
Digital Signal Processing 125 (2022) 103129

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Classification of fall directions via wearable motion sensors

Mustafa Şahin Turan a, Billur Barshan b,∗
a Institute of Mechanical Eng., École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
b Dept. of Electrical and Electronics Eng., Bilkent University, Bilkent, TR-06800 Ankara, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 7 June 2021

Keywords:
Wearables
Wearable sensors
Motion sensors
Fall-direction classification
Machine learning classifiers
Assistive technology

Effective fall-detection and classification systems are vital in mitigating severe medical and economical
consequences of falls to people in the fall risk groups. One class of such systems is based on wearable
sensors. While there is a vast amount of academic work on this class of systems, not much effort has been
devoted to the investigation of effective and robust algorithms and like-for-like comparison of state-of-
the-art algorithms using a sufficiently large dataset. In this article, fall-direction classification algorithms
are presented and compared on an extensive dataset, comprising a total of 1600 fall trials. Eight machine
learning classifiers are implemented for fall-direction classification into four basic directions (forward,
backward, right, and left). These are, namely, Bayesian decision making (BDM), least squares method
(LSM), k-nearest neighbor classifier (k-NN), artificial neural networks (ANNs), support vector machines
(SVMs), decision-tree classifier (DTC), random forest (RF), and adaptive boosting or AdaBoost (AB). BDM
achieves perfect classification, followed by k-NN, SVM, and RF. Data acquired from only a single motion
sensor unit, worn at the waist of the subject, are processed for experimental verification. Four of the
classifiers (BDM, LSM, k-NN, and ANN) are modified to handle the presence of data from an unknown
class and evaluated on the same dataset. In this robustness analysis, ANN and k-NN yield accuracies
above 96.2%. The results obtained in this study are promising in developing real-world fall-classification
systems as they enable fast and reliable classification of fall directions.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Wearable technology is based on smart electronic devices af-
fixed to different parts of the body to detect, analyze, and transmit
information regarding body signals such as physiological and vital
signs or motion data. Advancements in multiple enabling tech-
nologies including embedded systems, wireless sensor networks,
mobile and edge computing have contributed to the development
of wearables which take part as key elements in the Internet of
Things (IoT) [1,2]. The connectivity between sensors, electronics,
and software enables objects to process and exchange data through
the internet with other connected devices and systems. Such a net-
work of computing intelligence and communicating smart sensors
allows the extraction of valuable information about the user state
and well being.

Developing context-aware systems that can reliably monitor,
interpret, and categorize activities of daily living (ADLs) is of
paramount importance to improve the user’s life quality. Moni-

* Corresponding author.
E-mail addresses: mustafa.turan@epfl.ch (M.Ş. Turan), billur@ee.bilkent.edu.tr

(B. Barshan).
https://doi.org/10.1016/j.dsp.2021.103129
1051-2004/© 2021 Elsevier Inc. All rights reserved.
toring ADLs and detecting abnormal behavior or high-risk events,
such as falls, to support those with particular needs are chal-
lenging research issues that have received growing attention re-
cently [3,4]. A fall is defined as an unstable event where a person
unintentionally ends up on the ground or other lower level [5].
Typically, fall events occur in between ADLs.

Falls are often dangerous and might lead to serious injury
or even death if medical attention is not provided rapidly. Se-
rious medical conditions can arise due to either direct injury
from the contact with the ground or the extended period of ly-
ing on the ground. Although the elderly face the direst danger
related to falls, disabled people, patients with visual, gait, bal-
ance, orthopedic, and neurological problems, workers, athletes,
mountain climbers, and children are also in the fall risk group.
Falls may have different consequences for people in different age,
gender, and profession groups: While they may result in seri-
ous and even life-threatening injuries to the elderly and special
disease groups, children may experience trauma, and the profes-
sional performance of workers and athletes may be completely
tarnished. Considering that more than 66% of people who have
fallen once have a tendency to fall again [6], fallers are likely to
suffer from the long-term physical, psychological, and social con-
sequences of falls. Regardless of the nature of the faller, falling

https://doi.org/10.1016/j.dsp.2021.103129
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2021.103129&domain=pdf
mailto:mustafa.turan@epfl.ch
mailto:billur@ee.bilkent.edu.tr
https://doi.org/10.1016/j.dsp.2021.103129

