Total Number of Sensor Axes:

54 (= 6 sensor units X 3 sensor types X 3 axes per sensor type)

Positions of Sensor Units:

head, chest, waist, right wrist, right thigh, right ankle

Number of Participants: 16

Number of Activities: 36 (= 20 fall + 16 non-fall activities)

Number of Repetitions: 5

Number of Instances: 2880 (= 16 participants X 5 repetitions X 36 movements)
Number of Attributes: 138

Attribute Characteristics: Integer

Acquired Period:

Winter 2012

Date Donated:

2018-06-06 (UCI Machine Learning Repository [69])
2022-12-29 (IEEE DataPort [70])

DOI:

https://doi.org/10.21227/eqmh-8m79

Missing Attribute Values:

Rare

the corresponding lower and upper threshold levels, the data
instance is classified based on its average membership val-
ues. We name the proposed algorithm fuzzy-augmented double
thresholding (FADoTh).

We note that not every feature exhibits linear non-fall and
fall membership profiles between the lower and upper thresh-
olds. Besides, it may not always be possible to classify extreme
values in this way. For example, in some features (e.g., max-
imum of angular velocity magnitude) both the right and left
parts of the extreme data instances may belong to one of the
classes and thus the proposed linear membership profiles may
not function properly. This may, then, require a different pro-
file of membership values that is possibly of higher order,
to better fit the distribution of the non-extreme data. It is,
therefore, desirable to examine the distribution of the selected
features thoroughly, prior to exploiting them in the proposed
algorithm. We have investigated this and have observed that
the two features that we employ in this study have the desired
characteristics [68].

IV. DATA SET AND THE EXPERIMENTS

This section describes the publicly available data set [69],
[70] that we employ in this study to evaluate the algorithms
and the experimental procedure. The data set was initially
collected by our research team to assess the performance of
state-of-the-art ML classifiers for effective and reliable fall
detection [71]. We also employed it in the research published
in [47], [48], [72], [73], and [74]. Properties of the data set
are summarized in Table I.

To conduct the experiments, we first determined the num-
ber, type, and the configuration of the sensors to be used,
and designed the procedures to acquire data from non-fall
and fall events. We employed the Motion Trackers (MTw)
Development Kit, manufactured by Xsens Technologies [20]
for this purpose. The development kit consists of hardware
and software elements. The hardware components comprise
six wireless MTw sensor units [Fig. 6(d)—(f)] and the Awinda
Station [Fig. 6(g)]. We affixed the sensor units to the head,

@) _ ®

Fig. 6. (a)-(c) Sensor unit configuration on the participant’s body, (d) MTw
sensor unit, (e) sensor unit x,y, z axes, (f) MT manager software package,
(g) Awinda station and its interface to a laptop computer [20], [71].

chest, waist, right wrist, right thigh, and right ankle of
each participant using a strap set [Fig. 6(a)—(c)]. Each unit
encapsulates three tri-axial sensors (an accelerometer, a gyro-
scope, and a magnetometer with respective operating ranges of
+120 m/s?, £1200°/s, and £1.5 Gauss) and an atmospheric
pressure sensor with a working range of 300—1100 hPa, the last
of which we did not use in the experiments. We employed the
Awinda Station for wireless acquisition of data from the sensor
units as well as for charging the units. As for the software,
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TABLE 11
SHORT DESCRIPTIONS OF THE NON-FALL ACTIVITIES (ADLS)
PERFORMED DURING THE EXPERIMENTS

Short Description of Non-Fall Activity

1 walking forward

2 walking backward

3 running

4 squatting and then standing
5 bending at about 90°
6

7

8

bending to pick up an object
walking with a limp
stumbling with recovery

9 ankle sprain

10 coughing/sneezing

11 standing to sitting on a hard surface (chair)
12 standing to sitting on a medium surface (sofa)
13 standing to sitting on air

