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Effective fall-detection and classification systems are vital in mitigating severe medical and economical 
consequences of falls to people in the fall risk groups. One class of such systems is based on wearable 
sensors. While there is a vast amount of academic work on this class of systems, not much effort has been 
devoted to the investigation of effective and robust algorithms and like-for-like comparison of state-of-
the-art algorithms using a sufficiently large dataset. In this article, fall-direction classification algorithms 
are presented and compared on an extensive dataset, comprising a total of 1600 fall trials. Eight machine 
learning classifiers are implemented for fall-direction classification into four basic directions (forward, 
backward, right, and left). These are, namely, Bayesian decision making (BDM), least squares method 
(LSM), k-nearest neighbor classifier (k-NN), artificial neural networks (ANNs), support vector machines 
(SVMs), decision-tree classifier (DTC), random forest (RF), and adaptive boosting or AdaBoost (AB). BDM 
achieves perfect classification, followed by k-NN, SVM, and RF. Data acquired from only a single motion 
sensor unit, worn at the waist of the subject, are processed for experimental verification. Four of the 
classifiers (BDM, LSM, k-NN, and ANN) are modified to handle the presence of data from an unknown 
class and evaluated on the same dataset. In this robustness analysis, ANN and k-NN yield accuracies 
above 96.2%. The results obtained in this study are promising in developing real-world fall-classification 
systems as they enable fast and reliable classification of fall directions.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Wearable technology is based on smart electronic devices af-
fixed to different parts of the body to detect, analyze, and transmit 
information regarding body signals such as physiological and vital 
signs or motion data. Advancements in multiple enabling tech-
nologies including embedded systems, wireless sensor networks, 
mobile and edge computing have contributed to the development 
of wearables which take part as key elements in the Internet of 
Things (IoT) [1,2]. The connectivity between sensors, electronics, 
and software enables objects to process and exchange data through 
the internet with other connected devices and systems. Such a net-
work of computing intelligence and communicating smart sensors 
allows the extraction of valuable information about the user state 
and well being.

Developing context-aware systems that can reliably monitor, 
interpret, and categorize activities of daily living (ADLs) is of 
paramount importance to improve the user’s life quality. Moni-
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toring ADLs and detecting abnormal behavior or high-risk events, 
such as falls, to support those with particular needs are chal-
lenging research issues that have received growing attention re-
cently [3,4]. A fall is defined as an unstable event where a person 
unintentionally ends up on the ground or other lower level [5]. 
Typically, fall events occur in between ADLs.

Falls are often dangerous and might lead to serious injury 
or even death if medical attention is not provided rapidly. Se-
rious medical conditions can arise due to either direct injury 
from the contact with the ground or the extended period of ly-
ing on the ground. Although the elderly face the direst danger 
related to falls, disabled people, patients with visual, gait, bal-
ance, orthopedic, and neurological problems, workers, athletes, 
mountain climbers, and children are also in the fall risk group. 
Falls may have different consequences for people in different age, 
gender, and profession groups: While they may result in seri-
ous and even life-threatening injuries to the elderly and special 
disease groups, children may experience trauma, and the profes-
sional performance of workers and athletes may be completely 
tarnished. Considering that more than 66% of people who have 
fallen once have a tendency to fall again [6], fallers are likely to 
suffer from the long-term physical, psychological, and social con-
sequences of falls. Regardless of the nature of the faller, falling 
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Fig. 1. The overall system consisting of a fall-detection and a fall-direction classification module.
is a serious, costly, and life-threatening public health problem. 
Developing reliable and effective fall-monitoring systems to miti-
gate the serious consequences of falls would improve the quality 
of life of those in the fall risk group and reduce the medical 
costs resulting from fall-related injuries [7]. This would have a 
positive effect on people, society, and even economies of coun-
tries.

Detection and classification of falls is relevant in areas such as 
ambient intelligence, assistive technology, healthcare, and sports 
science. The user’s personal safety and comfort must be main-
tained without restricting their independence and mobility, invad-
ing their privacy, and being detrimental to their welfare.

A considerable amount of academic and commercial work has 
focused on recognizing fall events as accurately and rapidly as pos-
sible. Numerous academic attempts have addressed the problem of 
fall detection, each shedding light on some aspects of this exten-
sive and difficult problem [8–10].

Having successfully detected falls with over 98.5% accuracy 
in [11], in this article, we consider fall-direction classification to 
identify the direction of a fall effectively, should a fall be de-
tected. This allows more accurate emergency first response. A fall-
direction classification module is developed that operates after the 
detection of a fall. The overall system with the fall-detection and 
fall-direction classification modules is illustrated in Fig. 1. The fall-
detection module classifies the activity data that it receives into a 
fall or ADL, employing either heuristics or machine learning (ML) 
techniques [11,12]. If a fall is detected, the fall-direction classi-
fication module is activated. This module extracts features from 
the raw data and classifies falls into one of four basic directions: 
forward, backward, right, and left. A total of eight fall-direction 
classifiers are implemented and a comparative evaluation of their 
performances is made based on data acquired from a single motion 
sensor unit worn on the user’s waist. The robustness of the module 
in handling data from falls with undefined directions is investi-
gated. The main contributions of this article are, thus, providing 
valuable insight to the relative performances of the state-of-the-art 
fall-direction classification algorithms over a common fall dataset 
as well as investigating their robustness to falls occurring in unde-
fined directions. 

The remainder of this article is organized as follows: Section 2
provides a literature survey on fall classification. The methodology 
proposed in this work as well as the results of the comparative 
evaluation of the ML classifiers in terms of confusion matrices, 
classification metrics, and run times are provided in Section 3. Ro-
bustness analysis of the classifiers is provided in Section 4 where 
the classifiers are modified to handle test instances from falls 
whose directions are not well defined and do not belong to any 
one of the four basic fall directions. Finally, Section 5 provides a 
summary and concluding remarks with possible future research di-
rections.
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2. Motivation and related work

We believe that fall-detection systems could offer more than 
solely detecting falls which involves a binary decision process. 
Once a fall is detected, identifying the direction of the fall ef-
fectively could diminish the likelihood of harm that people from 
different fall risk groups may receive. The direction of a fall can 
contain various cues regarding the nature of the fall. Forward falls 
are mostly caused by tripping, whereas lateral falls can be due to 
loss of consciousness, and backward falls can be a result of slip-
ping. The direction of a fall can also be of value in an emergency 
scenario to assess the situation and apply appropriate treatment. 
That is, knowing the direction of a fall can lead the emergency 
response team to a more accurate diagnosis of the state of the 
subject. Indeed, lateral falls are more likely to cause limb and 
neck injuries whereas backward falls are often associated with the 
head coming into contact with the ground and, therefore, are more 
dangerous. A forward fall is usually more controlled than a lat-
eral or backward fall because people are more experienced to use 
their arms in the forward position. A wearable fall-detection sys-
tem usually already includes motion sensor units which can supply 
adequate information for recognizing the directions of falls. There-
fore, once a fall is detected, a fall-detection system can provide 
invaluable fall-direction information without requiring any addi-
tional hardware. As an example, typical acceleration, angular ve-
locity, and magnetic field signals of falls corresponding to the four 
basic directions are provided in Fig. 2. The fall-direction classifica-
tion algorithms employed in this study rely on the data acquired 
from a motion sensor unit worn on the subject’s waist, which are 
sufficient for effective fall-direction classification.

Research has been conducted on classifying the type of falls in 
both the ambient assisted living field [13,14] and wearable sensors 
field [15–24] albeit much limited in quantity compared to the vast 
literature on fall detection. Almost all of these fall-classification al-
gorithms are activated after detecting a fall, except that Choi et 
al. [18] integrate fall-direction classification into the fall-detection 
algorithm. They classify the activities of the subjects into seven 
activity types: three ADLs and four falls towards the four basic di-
rections — forward, backward, right, and left. Using a novel feature 
selection method and naïve Bayesian (NB) decision making, they 
are able to classify the activity types of 670 data instances in their 
dataset with 99.4% accuracy. 