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129

Fig. 1. The overall system consisting of a fall-detection and a fall-direction classification module.
is a serious, costly, and life-threatening public health problem.
Developing reliable and effective fall-monitoring systems to miti-
gate the serious consequences of falls would improve the quality
of life of those in the fall risk group and reduce the medical
costs resulting from fall-related injuries [7]. This would have a
positive effect on people, society, and even economies of coun-
tries.

Detection and classification of falls is relevant in areas such as
ambient intelligence, assistive technology, healthcare, and sports
science. The user’s personal safety and comfort must be main-
tained without restricting their independence and mobility, invad-
ing their privacy, and being detrimental to their welfare.

A considerable amount of academic and commercial work has
focused on recognizing fall events as accurately and rapidly as pos-
sible. Numerous academic attempts have addressed the problem of
fall detection, each shedding light on some aspects of this exten-
sive and difficult problem [8–10].

Having successfully detected falls with over 98.5% accuracy
in [11], in this article, we consider fall-direction classification to
identify the direction of a fall effectively, should a fall be de-
tected. This allows more accurate emergency first response. A fall-
direction classification module is developed that operates after the
detection of a fall. The overall system with the fall-detection and
fall-direction classification modules is illustrated in Fig. 1. The fall-
detection module classifies the activity data that it receives into a
fall or ADL, employing either heuristics or machine learning (ML)
techniques [11,12]. If a fall is detected, the fall-direction classi-
fication module is activated. This module extracts features from
the raw data and classifies falls into one of four basic directions:
forward, backward, right, and left. A total of eight fall-direction
classifiers are implemented and a comparative evaluation of their
performances is made based on data acquired from a single motion
sensor unit worn on the user’s waist. The robustness of the module
in handling data from falls with undefined directions is investi-
gated. The main contributions of this article are, thus, providing
valuable insight to the relative performances of the state-of-the-art
fall-direction classification algorithms over a common fall dataset
as well as investigating their robustness to falls occurring in unde-
fined directions.

The remainder of this article is organized as follows: Section 2
provides a literature survey on fall classification. The methodology
proposed in this work as well as the results of the comparative
evaluation of the ML classifiers in terms of confusion matrices,
classification metrics, and run times are provided in Section 3. Ro-
bustness analysis of the classifiers is provided in Section 4 where
the classifiers are modified to handle test instances from falls
whose directions are not well defined and do not belong to any
one of the four basic fall directions. Finally, Section 5 provides a
summary and concluding remarks with possible future research di-
rections.
2

2. Motivation and related work

We believe that fall-detection systems could offer more than
solely detecting falls which involves a binary decision process.
Once a fall is detected, identifying the direction of the fall ef-
fectively could diminish the likelihood of harm that people from
different fall risk groups may receive. The direction of a fall can
contain various cues regarding the nature of the fall. Forward falls
are mostly caused by tripping, whereas lateral falls can be due to
loss of consciousness, and backward falls can be a result of slip-
ping. The direction of a fall can also be of value in an emergency
scenario to assess the situation and apply appropriate treatment.
That is, knowing the direction of a fall can lead the emergency
response team to a more accurate diagnosis of the state of the
subject. Indeed, lateral falls are more likely to cause limb and
neck injuries whereas backward falls are often associated with the
head coming into contact with the ground and, therefore, are more
dangerous. A forward fall is usually more controlled than a lat-
eral or backward fall because people are more experienced to use
their arms in the forward position. A wearable fall-detection sys-
tem usually already includes motion sensor units which can supply
adequate information for recognizing the directions of falls. There-
fore, once a fall is detected, a fall-detection system can provide
invaluable fall-direction information without requiring any addi-
tional hardware. As an example, typical acceleration, angular ve-
locity, and magnetic field signals of falls corresponding to the four
basic directions are provided in Fig. 2. The fall-direction classifica-
tion algorithms employed in this study rely on the data acquired
from a motion sensor unit worn on the subject’s waist, which are
sufficient for effective fall-direction classification.