14 standing to sitting on a soft surface (bed)
15 standing to lying on bed
16 lying on bed to standing

the MT Manager software package that is part of the MTw
Development Kit handles the recording and visualization of
data from the sensor units which are analyzed through a graph-
ical interface [Fig. 6(f)]. We calibrated all six sensor units
prior to initiating the experiments. It is important to select a
suitable sampling rate in detecting non-fall and fall activities
to avoid information loss through undersampling and to keep
the power consumption of the units at an affordable level.
Liu et al. [75] and Santoyo-Ramén et al. [76] state that a
sampling rate of 20-22 Hz is sufficient for wearable-based
fall-detection systems. Therefore, we set a sampling frequency
of 25 Hz in our experiments and transmitted the acquired data
via a ZigBee connection to a laptop computer for storage.
Erciyes University Ethics Committee approved the appli-
cation of our research team to conduct experiments with
human subjects (Approval No. 2011/319). Sixteen young and
healthy participants performed the scripted activities after we
acquired their informed consent in written form. The aver-
age value plus/minus one standard deviation for the age,
weight, and height of the seven female participants were
21.5 &+ 2.5 years, 58.5 £ 11.5 kg, and 169.5 £+ 12.5 cm,
respectively. Corresponding values for the nine male partici-
pants were 24 + 3 years, 67.5 £ 13.5 kg, and 172 &+ 12 cm.
Following the guidelines provided in [27], we selected a
broad span of activities so that our experiments would encom-
pass most of the real-world scenarios one would encounter in
daily life. We included experimental trials on a wide spectrum
of fall types as well as near-fall activities and common ADLSs
that one can encounter in real-life scenarios. The goal is to
be able to construct a genuine representation of real-life situa-
tions so that the developed algorithm operates well in the real
world and produces realistic outcomes. To acquire the data
set, we followed the protocols put forth by Abbate et al. [27]
on conducting fall experiments. Each participant performed
five trials of each of the 16 non-fall activities (ADLs) and 20
fall activities, which we list in Tables II and III with their
brief descriptions. The participants performed the activities
on a soft floor mat, with protective equipment on their head,
wrists, elbows, and knees to prevent injuries [Fig. 6 (a)—(c)].
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TABLE III
SHORT DESCRIPTIONS OF THE FALL ACTIVITIES
PERFORMED DURING THE EXPERIMENTS

Short Description of Fall Activity

17 standing to falling forward to the floor

18  standing to falling forward to the floor with arm protection
19  standing to falling on knees

20  standing to falling on knees and then lying down

21  standing to falling forward with quick recovery

22 standing to falling forward with slow recovery

23 standing to falling forward, ending in right lateral position
24 standing to falling forward, ending in left lateral position
25  standing to falling down on the floor, ending sitting

26  standing to falling backward, ending lying

27  standing to falling backward, ending in right lateral position
28  standing to falling backward, ending in left lateral position
29  standing to falling on the right side, ending lying

30  standing to falling on the right side with recovery

31  standing to falling on the left side, ending lying

32 standing to falling on the left side with recovery

33 from lying, rolling out of bed and falling on the floor

34 standing on a podium to forward fall on the floor

35  syncope — standing to falling vertically

36  syncope fall, slowly slipping off a wall on the side

We recorded and stored each experimental trial of 10-15 s
duration in separate files. As a result, we acquired a vast
data set comprising recordings from 2880 short experiments
with 1280 non-fall and 1600 fall trials. The fall and non-fall
trial recordings that constitute our data set are basically signal
amplitude versus time plots similar to those provided in Fig. 3.
The signal amplitude may correspond to acceleration, angu-
lar velocity (rate), or magnetic field, depending on the sensor
type the signal is recorded from (accelerometer, gyroscope,
and magnetometer, respectively).

As mentioned in Section II, even though the data set con-
tains data from six motion sensor units worn by the subjects
at six different positions on their body, we processed only the
data acquired from the waist-worn sensor unit in this work.
This results from an effort to render the proposed algorithms
more feasible to embed in a hardware system, because not
only a system requiring six sensor units would be consider-
ably costly, such a system would also be obtrusive to the user.
Furthermore, the larger the number of units, the more difficult
it is for the user to put the units on properly [44], [45].

To import the data set, we run three loops for activities,
subjects, and experimental trials to span every data instance
from separate files. We filter the raw data acquired from the
waist-worn motion sensor unit employing three-point median
filtering to remove the high frequency noise components. We
extract the two features over the whole duration of the data
recording from a single experimental trial. We label a data
instance as non-fall if the activity index is smaller than or equal
to 16 (Table II) or as fall if it is greater than 16 (Table III).
We keep a record of the subject index for each data instance
to be used in subject-based cross validation, whose details we
provide in the next section.

V. COMPARATIVE EVALUATION OF ALGORITHMS

As we stated in Section I, the comparative evaluation of
fall-detection algorithms on an extensive benchmarking data
set that is acquired according to the comprehensive protocols
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suggested previously in [26] and [27] is highly valuable, since
the current literature is short of studies that provide a fair
comparison of different algorithms.