Although most wearable-sensor-based fall-direction classifica-
tion studies classify falls into the four basic directions mentioned 
above, references [16] and [25] classify falls into three directions: 
forward, backward, and lateral. Utilizing a sensor node comprising 
a tri-axial accelerometer and a barometric pressure sensor at the 
waist of the subject and using a heuristic algorithm employing the 
azimuth angle of the subject, they were able to achieve a 94.12% 
fall-direction classification accuracy on a dataset consisting of 119 
fall instances. Dinh and Struck [19] also consider the same three 
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Fig. 2. Acceleration, angular velocity, and magnetic field signals of a) forward, b) backward, c) right, and d) left falls. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)
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fall types with the addition of a collapse type. Attempting to cap-
ture four types of falls, they use accelerometer data collected from 
the waist of the subject, and transformed from Cartesian to spher-
ical coordinates. With an algorithm that utilizes fuzzy logic and 
ANNs, they achieve an average fall-direction classification sensitiv-
ity of 94% over all types of falls, on a dataset collected from five 
subjects and comprising a total of 100 fall instances.

Reference [26] categorizes falls into a broader set: forward, 
backward, right-side, left-side, blinded-forward, and blinded-back-
ward. The authors of [27] group fall types into six more specific 
categories which are fall forward and lie on the floor, fall back-
ward and lie on the floor, fall lateral right and lie on the floor, fall 
lateral right and sit up from the floor, fall lateral left and lie on the 
floor, fall lateral left and sit up from the floor.

Majority of the studies on wearable-sensor-based fall classifica-
tion use motion sensor units worn on the waist, chest, or the back 
of the subject; however, Tao et al. [20] propose a fall-direction clas-
sification system with four force-sensor resistors in both the right 
and left shoe insoles of the subjects. They attempt to classify falls 
into four directions as Choi et al. [18] do and achieve a classifica-
tion rate of 75% on a very limited dataset of only 12 fall instances.

The study by Albert et al. [17] attempts to classify falls into 
the four basic directions mentioned above using the accelerom-
eter data from a mobile phone affixed to the back of the sub-
jects. Their dataset for fall classification consists of a total of 223 
fall instances collected during laboratory experiments involving 15 
participants. They compare five different classifiers — SVM, sparse 
multi-nomial logistic regression (SMLR), NB, k-NN, and DTC — with 
a large feature set of 178 features in total, without using any fea-
ture reduction technique. They evaluate these classifiers on their 
own dataset with two different cross-validation techniques: 10-
fold and subject-based cross validation. SMLR yields the best clas-
sification performance with a classification accuracy of 99.6% with 
both types of cross validation.

Pannurat et al. [21] present a hybrid fall-monitoring algorithm 
that can detect different phases of a fall as well as classify ADLs 
using a wearable accelerometer. In particular, they implement a 
rule-based algorithm to detect the pre-impact, impact, and post-
impact phases of a fall and a ML-based ADL classifier to confirm 
falls as well as detect the occurrence of a particular type of fall: 
syncope. On a dataset comprising 16 healthy subjects perform-
ing 14 types of fall and 12 types of ADL, their method is able to 
achieve up to 99% accuracy.

The authors of [14] use depth camera data to detect and clas-
sify falls of subjects with a walking support system. Employing a 
Hidden Markov Model (HMM)-based technique, they are able to 
classify the states of the user, which correspond to three types of 
ADLs and five fall directions: the four basic directions and down-
ward (collapse). Upon detection and classification of a fall, they 
control the motion of the walking support system to achieve fall 
prevention. On a dataset collected from four healthy subjects, their 
method is able to reach a state classification accuracy of 81.0%.

Kwon et al. [22] address the problem of fall classification after 
the detection of a fall, using a chest-worn inertial measurement 
unit (IMU). Using a temporal signal angle measurements algorithm 
alongside three ML-based algorithms, their method can classify 
five different types of falls: incorrect weight shifting, trip, bump, 
loss of support, and collapse. The authors evaluate their method 
on a dataset collected from seven volunteers to show that their 
method presents accuracy values of up to 93.3%.

In [23], the authors present a comparative study of using differ-
ent cumulant features extracted from waist-worn accelerometers 
as well as four ML methods for fall detection and fall-direction 
classification into four basic directions. Processing a dataset col-
lected from six healthy subjects performing five ADLs and four 
4

types of falls, they show that with the use of cumulant features, 
SVM classifier yields better results than DTC, NB, and ANN.

Andò et al. [24] propose a system that classifies various ADLs 
as well as falls using accelerometer and gyroscope data from a 
waist-worn smartphone. Employing a threshold-based algorithm 
and multisensor data fusion, their method is able to achieve al-
most perfect sensitivity and specificity values on a dataset col-
lected from 10 healthy subjects.

In recent years, the availability of a new publicly available 
dataset of ADL and fall activities has sped up the development 
of fall-classification systems. The multimodal UP-Fall Detection 
Dataset [28] includes data collected from 11 healthy subjects via 
multiple wearable sensors, cameras, and context-aware sensors 
while performing five types of falls and six types of ADLs. The 
availability of this dataset led to the organization of “2019 Chal-
lenge UP — Multimodal Fall Detection” competition [29]. Indeed, 
this competition stirred significant interest in fall detection and 
classification, as evident in the recently published book [30]. For 
instance, Espinosa et al. [31] employ convolutional neural networks 
(CNNs) to detect and classify falls via video data in this dataset. 
Upon optimizing the CNN architecture through cross validation, 
their method classifies different activities in the dataset with 82% 
accuracy.

Despite abovementioned work, there is still need for further 
research in the fall-classification field, especially in comparison 
to the broader field of fall detection. Existing literature not only 
lacks in providing effective fall-classification systems, but would 
also benefit from an exhaustive and fair evaluation process for 
various classification methods. In this study, eight state-of-the-art 
ML classifiers are implemented for classifying falls into four basic 
directions. These classifiers are then evaluated on a common ex-
tensive dataset comprising 1600 fall instances using subject-based 
cross validation (which is more challenging than using randomized 
folds [32,33]) with parameter optimization. Their performances are 
then compared in terms of confusion matrices, performance met-
rics, and run times. Furthermore, this study contributes to the 
fall-direction classification area by conducting robustness analysis 
and modifying four of the eight ML classifiers to avoid making de-
cisions in the presence of data from an unknown class. This way, 
robustness to unknown classes is achieved. To our knowledge, pre-
vious studies on fall-direction classification do not consider such 
evaluation of their fall-direction classification algorithms and do 
not address the problem in such depth to achieve as high perfor-
mance. Moreover, the datasets used in previous studies are rather 
limited. In summary, this study adds on the existing work in the 
literature by thoroughly evaluating and comparing eight state-of-
the-art ML classifiers on a large dataset and conducting a robust-
ness analysis.

3. Fall-direction classification system

In this section, first the acquisition of the original dataset that 
contains both fall and non-fall activity types is described. Only 
the fall-type activities are considered for fall-direction classifica-
tion. Experimental methodology and the feature extraction process 
are outlined. State-of-the-art ML classifiers that are employed for 
fall-direction classification are presented. The classifiers are evalu-
ated and compared in terms of five performance metrics and their 
run times.

3.1. Description of the dataset

The dataset used in this study is made publicly available [34]
and was originally acquired by our research team [12] to evaluate 
different ML algorithms for effective and reliable fall detection. It 
was also used in the studies reported in [35–37]. The dataset was 
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Fig. 3. a)-c) Configuration of the sensor units on the subject’s body, d) MTw sensor 
unit, e) axes of a sensor unit, f) connection to a PC and the interface [12].

collected by following the protocols proposed by Abbate et al. [38]
with the approval of Erciyes University Ethics Committee to con-
duct experiments with human participants. A total of 16 young 
and healthy subjects performed the scripted activities with their 
informed written consent. The seven female subjects had an av-
erage age of 21.5, an average weight of 58.5 kg, and an average 
height of 169.5 cm, whereas the nine male subjects averaged to 24 
years in age, 67.5 kg in weight, and 172 cm in height. The subjects 
performed the activities on a soft floor mat, with protective equip-
ment on their head, wrists, elbows, and knees in order to avoid 
injuries (Fig. 3 a)-c)). 