Research has been conducted on classifying the type of falls in
both the ambient assisted living field [13,14] and wearable sensors
field [15–24] albeit much limited in quantity compared to the vast
literature on fall detection. Almost all of these fall-classification al-
gorithms are activated after detecting a fall, except that Choi et
al. [18] integrate fall-direction classification into the fall-detection
algorithm. They classify the activities of the subjects into seven
activity types: three ADLs and four falls towards the four basic di-
rections — forward, backward, right, and left. Using a novel feature
selection method and naïve Bayesian (NB) decision making, they
are able to classify the activity types of 670 data instances in their
dataset with 99.4% accuracy.

Although most wearable-sensor-based fall-direction classifica-
tion studies classify falls into the four basic directions mentioned
above, references [16] and [25] classify falls into three directions:
forward, backward, and lateral. Utilizing a sensor node comprising
a tri-axial accelerometer and a barometric pressure sensor at the
waist of the subject and using a heuristic algorithm employing the
azimuth angle of the subject, they were able to achieve a 94.12%
fall-direction classification accuracy on a dataset consisting of 119
fall instances. Dinh and Struck [19] also consider the same three

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129

Fig. 2. Acceleration, angular velocity, and magnetic field signals of a) forward, b) backward, c) right, and d) left falls. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)
3

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129
fall types with the addition of a collapse type. Attempting to cap-
ture four types of falls, they use accelerometer data collected from
the waist of the subject, and transformed from Cartesian to spher-
ical coordinates. With an algorithm that utilizes fuzzy logic and
ANNs, they achieve an average fall-direction classification sensitiv-
ity of 94% over all types of falls, on a dataset collected from five
subjects and comprising a total of 100 fall instances.

Reference [26] categorizes falls into a broader set: forward,
backward, right-side, left-side, blinded-forward, and blinded-back-
ward. The authors of [27] group fall types into six more specific
categories which are fall forward and lie on the floor, fall back-
ward and lie on the floor, fall lateral right and lie on the floor, fall
lateral right and sit up from the floor, fall lateral left and lie on the
floor, fall lateral left and sit up from the floor.

Majority of the studies on wearable-sensor-based fall classifica-
tion use motion sensor units worn on the waist, chest, or the back
of the subject; however, Tao et al. [20] propose a fall-direction clas-
sification system with four force-sensor resistors in both the right
and left shoe insoles of the subjects. They attempt to classify falls
into four directions as Choi et al. [18] do and achieve a classifica-
tion rate of 75% on a very limited dataset of only 12 fall instances.

The study by Albert et al. [17] attempts to classify falls into
the four basic directions mentioned above using the accelerom-
eter data from a mobile phone affixed to the back of the sub-
jects. Their dataset for fall classification consists of a total of 223
fall instances collected during laboratory experiments involving 15
participants. They compare five different classifiers — SVM, sparse
multi-nomial logistic regression (SMLR), NB, k-NN, and DTC — with
a large feature set of 178 features in total, without using any fea-
ture reduction technique. They evaluate these classifiers on their
own dataset with two different cross-validation techniques: 10-
fold and subject-based cross validation. SMLR yields the best clas-
sification performance with a classification accuracy of 99.6% with
both types of cross validation.