A. State-of-the-Art Heuristic Algorithms

We conducted a comparative evaluation of the proposed
algorithm and 15 state-of-the-art heuristic fall-detection algo-
rithms based on the data set described in Section IV. Before
proceeding to the comparison methodology, we provide brief
descriptions of the selected algorithms below:

Abbate: The work reported in [59] is based on improving
the accuracy of a basic fall-detection system by filtering out the
false alarms that are caused by three fall-like ADLs. The basic
system applies a threshold to Ay, With the detection of a static
interval after the impact during which Ay does not exceed the
threshold. Following this basic system, the researchers use the
average acceleration magnitude variation (AAMYV) feature to
distinguish sitting/lying on a chair, sofa, or bed that causes
false alarms. In addition, they employ the free fall interval
(FFI) and free fall average acceleration magnitude (FFAAM)
to detect the jumping activity and eliminate the false alarms
that it may cause. Because the authors of this work custom
created these three features and their descriptions are lengthy,
the interested reader should resort to [59] for additional details.

Anania: Anania et al.’s algorithm [77] thresholds the total
angular rate and the angular change of the trunk. If both quan-
tities exceed the corresponding pre-set thresholds, it checks to
see if these two peaks occur sufficiently close to each other
in time before raising a fall alarm.

Baek: This algorithm proposed by Baek et al. [78] first
determines the posture of the subject by thresholding the roll,
pitch, and yaw angles (Euler angles) obtained by exploiting
trigonometric relationships between the low pass filtered accel-
eration sequences in the x, y, and z directions and these angles.
If the lying posture is detected, the researchers apply individual
thresholding to Ay and Qo to detect a fall.

Bourke-1: The first algorithm developed by
Bourke et al. [52] filters the raw data with a second-
order digital Butterworth low pass filter (LPF) that has a
cut-off frequency of 250 Hz. Then, it applies thresholding
to Atot-

Bourke-2: The second algorithm by Bourke et al. [79]
applies a single threshold to vertical linear velocity. This
quantity is obtained by first subtracting the gravitational accel-
eration from Ay and then numerically integrating the result.
The researchers filter the raw data with a second-order digital
Butterworth LPF that has a cut-off frequency of 15 Hz. They
remove the integration drift by band-pass filtering (BPF) the
velocity profiles using a second-order digital Butterworth BPF
with cut-off frequencies of 0.15 and 15 Hz.

Bourke-3: Bourke et al’s third algorithm [80] employs
thresholding on Qqy, th, and angular change sequences about
the roll and pitch axes. The researchers obtain the angular
acceleration sequence (Qtot) by calculating the first difference
sequence of the angular rate sequence (2y) and acquire the
angular change by numerical integration of the angular rate
sequence in time windows of 1.7 s. They filter the raw data
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using a second-order digital Butterworth LPF with a cut-off
frequency of 100 Hz.

Chen: The algorithm suggested by Chen et al. [81] relies
on detecting the impact with the floor by thresholding A
first. If this quantity exceeds the threshold, it calculates the
change in the orientation of the faller’s body before and after
the impact. If the change is significant, the algorithm raises a
fall alarm.

Jacob: Jacob et al. [82] put forth an interesting algorithm
that employs seven different flags that are raised when the
seven corresponding features exceed the individually pre-set
thresholds. The selected features are the Ao, 2ot Qtot, the
angular changes about the x, y, and z axes, and the total angular
change. The algorithm calculates the angular acceleration by
numerical differentiation and obtains the angular changes by
numerical integration of the gyroscopic angular rate data. It
detects a fall if four or more flags out of seven are raised.

Jantaraprim: The algorithm proposed by
Jantaraprim et al. [83] applies double thresholding to
the A sequence. If the Ay value falls below the lower
threshold (free fall phase) and then exceeds the upper one
(impact), the algorithm inspects the time indices of these two
elements of Ay to see if they are at sufficient proximity to
each other in time. If so, the algorithm detects a fall. The
researchers filter the raw data with a second-order digital
Butterworth LPF that has a cut-off frequency of 20 Hz.