Six wireless MTw sensor units from Xsens Technologies [39]
were affixed to the head, waist, chest, right wrist, right thigh, and 
right ankle of each subject. Each of these units consists of three 
tri-axial devices (an accelerometer, a gyroscope, and a magnetome-
ter with respective working ranges of ±120 m/s2, ±1200◦/s, and 
±1.5 Gauss) and an atmospheric pressure sensor with an operat-
ing range of 300–1100 hPa. Fig. 3 illustrates the configuration of 
the sensor units on the subject’s body as well as the axes of each 
sensor unit. Data were collected at a sampling frequency of 25 Hz 
and sent to a PC via a ZigBee connection for storage.

Each subject performed five different executions of 16 non-fall 
activities (ADLs) and 20 fall activities. A broad span of activities 
was selected, in agreement with the guidelines in [38], to cap-
ture most of the real-world activities so that the evaluation of 
developed algorithms can produce realistic outcomes. Non-fall and 
fall activities are listed separately, with a brief description of each 
activity, in Tables 1 and 2. Common ADLs as well as near-fall activ-
ities were included in the dataset in order to construct a genuine 
representation of real-life activities. Included fall activities also em-
brace a wide variety of fall types that can be encountered in real-
life scenarios. A vast dataset comprising 2880 trials was obtained: 
1280 non-fall and 1600 fall trials. Each trial of duration 10–15 s 
was recorded and stored separately.

Although the dataset contains data from six different sensor 
units worn by the subjects, only the data recorded by the waist 
sensor unit are used throughout this study. This results from an at-
tempt to render the proposed algorithms more feasible to embed 
in a hardware system, because not only the cost of a system re-
quiring six sensor units would be considerably high, such a system 
would also be obtrusive to the user. The waist is shown to be a 
commonly used region of the body, as well as the chest, to capture 
motion signals from the subjects and yields the highest accuracy 
for fall detection compared to the head and the limbs [35,36].
5

Table 1
Brief descriptions of the non-fall activities (ADLs) in the dataset.

No. Brief description Type

1 walking forward non-fall
2 walking backward non-fall
3 running non-fall
4 squatting and then standing non-fall
5 bending at about 90◦ non-fall
6 bending to pick up an object non-fall
7 walking with a limp non-fall
8 stumbling with recovery non-fall
9 ankle sprain non-fall
10 coughing/sneezing non-fall
11 standing to sitting on a hard surface (chair) non-fall
12 standing to sitting on a medium surface (sofa) non-fall
13 standing to sitting on air non-fall
14 standing to sitting on a soft surface (bed) non-fall
15 standing to lying on bed non-fall
16 lying on bed to standing non-fall

Table 2
Brief descriptions of the fall activities in the dataset, with their directions.

No. Brief description Type/Direction

17 standing to falling forward to the floor fall/forward
18 standing to falling forward to the floor with arm 

protection
fall/forward

19 standing to falling on knees fall/undefined
20 standing to falling on knees and then lying down fall/forward
21 standing to falling forward with quick recovery fall/forward
22 standing to falling forward with slow recovery fall/forward
23 standing to falling forward, ending in right 

lateral position
fall/forward

24 standing to falling forward, ending in left lateral 
position

fall/forward

25 standing to falling down on the floor, ending 
sitting

fall/undefined

26 standing to falling backward, ending lying fall/backward
27 standing to falling backward, ending in right 

lateral position
fall/backward

28 standing to falling backward, ending in left 
lateral position

fall/backward

29 standing to falling on the right side, ending lying fall/right
30 standing to falling on the right side with 

recovery
fall/right

31 standing to falling on the left side, ending lying fall/left
32 standing to falling on the left side with recovery fall/left
33 from lying, rolling out of bed and falling on the 

floor
fall/undefined

34 standing on a podium to forward fall on the floor fall/forward
35 syncope — standing to falling vertically fall/undefined
36 syncope fall, slowly slipping off a wall on the 

side
fall/undefined

It must be noted that the dataset was collected mostly from 
young and healthy subjects (as well as some middle-aged ones), 
performing simulated falls in a laboratory setting with protective 
equipment. Although it would have been preferable to have real 
fall data from elderly subjects or subjects from certain disease 
groups, current subject profiles and fall categories were chosen 
with the aim of gathering an extensive dataset [12]. Real-life fall 
data or data involving elderly subjects are extremely limited and 
difficult to collect because of the fragility of the elderly and the 
long waiting times. We believe this situation should not hinder the 
results obtained in this article because it has been reported in [40]
that real-life falls by older people bear similar characteristics to 
those of simulated falls.

A data instance is labeled as non-fall if the index of the activity 
is less than or equal to 16 (Table 1) or as fall if the index of the 
activity is greater than 16 (Table 2). Because only fall-type activi-
ties can be classified into four basic directions, only the activities 
with index greater than 16 (Table 2) are included in this evalu-
ation. In other words, assuming that the fall-detection algorithm 
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detected a fall, only the fall-type activities in the dataset will be 
used for fall-direction classification. The 20 fall types considered 
within the scope of this article (Table 2) can be grouped into five 
classes corresponding to the four basic directions and a class with 
undefined directions. In this part of the study, we only use the 15 
fall types, corresponding to the four well-defined directions, in the 
comparative evaluation. Specifically, there are eight forward, three 
backward, two right, and two left fall types. Remaining five fall 
types, with undefined directions, are reserved to be used in Sec-
tion 4.

Since each of the 15 types of falls, with well-defined directions, 
is performed five times by each of the 16 subjects, this sums up 
to a total of 1200 directional fall instances: 640 forward, 240 back-
ward, 160 right, and 160 left fall instances.

3.2. Preprocessing

Note that the sizes of the data belonging to the four classes are 
not comparable; that is, the size of the forward fall class is almost 
three times as large as the size of the backward one and even 
four times as large as the sizes of the right and left fall classes. 
This imbalance in class sizes would corrupt the performance of 
certain classifiers. For instance, such a distribution of class sizes is 
likely to cause ANN to learn the weights with a bias towards the 
forward fall class because there are more instances from that class 
and every data instance updates the weights once in each epoch in 
online backpropagation. To avoid this problem, every data instance 
in backward, right, and left fall classes are replicated and added to 
the dataset until the sizes of the classes become comparable; that 
is, the data from the backward fall class are copied twice while the 
data from the right and left classes are replicated thrice and these 
replications are added to the dataset to make the sizes of the four 
classes more or less even (640, 720, 640, and 640, respectively). 
Finally, the order of the data instances is rearranged with a random 
permutation.

As part of the preprocessing, raw data acquired from the mo-
tion sensor unit attached to the waist of the subject are filtered 
using three-point median filtering in order to eliminate the high-
frequency noise components of the signals.

3.3. Feature extraction

After preprocessing, 27 simple features are extracted from 
the whole duration of the recording of each trial at the sensor 
unit worn on the waist: minima, maxima, and the mean val-
ues of the accelerometer, gyroscope, and magnetometer data in 
the x, y, and z directions. The feature set consisting of these 
27 (= 3 sensor types × 3 axes × 3 features per axis) features is 
normalized to have zero mean and unit standard deviation.

3.4. Description of the ML classifiers considered

Eight state-of-the-art ML classifiers are implemented for com-
parative evaluation of their performances based on the dataset 
described above for fall-direction classification. These are, namely, 
Bayesian decision making (BDM), least squares method (LSM), 
k-nearest neighbor classifier (k-NN), artificial neural networks 
(ANNs), support vector machines (SVMs), decision-tree classifier 
(DTC), random forest (RF), and adaptive boosting or AdaBoost (AB). 
Some of these classifiers have parameters that need to be tuned 
for the best performance of the classifier [41]. These parame-
ters are often optimized via cross validation. In this study, we 
employ subject-based cross validation, which is described in the 
next section. The classifiers BDM, LSM, and DTC do not have any 
parameters to be optimized whereas the parameters of the remain-
ing five classifiers (k-NN, ANN, SVM, RF, and AB) are optimized 
6

through a grid search. Separate grid searches for each parameter 
are conducted and the best results are provided and used. Brief 
descriptions of the ML classifiers are given below, together with 
information on the parameter selection of five of the classifiers, 
indicating the intervals of the grid searches for the optimization of 
their parameters. Ranges of optimal parameter values for various 
folds of cross validation are also provided. More detail on these 
classifiers can be found in [41–43].