Pannurat et al. [21] present a hybrid fall-monitoring algorithm
that can detect different phases of a fall as well as classify ADLs
using a wearable accelerometer. In particular, they implement a
rule-based algorithm to detect the pre-impact, impact, and post-
impact phases of a fall and a ML-based ADL classifier to confirm
falls as well as detect the occurrence of a particular type of fall:
syncope. On a dataset comprising 16 healthy subjects perform-
ing 14 types of fall and 12 types of ADL, their method is able to
achieve up to 99% accuracy.

The authors of [14] use depth camera data to detect and clas-
sify falls of subjects with a walking support system. Employing a
Hidden Markov Model (HMM)-based technique, they are able to
classify the states of the user, which correspond to three types of
ADLs and five fall directions: the four basic directions and down-
ward (collapse). Upon detection and classification of a fall, they
control the motion of the walking support system to achieve fall
prevention. On a dataset collected from four healthy subjects, their
method is able to reach a state classification accuracy of 81.0%.

Kwon et al. [22] address the problem of fall classification after
the detection of a fall, using a chest-worn inertial measurement
unit (IMU). Using a temporal signal angle measurements algorithm
alongside three ML-based algorithms, their method can classify
five different types of falls: incorrect weight shifting, trip, bump,
loss of support, and collapse. The authors evaluate their method
on a dataset collected from seven volunteers to show that their
method presents accuracy values of up to 93.3%.

In [23], the authors present a comparative study of using differ-
ent cumulant features extracted from waist-worn accelerometers
as well as four ML methods for fall detection and fall-direction
classification into four basic directions. Processing a dataset col-
lected from six healthy subjects performing five ADLs and four
4

types of falls, they show that with the use of cumulant features,
SVM classifier yields better results than DTC, NB, and ANN.

Andò et al. [24] propose a system that classifies various ADLs
as well as falls using accelerometer and gyroscope data from a
waist-worn smartphone. Employing a threshold-based algorithm
and multisensor data fusion, their method is able to achieve al-
most perfect sensitivity and specificity values on a dataset col-
lected from 10 healthy subjects.

In recent years, the availability of a new publicly available
dataset of ADL and fall activities has sped up the development
of fall-classification systems. The multimodal UP-Fall Detection
Dataset [28] includes data collected from 11 healthy subjects via
multiple wearable sensors, cameras, and context-aware sensors
while performing five types of falls and six types of ADLs. The
availability of this dataset led to the organization of “2019 Chal-
lenge UP — Multimodal Fall Detection” competition [29]. Indeed,
this competition stirred significant interest in fall detection and
classification, as evident in the recently published book [30]. For
instance, Espinosa et al. [31] employ convolutional neural networks
(CNNs) to detect and classify falls via video data in this dataset.
Upon optimizing the CNN architecture through cross validation,
their method classifies different activities in the dataset with 82%
accuracy.

Despite abovementioned work, there is still need for further
research in the fall-classification field, especially in comparison
to the broader field of fall detection. Existing literature not only
lacks in providing effective fall-classification systems, but would
also benefit from an exhaustive and fair evaluation process for
various classification methods. In this study, eight state-of-the-art
ML classifiers are implemented for classifying falls into four basic
directions. These classifiers are then evaluated on a common ex-
tensive dataset comprising 1600 fall instances using subject-based
cross validation (which is more challenging than using randomized
folds [32,33]) with parameter optimization. Their performances are
then compared in terms of confusion matrices, performance met-
rics, and run times. Furthermore, this study contributes to the
fall-direction classification area by conducting robustness analysis
and modifying four of the eight ML classifiers to avoid making de-
cisions in the presence of data from an unknown class. This way,
robustness to unknown classes is achieved. To our knowledge, pre-
vious studies on fall-direction classification do not consider such
evaluation of their fall-direction classification algorithms and do
not address the problem in such depth to achieve as high perfor-
mance. Moreover, the datasets used in previous studies are rather
limited. In summary, this study adds on the existing work in the
literature by thoroughly evaluating and comparing eight state-of-
the-art ML classifiers on a large dataset and conducting a robust-
ness analysis.