Kangas-1, Kangas-2, and Kangas-3: Kangas et al. [33]
develop three different fall-detection algorithms with low com-
plexity. The first algorithm, Kangas-1, is based on detecting
the impact moment of a fall and the posture of the fallen
person after the impact. The algorithm detects the impact by
thresholding the dynamic total acceleration (Ap) and deter-
mines the posture by exploiting the low pass filtered vertical
acceleration (Avert-IPF)-

The second algorithm, Kangas-2, detects the beginning of
the fall, impact moment, and the posture of the faller afterward.
It identifies the beginning of the fall by thresholding Ay, while
detecting the impact moment and posture in the same way as
in Kangas-1.

The third algorithm, Kangas-3, is based on detecting the
start of the fall, fall velocity, impact, and posture afterward.
The difference from Kangas-2 is that, it obtains the fall veloc-
ity by numerically integrating the Ay sequence from the
beginning of the fall until the time of impact.

All three algorithms employ three-point median filtering
on the raw data prior to extracting the necessary features.
To obtain Ap, the researchers filter acceleration data with a
second-order digital Butterworth high pass filter with a cut-off
frequency of 0.25 Hz and calculate the sum vector magnitude
of the resulting acceleration. They use a second-order digi-
tal Butterworth LPF with a cut-off frequency of 0.25 Hz for
posture calculation.

Lindemann: Lindemann et al. [53] apply thresholding to
the horizontal component of the total acceleration (Aiot-hor)s
Auot, and the total velocity prior to the impact. The researchers
obtain the quantity Airhor by simply exploiting the configu-
ration of the sensor unit, whereas calculate the total velocity
by backward integration of Ay, over a 1.5 s window from the
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peak of Ay backward. They filter the raw data with a LPF
having a cut-off frequency of 80 Hz.

Sorvala: The algorithm proposed by Sorvala et al. [84]
applies thresholding on Ay, and Qo to detect impact. Upon
the detection of impact, it compares the angular change of the
body to a pre-set threshold level and raises a fall alarm if it is
above that threshold. The authors filter raw acceleration data
with a three-point median filter while they use a second-order
digital Butterworth LPF with a cut-off frequency of 0.25 Hz
to acquire angular change based on acceleration sequences.

Wang: The algorithm proposed by Wang et al. [85] also
relies on thresholding. The algorithm raises a fall alarm if A
exceeds a pre-set threshold. If not, it compares the horizontal
component of the acceleration (Aihor) to another threshold.
If this quantity is above the threshold, the algorithm calculates
the linear velocity by backward integration and raises a fall
alarm if the velocity is greater than a pre-set threshold level.

B. Comparison Methodology

In our implementation of these algorithms, we did not apply
any additional filtering to the raw data other than the filters
that are specified in the algorithm descriptions; however, we
trimmed off 10 data samples from the beginning and the end of
every trial recording and discarded them because these samples
bear corrupted data caused by on—off switching of the sensor
units.

Nearly every heuristic algorithm involves the use of one
or more threshold levels and the selection of these levels
should be done properly. Although the studies we consider
here state the optimal parameter values for their algorithms,
these parameters are selected based on their custom data set
and do not necessarily give the best results on a different
data set. To be able to make a fair and realistic comparison
between the performances of the fall-detection algorithms that
we have included in our study, we have employed a subject-
based multi-fold cross-validation scheme [86] to identify the
optimal parameter set for each algorithm. We prefer this over
randomly partitioned (i.e., not according to subject) multi-fold
cross validation because our aim is to make a fair evaluation
of the algorithms where the data recorded from the test sub-
jects are not employed in determining the parameters. If any
algorithm we present here were to be embedded in a fall-
detection device for real-world usage, it is extremely likely
that the users of such a device will not have contributed to the
data set. Therefore, by not including the test subjects’ data in
the training set, our aim is to prevent optimistic results that
may be caused by the correlation between the training and
test data from the same subject. This choice, in turn, gen-
erally yields lower performance metrics with more variation.
As a result, the standard deviation between the performance
metrics of different validation folds increases.

We partitioned the fall data set into eightfold in a subject-
based manner, employing the record of the subject index for
each data instance: seven data partitions from one female and
one male subject each and one partition of data from two
male subjects. This way, we created eightfold, each compris-
ing the data from a pair of subjects. In a loop, we keep each
of one these eightfold as the test data while combining the
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Fig. 7. 2 x 2 confusion matrix.

remaining seven to be employed as the training data. For each
iteration of this loop, we conduct a grid search to obtain the
set of parameters of the algorithm that gives the highest clas-
sification accuracy on the training set. During the grid search,
we consider sufficiently wide intervals for the parameters to
avoid obtaining resulting parameter values on the borders of
the intervals; besides, we update the intervals of the parameter
sweep should we encounter such a situation. After we obtain
the parameter set that results in the highest classification accu-
racy on the training set for a given fold, we use that parameter
set to evaluate the algorithm on the test set for that particular
fold.