BDM BDM is based on fitting multi-variate Gaussian distributions 
to the data from each class — in our case, four classes — and 
obtaining the mean vectors and covariance matrices of these Gaus-
sian distributions. Once these parameters are obtained, the training 
process is completed and the testing phase continues with calcu-
lating the a posteriori probabilities of each test data for each class 
and assigning the test data to the class that gives the largest a pos-
teriori probability. No parameters need to be selected for BDM.

LSM In the training phase of classification with the LSM, the 
mean vectors of the data from each of the four classes are cal-
culated and stored. In testing, sums of squared distances of a test 
instance to the mean vectors of each class are calculated and the 
test instance is assigned to the class whose mean is the closest to 
it in the feature space. LSM has no parameters to be selected.

k-NN Training of the k-NN classifier comprises the storage of the 
training feature vectors. In the testing phase, the Euclidean dis-
tances of a test feature vector to every training feature vector are 
calculated and the nearest k training feature vectors are selected. 
The test feature vector is then assigned to the most frequently oc-
curring class among these k training feature vectors. The parameter 
k is optimized through a grid search, taking integer values from 1 
to 50 and an optimal k value of 1 is obtained.

ANN ANNs are networks of units called neurons, arranged in mul-
tiple layers [44]. In this study, an ANN with only a single hidden 
layer of neurons is implemented for fall-direction classification. 
The input layer (the very first layer) consists of the input neu-
rons, each of which takes the value of a feature in the feature 
vector as input; therefore, the number of neurons in the input 
layer is exactly the same as the number of features used (27). Each 
input-layer neuron is connected to the neurons in the hidden layer 
(the layer in the middle) with unique weights. At each neuron in 
the hidden layer, a non-linear activation function is applied to the 
weighted sum of the input neurons using the connection weights 
from each of the input neurons to that hidden-layer neuron. A sim-
ilar connection is then made from the hidden layer to the output 
layer (the third layer). In this study, the activation function used in 
all hidden and output neurons is a sigmoid function of the form 
g(x) = (1 + e−x)−1, where x is the weighted sum of the outputs of 
the neurons in the previous layer.

The ANN implemented in this study has four output neurons 
which use the same sigmoid activation function as the hidden-
layer neurons and can display output values ranging from 0 to 1. 
When a data instance is given as input to the ANN and the non-
linear activation function is applied to the weighted sum of the 
outputs of all neurons in the hidden layer, the output of the ANN 
is obtained. The values obtained at each one of these four out-
put neurons indicate the confidence levels of that data instance 
belonging to each one of the classes. Finally, the feature vector is 
assigned to the class with the highest confidence level. The con-
nection weights are initialized with a uniform random distribution 
between 0 and 0.2, and training is performed using iterative on-
line (stochastic) backpropagation algorithm with a learning rate of 
0.3. The algorithm is terminated when there is not a significant re-
duction in the average errors of all training data. While learning 
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the weights corresponds to determining the weights of the ANN, 
testing is equivalent to multiplying the feature values of the test 
data with the obtained weights to identify its label. The number 
of hidden-layer neurons is optimized through a grid search where 
integer values from 1 to 50 are considered. Optimal values for this 
parameter range between 19 to 46.

SVM SVMs were originally designed for binary classification and 
are based on creating a hyperplane in the feature space that has 
the maximum margin between two classes in the training data. 
However, here, we have a multi-class problem with four classes. It 
has been shown in [45] that the performances of the one-against-
one and one-against-all variants of multi-class SVM are comparable 
but the training time of the former is shorter. Therefore, we use 
the one-against-one approach. A kernel function can be utilized to 
transform the original feature space to another space, which can 
prove to be useful when the training data are not linearly sepa-
rable in the original feature space. In this study, Gaussian Radial 
Basis Function kernel, fGRBF(�x, �y) = e−γ ||�x−�y||2 is used, where γ
is the kernel parameter and �x and �y are two feature vectors. Af-
ter the transformation to another space, an optimization process 
is conducted to find the hyperplane that maximizes the margin 
between the data of each pair of classes with the penalty parame-
ter C . MATLAB’s LIBSVM toolbox is used for the implementation of 
SVM. The parameters γ and C are optimized through a grid search 
where both are ranged from 10−5 to 105 on a logarithmic scale. 
Optimal values in the intervals [10−2, 101] and [10−3, 10−1] are 
obtained for these two parameters, respectively.

DTC DTC is an ML classifier based on decision stumps: a simple 
structure applying a threshold to one feature, that is, comparing 
the value of that feature to a threshold to determine if it is higher 
or lower. At each node of a DTC, there is a decision stump to pro-
duce two branches which are then connected to two other nodes. 
Final nodes of a DTC, which do not utilize stumps (a feature and 
a threshold value) and thus do not lead to any more nodes, are 
called leafs. At the leaf nodes of a DTC, the decision about the es-
timated class of the data instance is made. The features and the 
thresholds to be used in the nodes of a DTC are selected using a 
splitting criterion in a greedy fashion; that is, the split that yields 
the optimal value of a specific criterion is selected at each node 
without considering the optimality of the overall tree structure. In 
this study, Gini impurity criterion is selected as the splitting crite-
rion, which is a measure of the frequency of incorrectly classifying 
a randomly chosen data instance when it is classified according to 
the distribution of the classes in that split. The value of this crite-
rion is zero when the nodes created by that split are pure, that is, 
all training instances in one leaf belong to a specific class. Build-
ing the tree structure from the training set until all leafs are pure 
results in overfitting to the training set. Therefore, different prun-
ing techniques are employed to prevent trees having an excessive 
depth and number of nodes. In this study, prepruning technique is 
employed to prevent DTC from overfitting, which involves reject-
ing to add any more nodes when building the tree if the size of a 
node is sufficiently small, even though the node is not pure. DTC 
does not have any parameters to optimize.

RF RF is a special classifier employing bagging (bootstrap aggre-
gating) technique: an ensemble learning technique which involves 
taking a large number of subsets from the training set and com-
bining the results of the classifiers that are trained by each of 
these subsets to obtain the final decision. As the name suggests, 
RF is based on training a large number of DTCs with the randomly 
generated subsets of the training set and combining the results of 
each classifier to end up with a final decision. Because training a 
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large number of DTCs is computationally intensive, a randomly se-
lected subset of the features is used in their training. Using the 
decisions of a large number of decision trees trained on subsets 
of the training set, RF eliminates the problem of overfitting that is 
usually pronounced with DTCs. Two parameters are optimized: the 
number of trees to be trained is ranged from 40 to 240 to observe 
that the optimal parameter values are between 120 and 200, and 
the number of features to be used in the training of trees is varied 
from 1 to 27 to obtain optimal values between 1 and 10.

AdaBoost AdaBoost is a boosting algorithm, that is, it utilizes 
the whole training set to iteratively train a large number of weak 
learners. At the first iteration, a weak learner is trained where all 
instances in the training set have equal weights. Afterwards, at 
each iteration, the weights of the training instances that are in-
correctly classified by the previous weak learner are increased to 
train a new weak learner with the updated weight distribution of 
the training set. The AB algorithm utilizes decision stumps as weak 
learners, and the number of weak learners to be used is a param-
eter that needs to be optimized. The number of weak learners is 
varied from 50 to 250 to obtain optimal parameter values between 
100 and 190.

3.5. Description of subject-based cross validation

Subject-based multi-fold cross validation with parameter op-
timization is employed in evaluating the performances of fall-
direction classification algorithms. This is preferred over randomly 
partitioned multi-fold cross validation in this work because it is 
attempted to make a more realistic evaluation of the algorithms 
where the data of the test subjects are not used in the determi-
nation of parameters. It is highly likely that any user of such a 
fall-direction classification system will not have contributed to this 
dataset, if any algorithm presented here were to be embedded in 
a hardware system for real-world use. Therefore, by excluding all 
of the data of the test subjects from the training data, we seek 
to avoid optimistic results that may be caused by the correlation 
among the data from the same subject. This selection, in turn, 
causes relatively high variations in the performance metrics of the 
eight different training and test set combinations.