3. Fall-direction classification system

In this section, first the acquisition of the original dataset that
contains both fall and non-fall activity types is described. Only
the fall-type activities are considered for fall-direction classifica-
tion. Experimental methodology and the feature extraction process
are outlined. State-of-the-art ML classifiers that are employed for
fall-direction classification are presented. The classifiers are evalu-
ated and compared in terms of five performance metrics and their
run times.

3.1. Description of the dataset

The dataset used in this study is made publicly available [34]
and was originally acquired by our research team [12] to evaluate
different ML algorithms for effective and reliable fall detection. It
was also used in the studies reported in [35–37]. The dataset was

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129
Fig. 3. a)-c) Configuration of the sensor units on the subject’s body, d) MTw sensor
unit, e) axes of a sensor unit, f) connection to a PC and the interface [12].

collected by following the protocols proposed by Abbate et al. [38]
with the approval of Erciyes University Ethics Committee to con-
duct experiments with human participants. A total of 16 young
and healthy subjects performed the scripted activities with their
informed written consent. The seven female subjects had an av-
erage age of 21.5, an average weight of 58.5 kg, and an average
height of 169.5 cm, whereas the nine male subjects averaged to 24
years in age, 67.5 kg in weight, and 172 cm in height. The subjects
performed the activities on a soft floor mat, with protective equip-
ment on their head, wrists, elbows, and knees in order to avoid
injuries (Fig. 3 a)-c)).

Six wireless MTw sensor units from Xsens Technologies [39]
were affixed to the head, waist, chest, right wrist, right thigh, and
right ankle of each subject. Each of these units consists of three
tri-axial devices (an accelerometer, a gyroscope, and a magnetome-
ter with respective working ranges of ±120 m/s2, ±1200◦/s, and
±1.5 Gauss) and an atmospheric pressure sensor with an operat-
ing range of 300–1100 hPa. Fig. 3 illustrates the configuration of
the sensor units on the subject’s body as well as the axes of each
sensor unit. Data were collected at a sampling frequency of 25 Hz
and sent to a PC via a ZigBee connection for storage.

Each subject performed five different executions of 16 non-fall
activities (ADLs) and 20 fall activities. A broad span of activities
was selected, in agreement with the guidelines in [38], to cap-
ture most of the real-world activities so that the evaluation of
developed algorithms can produce realistic outcomes. Non-fall and
fall activities are listed separately, with a brief description of each
activity, in Tables 1 and 2. Common ADLs as well as near-fall activ-
ities were included in the dataset in order to construct a genuine
representation of real-life activities. Included fall activities also em-
brace a wide variety of fall types that can be encountered in real-
life scenarios. A vast dataset comprising 2880 trials was obtained:
1280 non-fall and 1600 fall trials. Each trial of duration 10–15 s
was recorded and stored separately.

Although the dataset contains data from six different sensor
units worn by the subjects, only the data recorded by the waist
sensor unit are used throughout this study. This results from an at-
tempt to render the proposed algorithms more feasible to embed
in a hardware system, because not only the cost of a system re-
quiring six sensor units would be considerably high, such a system
would also be obtrusive to the user. The waist is shown to be a
commonly used region of the body, as well as the chest, to capture
motion signals from the subjects and yields the highest accuracy
for fall detection compared to the head and the limbs [35,36].
5

Table 1
Brief descriptions of the non-fall activities (ADLs) in the dataset.

No. Brief description Type

1 walking forward non-fall
2 walking backward non-fall
3 running non-fall
4 squatting and then standing non-fall
5 bending at about 90◦ non-fall
6 bending to pick up an object non-fall
7 walking with a limp non-fall
8 stumbling with recovery non-fall
9 ankle sprain non-fall
10 coughing/sneezing non-fall
11 standing to sitting on a hard surface (chair) non-fall
12 standing to sitting on a medium surface (sofa) non-fall
13 standing to sitting on air non-fall
14 standing to sitting on a soft surface (bed) non-fall
15 standing to lying on bed non-fall
16 lying on bed to standing non-fall

Table 2
Brief descriptions of the fall activities in the dataset, with their directions.