Fall detection involves a binary decision process on whether
a fall has occurred or not. In testing a given fall-detection
algorithm, one may encounter one of four possible cases.

1) True Positive (TP): A fall occurs and the algorithm

detects it;

2) False Positive (FP): A fall does not occur but the

algorithm detects a fall;

3) True Negative (TN): A fall does not occur and the

algorithm does not detect a fall;

4) False Negative (FN): A fall occurs but the algorithm

does not detect it.

In radar terminology, FP and FN correspond to false alarm
and missed detection, respectively. Once we identify the num-
ber of times each of these four cases occur, we can build a
confusion matrix as in Fig. 7. In the figure, P represents the
total number of true positives and N represents the total num-
ber of true negatives. The variables P’ and N’ denote the total
numbers of estimated positives and negatives, respectively. At
the end of the training and test procedures described above,
we store the corresponding confusion matrices.

Using the recorded confusion matrices and the definitions
given in 1)-4) above, we calculate the accuracy, precision,
sensitivity (recall), specificity, and F-measure performance
metrics of the algorithms according to the following equations:

A ! L + N 4)
ceuracy = — -
Y= 2 \TP+EN T IN+ FP
. TP
Precision = —— ®))
TP + FP
o TP
Sensitivity = ———— (6)
TP + FN
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TABLE IV
RESULTS OF THE COMPARATIVE STUDY ON HEURISTIC ALGORITHMS

Algorithm Accuracy (%)  Precision (%)  Sensitivity (%)  Specificity (%)  F-measure (%)
Abbate [59] 96.524+2.07 98.13+2.49 95.374+2.59 97.66+3.15 96.70+1.84
Anania [77] 90.1943.00 96.544+4.80 84.4442.64 95.9445.84 90.00+2.48
Baek [78] 96.024+1.38 97.90+1.41 94.6343.03 97.424+1.75 96.20+1.43
Bourke-1 [52] 96.234+1.28 97.61+1.51 95.4442.80 97.034+1.91 96.48+1.30
Bourke-2 [79] 94.95+1.16 95.0542.44 96.3143.18 93.5943.23 95.61+1.11
Bourke-3 [80] 89.9442.04 96.85+2.66 83.31+2.19 96.561+2.95 89.55+1.91
Chen [81] 95.20+1.86 98.00+2.35 92.8142.07 97.58+2.90 95.324+1.65
Jacob [82] 90.28+2.17 94.70+3.34 86.81+3.42 93.751+4.25 90.51+1.97
Jantaraprim [83] 91.97+1.24 96.834+2.30 87.63+4.38 96.251+2.95 91.931+1.68
Kangas-1 [33] 97.80+1.12 98.41+1.97 97.63+1.33 97.974+2.56 98.00+0.88
Kangas-2 [33] 98.0540.83 98.94+1.16 97.4441.45 98.67+1.47 98.1710.76
Kangas-3 [33] 97.13+1.45 96.9242.20 98.254+2.36 96.024+2.91 97.55+1.26
Lindemann [53] 96.554+2.07 98.134+2.49 95.4442.53 97.66+3.15 96.744+1.83
Sorvala [84] 95.024+1.29 96.454+2.52 94.56+4.44 95.474+3.34 95.394+1.50
Wang [85] 97.0340.61 97.53+1.44 97.1941.58 96.88+1.86 97.344+0.54
proposed FADoTh 98.45+1.21 98.894+1.51 98.31+1.03 98.59+1.91 98.59+1.03
. TN _ .
Specificity = ——— (7) deviation of the accuracy and the F-measure metrics of the
TN + FP . proposed algorithm. These two algorithms yield comparable
F-measure — Precision - Sensitivity (8) results to the proposed one, although not better.