Using the record of the subject index for each data instance, 
the fall dataset is partitioned into eight folds in a subject-based 
fashion: seven folds of data from one male and one female subject 
each, and one fold of data from two male subjects. A pseudocode 
of the subject-based cross validation with parameter optimization 
is given in Algorithm 1. In an outer loop, each one of these eight 
folds is separated to be used as the test set whilst the remaining 
seven folds are combined to form the training set, which will be 
used for parameter optimization and training. At each iteration of 
an intermediate loop, a grid mesh of parameter values is swept 
and specific parameter value(s) are considered. While performing 
parameter optimization, sufficiently large intervals are considered 
for the parameters to avoid obtaining optimal parameter values on 
the limits of the intervals; furthermore, the intervals of parame-
ter sweep are updated, should such a situation be encountered. 
At every iteration of the intermediate loop, training data are di-
vided into seven sub-folds of data from the same combinations of 
subjects that formed it in the first place. In an inner loop, each 
one of the seven sub-folds is taken as the test set for the pa-
rameter selection (called sub-test set to avoid confusion) and the 
remaining six sub-folds are combined to obtain the training set for 
the parameter selection (similarly, called sub-training set). In every 
iteration of the inner loop, the classifier is trained using the corre-
sponding parameter value(s) and sub-training set combination and 
tested using the corresponding parameter value(s) and sub-test set 
combination. After the inner loop is completed, the average of the 
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Algorithm 1 Pseudocode of the cross validation with parameter 
optimization.

Divide the whole dataset into eight folds with respect to the subjects
for Each Fold {Outer Loop} do

This fold is the test set
Remaining seven folds are combined to obtain the training set
Best Accuracy = 0
for Each Value of the Parameter(s) {Intermediate Loop} do

Divide the training set into seven sub-folds with respect to the subjects
for Each Sub-Fold {Inner Loop} do

This sub-fold is the sub-test set
Remaining six sub-folds are combined to obtain the sub-training set
Train the classifier with the sub-training set and the parameter value(s)
Test the classifier with the sub-test set and the parameter value(s)
Store accuracy

end for
Find the average accuracy over all seven iterations of the Inner Loop
if Average Accuracy > Best Accuracy then

Optimal Parameter Value(s) = This Parameter Value(s)
Best Accuracy = Average Accuracy

end if
end for
Train the classifier with the training set and the optimal parameter value(s)
Test the classifier with the test set and the optimal parameter value(s)
Store the confusion matrix

end for

sub-test accuracies of all seven runs is calculated and stored. At 
the end of the intermediate loop, the parameter value(s) that yield 
the highest average sub-test accuracy is selected. At the end of 
one iteration of the outer loop, the classifier is trained using the 
corresponding training set (seven of eight folds) and the selected 
parameter value(s) and tested with the corresponding test set (one 
of eight folds). The confusion matrix for each of these training and 
test combinations obtained in every iteration of the outer loop is 
stored. At the very end of the subject-based cross validation with 
parameter optimization, eight confusion matrices are obtained.

3.6. Comparative evaluation of the ML classifiers

In this section, some basic definitions and the methodology of 
the comparative study that is undertaken are given, followed by its 
results.

Fall-direction classification is a multi-class decision problem 
that requires a decision on whether a detected fall is in one of 
the considered directions. While testing the algorithms, for each 
fall direction, we may encounter four different cases:

• true positive (TP): the fall is in a particular direction and the 
classifier correctly detects that direction

• false positive (FP): the fall is not in a given direction but the 
classifier incorrectly detects that direction

• true negative (TN): the fall is not in a given direction and the 
classifier correctly does not detect that direction

• false negative (FN): the fall is in a particular direction but the 
algorithm incorrectly does not detect that direction

A FP corresponds to a false alarm and a FN corresponds to a 
missed detection in radar terminology which is a two-class (bi-
nary) classification scenario. Since fall-direction classification is a 
multi-class decision problem, one needs to define TP, FP, TN, FN 
for each class separately. Thus, we denote these four cases for spe-
cific classes with subscripts. For instance, TPF, TPB, TPR, and TPL
denote the TP cases for forward (F), backward (B), right (R), and 
left (L) fall classes, respectively. 

Having described these four types of outcomes for each class, a 
confusion matrix can be constructed as in Fig. 4, where F, B, R, and 
L represent the total numbers of true falls in the forward, back-
ward, right, and left directions, respectively. Furthermore, F′ , B′ , R′ , 
and L′ represent the total numbers of detected falls in the same 
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Fig. 4. A 4 × 4 confusion matrix for fall-direction classification.

four directions, respectively. Specifically, based on the definitions 
of TP, FP, TN, FN and the confusion matrices in Fig. 4, the following 
relationships are derived for the forward fall (F) class:

TPF = FF′

FPF = F′ − FF′ = BF′ + RF′ + LF′

TNF = B − BF′ + R − RF′ + L − LF′

FNF = F − FF′ = FB′ + FR′ + FL′ (1)

These can similarly be defined for the other fall classes.
Based on the aforementioned fundamental definitions, five per-

formance metrics (accuracy, precision, sensitivity, specificity, and 
F -measure) are calculated. In particular, accuracy of a fall-direction 
classifier is calculated as the ratio of correctly classified falls to all 
fall instances:

Accuracy = FF′ + BB′ + RR′ + LL′

F + B + R + L
(2)

Moreover, precision, sensitivity, and specificity metrics are cal-
culated separately for each class using the definitions of the four 
outcomes above. Below, the definitions of these metrics are given 
for the forward fall (F) class and their definitions for the other 
three classes follow similarly:

PrecisionF = TPF

TPF + FPF
= FF′

F′

SensitivityF = TPF

TPF + FNF
= FF′

F
(3)

SpecificityF = TNF

TNF + FPF
= B − BF′ + R − RF′ + L − LF′

B + R + L

Obviously, there is an inverse relationship between sensitivity 
and specificity metrics. The FP and FN ratios can be easily obtained 
in terms of specificity and sensitivity: FP ratio = 1 −Specificity and 
FN ratio = 1 − Sensitivity. This indicates a compromise between an 
aggressive algorithm that may incorrectly classify many falls into 
a particular direction, and a finicky algorithm that may mistakenly 
not classify many falls into a particular direction.

After computing the class-based precision, sensitivity, and 
specificity values, the values of these metrics for the overall fall-
direction classification algorithm are calculated as the arithmetic 
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Table 3
Confusion matrices in fall-direction classification.

BDM: classified

tr
ue

⎡
⎢⎢⎣

640 0 0 0
0 720 0 0
0 0 640 0
0 0 0 640

⎤
⎥⎥⎦

LSM: classified

tr
ue

⎡
⎢⎢⎣

616 0 15 9
0 696 3 21
0 8 632 0
0 0 0 640

⎤
⎥⎥⎦

k-NN: classified

tr
ue

⎡
⎢⎢⎣

628 0 9 3
0 720 0 0
0 0 640 0
0 0 0 640

⎤
⎥⎥⎦

ANN: classified

tr
ue

⎡
⎢⎢⎣

616 4 13 7
0 717 0 3
0 4 636 0
4 0 0 636

⎤
⎥⎥⎦

SVM: classified

tr
ue

⎡
⎢⎢⎣

629 0 9 2
0 720 0 0
0 4 636 0
0 0 0 640

⎤
⎥⎥⎦

DTC: classified

tr
ue

⎡
⎢⎢⎣

621 5 1 13
3 687 12 18
4 16 620 0

12 32 0 596

⎤
⎥⎥⎦

RF: classified

tr
ue

⎡
⎢⎢⎣

640 0 0 0
0 717 0 3
0 4 636 0
0 0 0 640

⎤
⎥⎥⎦

AB: classified

tr
ue

⎡
⎢⎢⎣

619 0 1 20
0 717 0 3
4 24 612 0
4 4 0 632

⎤
⎥⎥⎦

mean of their class-based values. Therefore, the overall precision, 
sensitivity, and specificity of the fall-direction classification algo-
rithm are given as:

Precision = 1

4
(PrecisionF + PrecisionB + PrecisionR + PrecisionL)

Sensitivity = 1

4
(SensitivityF + SensitivityB + SensitivityR

+ SensitivityL) (4)

Specificity = 1

4
(SpecificityF + SpecificityB + SpecificityR

+ SpecificityL)

As the last performance metric, F -measure of the fall-classifi-
cation algorithm is obtained by multiplying the harmonic mean of 
precision and sensitivity metrics by two:

F -measure = 2 · Precision · Sensitivity

Precision + Sensitivity
(5)

Note that we have used class-based precision, sensitivity, and 
specificity metrics averaged over the four classes since the sizes 
of the classes are comparable, albeit not exactly the same. The F -
measure metric in Equation (5) provides a combined performance 
measure of a system using the two metrics that have an inverse 
relationship. 