Precision 4 Sensitivity

We note that we have employed the average of the class-
based accuracies in (4) instead of the conventional definition
of accuracy, given by (TP+ TN)/(TP + FN + TN + FP), since
the two classes are not equal in size. It is clear that sensitivity
and specificity metrics are reciprocally related. For instance,
in a heuristic algorithm based on simple thresholding, as we
decrease the threshold level, the rate of FN decreases and the
sensitivity of the algorithm increases. Consequently, FP rate
increases and specificity decreases. On the other hand, as we
raise the threshold level, the opposite takes place: sensitivity
decreases and specificity increases. Since the precision and
sensitivity measures are inversely related, it is worthwhile to
evaluate the F-measure metric that combines these two met-
rics into one to attain a compounded performance measure.
We obtain the F-measure metric in (8) by multiplying the
harmonic mean of precision and sensitivity metrics by two.

C. Comparison Results

We present the performance metrics for each algorithm
in average value plus/minus one standard deviation format
in Table IV. It is evident from the table that among all
the algorithms considered, the proposed algorithm (FADoTh)
exhibits the highest average accuracy, sensitivity, and F-measure
performance metrics. Only the Kangas-2 algorithm displays
slightly higher average precision and specificity values; how-
ever, this algorithm then demonstrates lower performance in the
other three performance metrics. All three algorithms proposed
by Kangas et al. [33] provide sensitivity metrics that are lower
but within one standard deviation of FADoTh sensitivity. Among
these, the only algorithm that produces an average sensitiv-
ity value that is comparable with the proposed algorithm is
Kangas-3. However, the remaining four performance metrics
of this algorithm are not within one standard deviation of those
of the FADoTh algorithm. In fact, only the first two algorithms
by Kangas (Kangas-1 and Kangas-2) are within one standard

Overall, the proposed FADoTh algorithm, employing dou-
ble thresholding on only two simple features and fuzzy logic
techniques, proves superior to the 15 state-of-the-art heuris-
tic fall-detection algorithms on a vast data set comprising a
total of 2880 experimental trials when we employ subject-
based cross validation for parameter selection and performance
evaluation. We believe that the proposed algorithm can demon-
strate satisfactory performance on other data sets as it exploits
two fundamental characteristics of falls: data instances of high
acceleration and those with both high acceleration and high
angular rate.

D. Runtime Analysis

We ran all 16 algorithms on MATLAB version R2015a
installed on a computer with Intel Core i5-3230M CPU run-
ning at 2.60 GHz, 4 GB RAM, and Windows 7 Home Premium
64-bit operating system while no other external application or
program is being executed.

To measure algorithm runtimes, we ran each algorithm ten
times on the data acquired from the waist sensor unit without
using cross validation. In Table V, we provide the average run-
times for the classification of a single data instance in average
value plus/minus one standard deviation format.

Even though our proposed algorithm ranks as the seventh
fastest algorithm out of all 16, it operates faster than the
only two algorithms (Kangas-1 and Kangas-2) with compa-
rable performance metrics. Recall that the average accuracy
and F-measure values of these two algorithms were within
one standard deviation of those of the proposed algorithm.

E. Discussion

Eight of the 15 state-of-the-art algorithms produced accu-
racy values lower than 96% based on the comparison on
the same data set. This outcome is similar for the other
performance metrics although all of the algorithms we com-
pare in this work are reported to exhibit high fall-detection
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TABLE V
RUNTIMES OF THE COMPARED HEURISTIC ALGORITHMS

Algorithm Runtime (ms)
Abbate [59] 1.242+0.033
Anania [77] 5.94940.044
Baek [78] 6.06440.035
Bourke-1 [52] 5.26940.025
Bourke-2 [79] 10.731+0.074
Bourke-3 [80] 5.36940.017
Chen [81] 5.97440.029
Jacob [82] 5.53340.014
Jantaraprim [83] 5.357+0.026
Kangas-1 [33] 5.95540.034
Kangas-2 [33] 6.105£0.022
Kangas-3 [33] 6.420£0.025
Lindemann [53] 1.307£0.010
Sorvala [84] 6.11140.024
Wang [85] 5.3444-0.009
proposed FADoTh  5.461+0.017

performance with the original data sets that they are developed
and tested on. The difference is most likely caused by the rel-
atively large size of the data set employed in this work. To our
knowledge, none of the data sets that are used in the publi-
cations that these 15 state-of-the-art algorithms are originally
proposed in are comparable in size to the data set that we have
used here. Not only the mere size of the data set we employed
here is larger than those in the included publications, the vari-
ety of non-fall and fall activities it includes spans far more of
real-life scenarios as well. However, the fall-detection algo-
rithms developed by Kangas et al. [33] perform considerably
well on our sizeable data set, despite that they were origi-
nally demonstrated over a limited amount of data acquired
from three subjects performing nine fall types. Their success
lies in their capability to capture the most general defining
characteristics of falls.