Eight 4 × 4 confusion matrices that are obtained at each itera-
tion of the outer loop of the cross-validation process are summed 
up and shown in Table 3 to reflect the overall performance of each 
classifier. Upon inspecting this table, one can see that forward falls 
are mostly confused with right and left falls by LSM, k-NN, ANN, 
SVM, DTC, and AB classifiers. Furthermore, LSM, ANN, RF, and AB 
can classify falls from the backward direction class into the left di-
rection class. DTC further confuses falls in the backward direction 
with those to the right and to the left. Although some misclassi-
fications occur, no major problems are observed in Table 3 other 
than those mentioned.

Performance metrics of the eight ML classifiers are calculated 
separately for each of the four classes as described above and 
are averaged over all four classes. The values of the five perfor-
mance metrics for the eight ML classifiers are tabulated in Table 4
in mean plus/minus one standard deviation format. It is evident 
from this table that, with the selected feature set, BDM achieves 
perfect classification on the fall dataset with subject-based cross 
validation. This result is highly satisfactory, especially consider-
ing the size of the dataset; that is, BDM classifies the directions 
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of all fall instances correctly without needing any parameter op-
timization and any complex features. The performances of three 
other classifiers are also very good. Namely, the k-NN classifier 
follows BDM with the average values of all performance metrics 
being above 99.5%. Similarly, SVM and RF yield performance met-
rics above 99.4%, only within 0.1% of k-NN. Although their perfor-
mances are not comparable to the top three ML classifiers, ANN 
and LSM produce performance metrics above 98.6% and 97.8%, re-
spectively. Among the eight classifiers, the use of DTC results in the 
lowest average value and the largest standard deviation for each 
of the performance metrics. The overall high performance of the 
ML classifiers considered here indicates that the extracted features 
bear adequate information for reliable and accurate fall-direction 
classification.

3.7. Run-time analysis of the ML classifiers

All eight ML classifiers are trained and tested on MATLAB ver-
sion R2015a installed on a computer with Intel® Core™ i5-3230M 
CPU running at 2.60 GHz, 4.00 GB RAM, and Windows 7 Home Pre-
mium 64-bit operating system while no other external application 
or program is running.

To determine the run times of the algorithms, subject-based 
cross validation of each algorithm is executed without parameter 
optimization. First, the whole dataset is partitioned into eight folds 
of data based on subject pairs as before, and in a loop, each one 
of these eight folds is used as test data while the remaining seven 
are combined to obtain the training data. At each iteration of this 
loop, the classifiers are trained using the corresponding training 
data and fixed parameter value(s) and then tested with the corre-
sponding test data and the same parameter value(s). This process 
is equivalent to executing only the outer loop in Algorithm 1. Both 
the training and testing times of the classifiers are recorded at each 
iteration. Training, testing, and total run times of the eight ML clas-
sifiers run for fall-direction classification are given in Table 5 in 
mean plus/minus one standard deviation format for the classifica-
tion of a single data instance. The total run time is the sum of the 
training and testing times. 

It can be observed from Table 5 that the total run time of the 
LSM classifier is significantly lower than those of the other algo-
rithms. In fact, it is nearly as low as one tenth of the next fastest 
algorithm, k-NN. Note that k-NN is the only classifier that does 
not require any training. Average total run times of k-NN and SVM 
are on a par with each other and significantly lower than the to-
tal run times of BDM, ANN, DTC, RF, and AB. Although the total 
run time of ANN is over 70 times more than that of LSM, it cor-
responds to an average of 2.72 ms for the classification of a single 
data instance. We believe that this run time is feasible for real-
world operation, especially considering that such an algorithm will 
be pre-trained in such a scenario. The training times are acceptable 
for all classifiers since training will be executed only once. How-
ever, the training times would increase if more classes are added. 
Despite displaying a high degree of performance, RF displays a to-
tal run time that is nearly as much as four times that of ANN. 
Furthermore, AB requires even more time to train and test a single 
data instance, because it uses all 27 features in each weak classi-
fier that it trains. Considering the relatively large total run time of 
DTC, the run-time results of these two algorithms that use a large 
number of DTCs are expected to be slow.

The authors of a fall-detection and localization study [46] com-
pare the average training and testing times (as well as the perfor-
mance metrics) of k-NN, SVM, and Gaussian Process (GP) classifiers 
implemented on Raspberry Pi programmable boards. In that study, 
80% of the data from six subjects is used for training and 20% used 
for testing. The evaluation process is conducted on five different 
Raspberry Pis for each classifier. Our results confirm those in [46]
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Table 4
Results of the comparison for fall-direction classification (Acc: accuracy, Pr: precision, Se: sensitivity, Sp: speci-
ficity, F -m: F -measure).

Classifier Acc (%) Pr (%) Se (%) Sp (%) F -m (%)

BDM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
LSM 97.88 ± 1.85 98.04 ± 1.66 97.92 ± 1.83 97.88 ± 1.84 97.98 ± 1.74
k-NN 99.55 ± 1.17 99.57 ± 1.10 99.53 ± 1.20 99.54 ± 1.17 99.55 ± 1.15
ANN 98.68 ± 2.10 98.77 ± 1.91 98.65 ± 2.17 98.67 ± 2.11 98.71 ± 2.04
SVM 99.43 ± 1.20 99.47 ± 1.12 99.41 ± 1.23 99.43 ± 1.20 99.44 ± 1.18
DTC 95.61 ± 3.67 96.10 ± 3.20 95.61 ± 3.72 95.61 ± 3.68 95.86 ± 3.45
RF 99.43 ± 0.89 99.47 ± 0.83 99.43 ± 0.92 99.43 ± 0.90 99.45 ± 0.87
AB 97.73 ± 2.52 97.94 ± 2.37 97.67 ± 2.61 97.72 ± 2.53 97.80 ± 2.48
Table 5
Run-time results for fall-direction classification.

Classifier Training (μs) Testing (μs) Total (μs)

BDM 3.05 ± 2.58 1004.39 ± 66.21 1007.44 ± 65.79
LSM 0.51 ± 0.19 36.53 ± 1.88 37.04 ± 1.98
k-NN — 327.93 ± 374.67 327.93 ± 374.67
ANN 2605.01 ± 84.74 115.50 ± 14.51 2720.51 ± 92.19
SVM 210.43 ± 27.69 135.92 ± 261.27 346.35 ± 288.18
DTC 362.95 ± 316.11 587.93 ± 1127.23 950.89 ± 1438.55
RF 10170.05 ± 300.71 230.55 ± 378.49 10400.59 ± 671.46
AB 41504.24 ± 4736.56 24810.02 ± 42173 66314.32 ± 5063.93

showing that the training time of k-NN is significantly shorter than 
that of SVM; however, it suffers from a considerably larger testing 
time.

4. Robustness analysis of fall-direction classification system

In the previous section, the performances of eight fall-direction 
classification algorithms are evaluated in classifying detected falls 
into four basic directions. Such an evaluation implicitly makes the 
assumption that all fall types are associated with one of these four 
well-defined directions. However, falls may not always have such 
well-defined directions in the way they occur, for instance, syn-
cope (fainting) and falling out of bed. A fall-direction classification 
system that only classifies a fall instance into one of these four di-
rections would erroneously classify such falls into one of the four 
directions regardless. An effective fall-direction classification sys-
tem should be able to assign the falls that do not belong to any of 
the four basic directions to the unknown (zero or null) class. How-
ever, the standard implementations of the eight ML classifiers that 
are considered in this study do not provide such functionality.

Thus, we next address the problem of fall-direction classifica-
tion in the presence of test data from an unknown class. To our 
knowledge, such an investigation has not been considered previ-
ously in the fall-direction classification realm. The standard im-
plementations of four of the eight ML classifiers are modified to 
handle feature vectors from an unknown class and included in a 
robustness analysis where test instances from falls whose direc-
tions do not belong to any one of the four basic directions are also 
used.

4.1. Descriptions of the modified ML classifiers

Modifications to the standard implementations of BDM, LSM, 
k-NN, and ANN classifiers are briefly described below. Note that 
BDM was the best performing classifier in Section 3 followed by k-
NN in terms of the accuracy criterion. Therefore, two out of the 
selected four classifiers had top-ranking performance. ANN was 
the fifth best performing classifier. Including the remaining four 
classifiers in this part of the study would have required extensive 
modifications to their training and testing routines and, therefore, 
not considered within the scope of this study.
10
BDM Modifications are made both to the training and the test 
phases of the BDM classifier. After calculating the mean vectors 
and the covariance matrices of the classes, a posteriori probabilities 
of each training instance for all classes are obtained in a loop. For 
each class, the minimum a posteriori probability among all training 
instances is stored to obtain a 4 × 1 threshold vector of minimum 
a posteriori probability values for each class. In the test phase, if 
the maximum a posteriori probability of a test instance to one of 
the four classes does not exceed the average of the 4 × 1 threshold 
vector over the four classes, the test instance is assigned to the 
unknown class.

LSM Similar to the BDM classifier, both the training and the test 
phases of the LSM classifier are modified. Upon calculating the 
mean vectors of the classes in the training phase, the sum of the 
squared Euclidean distance of every training instance to the mean 
vector of the class that it belongs to is calculated. A 4 × 1 thresh-
old vector is constructed where each element of the vector is the 
maximum of the sum of squared distances for a particular class. 
In the test phase, after the classification of each test instance, the 
sum of the squared Euclidean distances from the test instance to 
the mean vector of the class that it is assigned to is compared to 
the minimum value in the 4 × 1 threshold vector. If the obtained 
sum of squared distance is greater than this threshold value, the 
test instance is assigned to the unknown class.

k-NN A distance threshold similar to the modified LSM is also 
employed in the k-NN classifier. After storing the training instances 
in the training phase, Euclidean distances from every training in-
stance to the others of the same class are calculated. The maxi-
mum distance from one training instance to another of the same 
class is then stored for each class. A 4 × 1 distance threshold vec-
tor consisting of these maximum distances for all classes is stored 
to terminate the training process. In the standard test procedure 
of the k-NN classifier, after the label of the test instance is esti-
mated as the most frequent class among its k nearest neighbors, 
the distance from the test instance to the nearest neighbor is cal-
culated and compared to the average of the four 4 × 1 distance 
threshold vectors. If the nearest distance is greater than this dis-
tance threshold, the test instance is assigned to the unknown class. 
A grid search for k from 1 to 50 is conducted for parameter op-
timization in the modified subject-based cross-validation process 
that will be explained in Section 4.2, and the optimum k value of 
1 is obtained for each fold.

ANN Recall from Section 3.4 that the values obtained at each one 
of the four output neurons indicate the confidence levels of that 
data instance belonging to each one of the four classes. To make 
the ANN classifier capable of recognizing an unknown fall type, a 
threshold on the confidence level is set. After obtaining the con-
fidence levels of class memberships of each test data through the 
standard test procedure of ANN, the maximum of these confidence 
levels is compared to the confidence threshold. If it is less than 
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the confidence threshold, the data instance is assigned to the un-
known class. Given that the output values range between 0 and 
1, an empirical confidence threshold value of 0.85 is employed. 
The number of hidden-layer neurons is considered as a parameter 
of the modified ANN and optimized in the subject-based cross-
validation process. This parameter is varied from 1 to 50 and the 
optimal parameter values are found to be in the interval of [2, 22]
for the eight folds.

These four modified ML classifiers are evaluated on the fall 
dataset that is described in Section 3.1. In that section, only 15 
of a total of 20 fall types are used and the remaining five types of 
falls are excluded from the evaluation of the standard fall-direction 
classification algorithms. The remaining five fall types that are la-
beled as “undefined” in Table 2 do not have well-defined direc-
tions unlike the other fall types that belong to one of the four 
basic directions. These five fall types are, therefore, used here as 
an unknown (zero or null) fall class to evaluate the robustness of 
the four modified fall-direction classification algorithms. Excluded 
from any training or validation set in parameter selection, these 
fall types are to be used only in the test procedure of already 
trained classifiers with already optimized parameters. Since there 
is a total of 400 fall instances in this unknown class, the whole set 
of 1600 (= 1200 + 400) fall instances is used in this part of the 
study.

4.2. Description of the modified subject-based cross validation

The same subject-based cross validation with parameter opti-
mization that is employed in Section 3.5 is also used here with 
a minor modification. After dividing the folds and sub-folds of 
data and separating the training, test, sub-training, and sub-test 
sets corresponding to every iteration of the three (inner, inter-
mediate, and outer) loops, data from the unknown class are also 
segmented into eight folds based on the same pair-wise subject 
combinations used previously. Every fold of data from the un-
known class is then added to the test set of the corresponding 
iteration. At the end, every training set in the outer loop con-
sists of a total of 1050 (= 15 fall types × 14 subjects × 5 trials) 
data instances whilst every test set in the outer loop consists of 
a total of 200 (= 20 fall types × 2 subjects × 5 trials) data in-
stances.

4.3. Comparative evaluation of the modified ML classifiers

Here, we compare the classification performance of the modi-
fied ML classifiers in the presence of data from an unknown class 
in terms of confusion matrices and performance metrics described 
previously. The 5 ×5 confusion matrices are calculated in the same 
way as in Section 3.6 with the addition of an unknown direc-
tion class to the fifth row and column. Consequently, the defini-
tions and calculations of the five performance metrics described 
in that section are valid as well, with the addition of the new 
class.

The overall confusion matrices of the four modified classifiers 
that are obtained by summing up the eight 5 × 5 confusion matri-
ces acquired in the outer loop of the cross-validation process are 
provided in Table 6. This table suggests that there is an obvious 
trade-off to be made between detecting the falls in the four basic 
directions correctly and rejecting to make a decision when a data 
instance from the unknown class is encountered. Modified BDM, 
k-NN, and ANN classifiers exhibit a strict approach in rejecting to 
make a decision; that is, they classify a considerable number of 
falls that actually belong to one of the four basic directions into the 
unknown class. However, these three classifiers correctly classify 
the data that belong to the unknown class with high accuracies. 
Modified LSM algorithm, on the other hand, displays a less strict 
11
Table 6
Confusion matrices in the robustness analysis.

BDM: classified

tr
ue

⎡
⎢⎢⎢⎢⎣

592 0 0 0 48
0 690 0 0 30
0 0 580 0 60
0 0 0 624 16
6 7 0 0 387

⎤
⎥⎥⎥⎥⎦

LSM: classified

tr
ue

⎡
⎢⎢⎢⎢⎣

615 0 0 1 24
0 693 3 15 9
0 8 616 0 16
0 0 0 636 4

11 95 0 28 266

⎤
⎥⎥⎥⎥⎦

k-NN: classified

tr
ue

⎡
⎢⎢⎢⎢⎣

572 0 0 0 68
0 711 0 0 9
0 0 620 0 20
0 0 0 632 8
0 7 0 2 391

⎤
⎥⎥⎥⎥⎦

ANN: classified

tr
ue

⎡
⎢⎢⎢⎢⎣

599 0 0 0 41
0 708 0 0 12
0 0 612 0 28
0 0 0 620 20
1 2 2 3 392

⎤
⎥⎥⎥⎥⎦

approach in rejecting to make a decision. It shows high accuracy 
in classifying fall instances that belong to one of the four basic 
directions; however, it does not show acceptable performance in 
rejecting to make a decision in the presence of data from an un-
known class.