The 16 ADLs included in our data set are a subset of real-
world daily activities that can easily be mistaken as falls.
Falls/ADLs that take place in a laboratory-like setting with
protective safety gear (e.g., helmets, knee supports, and mats)
and those that occur out in the real world may differ. In par-
ticular, intentional (voluntary or simulated) falls performed
with such protective equipment may not reflect the sudden
and chaotic nature of real-world falls. Second, we must note
that we acquired the data set mostly from healthy and young
participants, performing intentional and scripted fall scenar-
ios in a structured environment. These factors may hinder the
performance of fall-detection systems in the real world. Fall
risk groups include the elderly and patients with movement
disorders who may have impairments and abnormalities in
their gait cycles that may not necessarily match with the sub-
jects who took part in the experimental trials. However, fall
data from the real world involving individuals in the fall risk
groups are quite scarce and difficult to acquire because of their
fragility as well as the long waiting times. There exists only
a limited number of works that consider real-world falls [87],
[88] and involve elderly participants [52], [53], [83], [89], [90],
[91] or patients with certain movement disorders or conditions
(e.g., Parkinson’s disease, multiple sclerosis, and stroke). For
example, Bourke et al. [91] include unscripted ADL data from
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older people to evaluate the false alarm rate of their algorithm
in a real-world setting. Mosquera-Lopez et al. [88] exploit real-
world data from patients with multiple sclerosis, monitored
over a period of eight weeks during free-living conditions, to
develop their ML-based fall-detection algorithm.

Although we would have preferred to process real fall data
from individuals in the actual fall risk group, we have made
the choices for the non-fall/fall activity types and the cur-
rent subject profiles with the goal of gathering a rich and
extensive data set [69]. These choices should not impede the
results obtained in this article because Kangas et al. com-
pare real fall data acquired from the elderly with those of
simulated falls in [92] and reach the conclusion that the for-
mer bears similar characteristics to those of intentional falls,
despite that some parameters may differ between the two.
We have compared the average and peak acceleration val-
ues of the intentional falls that we have recorded, with those
in [92], where a limited number of natural falls by the elderly
are available. We presented this comparison in our earlier
study [71] where we observed that for a given fall type, fea-
tures of the signals recorded from involuntary and voluntary
falls show a good resemblance. Thus, we have demonstrated
that the experimental records acquired in our work are coher-
ent with the involuntary falls recorded in an independently
conducted study [92]. Consequently, we would expect the
proposed FADoTh algorithm to perform well in real-world
scenarios if embedded in fall-detection hardware.