After obtaining the confusion matrices for each of the eight 
folds, the five performance metrics are calculated in the same way 
as in Section 3.6. The results of the robustness analysis for the four 
modified fall-direction classification algorithms are provided in Ta-
ble 7 in mean plus/minus one standard deviation format.

The performance metrics of the modified fall-direction classifi-
cation algorithms in the presence of data from an unknown class 
are all above 90.8%. ANN achieves the highest average values in all 
performance metrics, followed by k-NN, which is within only 0.4% 
of ANN in all of the performance metrics. BDM and LSM classifiers 
follow the performances of these two classifiers with performance 
values above 94.5% and 90.9%, respectively. Comparing the results 
in this table with those in Table 4, one can observe a significant 
decline in the overall performances of the classifiers. This decline 
is caused by not only the fall instances with a well-defined di-
rection that are assigned to the unknown class but also the fall 
instances from the unknown class that are classified into one of 
the four directions. This performance degradation, however, is not 
dire considering the difficult nature of detecting data from the 
unknown class with simple modifications to the standard ML clas-
sifiers.

It is also evident in Table 7 that the variations (standard de-
viations) in the results of the performance metrics over different 
combinations of training and test data are larger than those in the 
previous case. Overall, satisfactory results are obtained in the pres-
ence of test data from an unknown class, where the average values 
of all performance metrics are above 90.9%.

4.4. Run-time analysis of the modified ML classifiers

The run times of the modified classifiers are also measured and 
recorded. Because of the additions in the training and test phases 
of the classifiers, we expect their training, testing, and total times 
to be considerably larger than those in Table 5.

The same procedure as the one in Section 3.7 is followed to 
obtain the training, testing, and total times of the four modified 
fall-direction classification algorithms. The MATLAB version and 
the specifications of the computer used for running the algorithms 
are the same. The same subject-based cross validation without pa-
rameter optimization as described in Section 3.7 is employed here, 
albeit with a minor modification: the test data belonging to the 
unknown class is also segregated into eight folds according to 
the same two-subject combinations as used previously and each 
of these folds of additional test data from the unknown class is 
then added to the test data of the corresponding iteration of the 
loop. Training, testing, and total run times of the four modified 
fall-direction classification algorithms are presented in Table 8 in 
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Table 7
Results of the robustness analysis (Acc: accuracy, Pr: precision, Se: sensitivity, Sp: specificity, F -m: F -
measure).

Classifier Acc (%) Pr (%) Se (%) Sp (%) F -m (%)

BDM 94.51 ± 4.68 94.70 ± 3.73 94.64 ± 4.48 94.51 ± 4.67 94.67 ± 4.10
LSM 92.96 ± 2.05 92.83 ± 2.62 90.89 ± 2.11 92.87 ± 2.05 91.85 ± 2.32
k-NN 96.25 ± 2.78 95.84 ± 2.55 96.30 ± 2.78 96.25 ± 2.78 96.07 ± 2.66
ANN 96.41 ± 3.11 96.20 ± 3.05 96.62 ± 2.95 96.42 ± 3.11 96.41 ± 3.00
Table 8
Run-time results for the robustness analysis.

Classifier Training (ms) Testing (ms) Total (ms)

BDM 1.438 ± 0.016 1.359 ± 0.017 2.797 ± 0.033
LSM 0.054 ± 0.001 0.061 ± 0.002 0.144 ± 0.003
k-NN 2.554 ± 0.010 2.223 ± 0.032 4.777 ± 0.039
ANN 4.734 ± 0.183 0.181 ± 0.039 4.915 ± 0.188

mean plus/minus one standard deviation format and for the clas-
sification of a single data instance.

It is observed in Table 8 that there are significant changes in the 
run times and especially in the training times of the fall-direction 
classification algorithms when compared to the run times in Ta-
ble 5. The total run time of the ANN classifier in this table is 
almost twice as much as that in Table 5, whereas the increase 
is almost three times in BDM, four times in LSM, and more than 
14 times in k-NN. These differences are mainly caused by the 
fact that every training instance needs to be considered in the 
training phase in order to obtain the thresholds. For instance, the 
significant increase in the run times of k-NN when compared to 
the former case is a result of calculating the distance from ev-
ery training instance to every other training instance of the same 
class, meaning that it considers all combinations of pairs within all 
classes in the training set. On the whole, the rankings of the total 
run times of the modified fall-direction classification algorithms 
are the inverse of the rankings of their performances in the ro-
bustness analysis. That is, the best performing algorithm, ANN, is 
the slowest in Table 8, which is followed by k-NN, BDM, and LSM, 
which are the second, third, and fourth best performing algorithms 
in the robustness analysis, respectively. Even with a total run time 
of nearly 5 ms for the classification of a single data instance, ANN 
yields satisfactory results in the robustness analysis and it can be 
implemented in a real-world fall-detection and classification sys-
tem.

5. Summary and conclusions

In the first part of this fall-direction classification study, eight 
different ML classifiers are implemented to classify fall actions 
(with well-defined directions) into four basic directions. A set of 
27 simple features extracted from the motion sensor unit data ac-
quired from the waist of the subject is used for this purpose. After 
optimizing the parameters of the classifiers through a grid search, 
the classifiers are evaluated over 1200 directional fall instances us-
ing subject-based cross validation.

BDM classifies all test instances correctly, achieving 100% clas-
sification rate, followed by k-NN, SVM, and RF with all of their 
average performance metrics being above 99.4%. A comparison of 
the run times of the considered classifiers indicates that the ma-
jority of the selected classifiers can train and test a single data 
instance in about 1 ms time. Besides, the four best performing al-
gorithms (BDM, k-NN, SVM, and RF) achieve smaller total average 
run times than AB.

The results indicate that BDM, k-NN, SVM, and RF can be 
used for superior fall-direction classification in real-world scenar-
12
ios where it is necessary to consider the robustness of classifiers 
to data from an unknown class.

In the second part of this study, BDM, LSM, k-NN, and ANN 
classifiers are modified to handle the presence of data from an 
unknown class. Robustness analysis is conducted where 400 test 
instances belonging to an unknown fall-direction class are included 
in the test set to evaluate the performance of the modified clas-
sifiers. The highest average classification accuracies of 96.4% and 
96.3% are achieved by the ANN and k-NN classifiers, respectively. 
The modified algorithms attain robustness to test data from an 
unknown class at the expense of considerably larger run times 
than those in the first part of the study. Besides, the achieved 
performance levels in the robustness analysis are not compara-
ble with the perfect classification obtained in the classification of 
falls into four basic directions; however, the results obtained in 
this robustness analysis bear considerable importance in the eval-
uation of the fall-direction classification algorithms in a realistic 
scenario. This robustness analysis is especially valuable since to 
our knowledge, this is the first study in the fall-classification area 
to consider the presence of data from an unknown class, mod-
ify the classifiers as needed, and analyze their robustness. Such 
an analysis is not necessary in a fall-detection study where bi-
nary decisions are made between fall and non-fall activities with-
out the involvement of unknown classes. Classifying the direc-
tion of a fall, however, is a type of multi-class activity recogni-
tion process where this kind of investigation happens to be cru-
cial.

Further research can be conducted towards benchmarking var-
ious fall-classification methods on assorted datasets. Such a study 
would considerably increase the real-world applicability of the im-
plemented methods. Although the dataset used in this study is 
extensive in size, it consists of segmented data collected during 
laboratory experiments from young and healthy subjects. Eval-
uating the algorithms based on real-world data acquired from 
middle-aged and/or elderly subjects would be highly beneficial. 
Embedding the algorithms in hardware for real-world use would 
facilitate the comparative evaluation based on such real-world 
data.

Although the fall-direction classification system developed in 
this article exhibits satisfactory performance, it is susceptible to 
the misalignment of the sensor unit. Attaining invariance to the 
position and orientation of the sensor units has been investigated 
in [1,2] for daily activity recognition and can be extended to cover 
fall detection and classification as well. Another promising future 
direction in fall classification is combining information from the 
other sensory elements of IoT which are not body-worn but em-
bedded in a smart environment.
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