We finally provide examples and performance metrics of
some of the relevant works that we could not include in our
comparative study to keep the number of algorithms at a
reasonable level. A threshold-based pre-impact fall-detection
algorithm is developed in [93] for wearable airbags that
minimize the impact of falls on the faller’s body. The algo-
rithm achieves 92.4% accuracy, 90.5% specificity, and 96.1%
sensitivity with the publicly available SisFall data set [94].
De Sousa et al. [95] also use the same data set to test their
threshold-based algorithm and reported 97.7% specificity and
92.6% sensitivity values. In the comparative study reported
in [35] that uses a wrist-worn device with motion sensors,
threshold-based methods resulted in a maximum accuracy of
89.1% with 82.3% specificity and 95.8% sensitivity. When
thresholding was supplemented with Madgwick’s decompo-
sition to estimate the spatial orientation of the body, the
respective performance metrics improved to 91.1%, 95.8%,
and 86.5%. Qian et al. [96] present a wearable fall-detection
system based on multi-level thresholding. The algorithm com-
bines MEMS with narrowband IoT (NB-IoT) and achieves
94.88% accuracy, 94.5% specificity, and 95.25% sensitivity.
Patel et al. [97] describe the VitaFALL device which employs
multiple thresholds on the tri-axial acceleration data together
with vital signs and reports that accuracy levels up to 94%
are achieved. Another recent study that uses threshold lev-
els on wearable accelerometer data is by Amir et al. [98]
which reports 83.0% accuracy, 69.4% specificity, and 97.4%
sensitivity. Lee and Tseng [99] identify suitable threshold
levels for fall and non-fall events and propose an enhanced
threshold-based fall-detection methodology which, in addition,
classifies falls into four basic directions (forward, backward,
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right lateral, and left lateral). Accuracy and fall-detection rates
of 99.38% and 96% are obtained. In [100], a dynamic thresh-
old model is employed for pre-impact fall detection where
97.40% accuracy, 95.31% specificity, and 99.48% sensitivity
figures are reported. Razum et al. [101] elaborate on optimal
threshold selection for fall-detection algorithms that process
multiple features. Qu et al. [102] propose a fall-detection
algorithm that combines quadratic threshold decision with
human posture and support vector machines (SVMs) where
a smart bracelet recognizes falls at a rate of 92.2%. The
multi-threshold-based algorithm evaluated in [103] yields 86%
accuracy, 89.4% specificity, and 95.7% sensitivity. The results
are improved by supplementing thresholding with an extreme
learning machine (EML). The study reported in [104] employs
a two-step algorithm based on thresholding and multiple kernel
learning SVMs that process accelerometer signals. Respective
accuracy figures of 97.8% and 91.7%, specificity of 95.2% and
88.0%, and sensitivity values of 99.5% and 95.8% are reported
when the accelerometer is worn on the user’s waist and
thigh. Xu et al. [105], [106] propose another two-stage fall-
detection algorithm that combines thresholding with DL. The
algorithm first pre-screens an event using a threshold-based
method. If a fall event is suspected, a convolutional neu-
ral network (CNN) processes the data. The fusion algorithm
exhibits 97.02% accuracy, 96.64% specificity, and 97.83% sen-
sitivity. Zhang et al. [107] also present a two-step algorithm
that combines thresholding with fuzzy logic techniques to pro-
cess the motion data acquired from a wrist-worn fall detector.
A small data set with four fall types, five types of bodily
activities, and four types of hand activities is created with the
participation of only two subjects. The authors report 98.36%
accuracy, 100% specificity, and 95.10% sensitivity.

Although the authors are well aware of the fact that the
performance metrics reported in different studies are not
directly comparable for the reasons explained in the introduc-
tory section, we still note that all five performance metrics of
the proposed FADoTh algorithm are above 98.3%, exceed-
ing those of most of the existing threshold-based heuristic
algorithms reviewed here.

VI. CONCLUSION

We proposed a novel heuristic fall-detection algorithm based
on processing data acquired from a waist-worn motion sensor
unit. The algorithm applies double thresholding on two sim-
ple features to first identify and then classify extreme data.
We calculate fuzzy membership values of the non-extreme
data instances to the non-fall or fall classes by using fuzzy
logic techniques and assign them to the two classes accord-
ingly. Besides the proposed one, we have implemented 15
existing heuristic fall-detection algorithms and evaluated their
performances based on a sizeable benchmarking data set.
We employ subject-based cross validation for the parame-
ter selection and evaluation of all algorithms, which is more
appropriate than alternative cross-validation techniques. The
proposed algorithm is superior to all of the heuristic algo-
rithms in terms of the accuracy, sensitivity, and F-measure
performance metrics. Only one of the considered algorithms
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(Kangas-2) yields slightly higher specificity and precision met-
rics than the proposed one. Analysis of the algorithm runtimes
reveals that the runtime of the proposed algorithm is shorter
than the two alternative algorithms that yield comparable
performance measures. Besides proposing a novel heuristic
fall-detection algorithm, this work has comparative value in
that it compares the relative performances of a considerably
large number (15) of existing heuristic algorithms with the
proposed one in terms of five performance metrics and their
runtimes. We aimed to make this comparison a fair one by
implementing each of the 15 algorithms from scratch and
identifying their optimal parameter values using subject-based
multi-fold cross-validation over the same data set.

Future work may consider a similar comparative evalua-
tion among the state-of-the-art ML/DL algorithms. Developing
fall-detection algorithms that are robust to misalignment of
the sensor unit(s) is a potential research direction that can
be pursued as well. With the pervasiveness of wearables and
advancements in IoT, there is an ever growing need for systems
that can harvest their own energy. Sensor units that can harvest
the required energy from bodily motion can be developed to
tackle the battery maintenance issue in wearables. In addition,
the algorithms can be embedded in hardware for real-world
usage. Such an implementation would also enable the evalua-
tion of the algorithms based on real-world data acquired from
real non-fall and fall activities of those in the actual fall risk

group.
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