No. Brief description Type/Direction

17 standing to falling forward to the floor fall/forward
18 standing to falling forward to the floor with arm

protection
fall/forward

19 standing to falling on knees fall/undefined
20 standing to falling on knees and then lying down fall/forward
21 standing to falling forward with quick recovery fall/forward
22 standing to falling forward with slow recovery fall/forward
23 standing to falling forward, ending in right

lateral position
fall/forward

24 standing to falling forward, ending in left lateral
position

fall/forward

25 standing to falling down on the floor, ending
sitting

fall/undefined

26 standing to falling backward, ending lying fall/backward
27 standing to falling backward, ending in right

lateral position
fall/backward

28 standing to falling backward, ending in left
lateral position

fall/backward

29 standing to falling on the right side, ending lying fall/right
30 standing to falling on the right side with

recovery
fall/right

31 standing to falling on the left side, ending lying fall/left
32 standing to falling on the left side with recovery fall/left
33 from lying, rolling out of bed and falling on the

floor
fall/undefined

34 standing on a podium to forward fall on the floor fall/forward
35 syncope — standing to falling vertically fall/undefined
36 syncope fall, slowly slipping off a wall on the

side
fall/undefined

It must be noted that the dataset was collected mostly from
young and healthy subjects (as well as some middle-aged ones),
performing simulated falls in a laboratory setting with protective
equipment. Although it would have been preferable to have real
fall data from elderly subjects or subjects from certain disease
groups, current subject profiles and fall categories were chosen
with the aim of gathering an extensive dataset [12]. Real-life fall
data or data involving elderly subjects are extremely limited and
difficult to collect because of the fragility of the elderly and the
long waiting times. We believe this situation should not hinder the
results obtained in this article because it has been reported in [40]
that real-life falls by older people bear similar characteristics to
those of simulated falls.

A data instance is labeled as non-fall if the index of the activity
is less than or equal to 16 (Table 1) or as fall if the index of the
activity is greater than 16 (Table 2). Because only fall-type activi-
ties can be classified into four basic directions, only the activities
with index greater than 16 (Table 2) are included in this evalu-
ation. In other words, assuming that the fall-detection algorithm

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129
detected a fall, only the fall-type activities in the dataset will be
used for fall-direction classification. The 20 fall types considered
within the scope of this article (Table 2) can be grouped into five
classes corresponding to the four basic directions and a class with
undefined directions. In this part of the study, we only use the 15
fall types, corresponding to the four well-defined directions, in the
comparative evaluation. Specifically, there are eight forward, three
backward, two right, and two left fall types. Remaining five fall
types, with undefined directions, are reserved to be used in Sec-
tion 4.

Since each of the 15 types of falls, with well-defined directions,
is performed five times by each of the 16 subjects, this sums up
to a total of 1200 directional fall instances: 640 forward, 240 back-
ward, 160 right, and 160 left fall instances.

3.2. Preprocessing

Note that the sizes of the data belonging to the four classes are
not comparable; that is, the size of the forward fall class is almost
three times as large as the size of the backward one and even
four times as large as the sizes of the right and left fall classes.
This imbalance in class sizes would corrupt the performance of
certain classifiers. For instance, such a distribution of class sizes is
likely to cause ANN to learn the weights with a bias towards the
forward fall class because there are more instances from that class
and every data instance updates the weights once in each epoch in
online backpropagation. To avoid this problem, every data instance
in backward, right, and left fall classes are replicated and added to
the dataset until the sizes of the classes become comparable; that
is, the data from the backward fall class are copied twice while the
data from the right and left classes are replicated thrice and these
replications are added to the dataset to make the sizes of the four
classes more or less even (640, 720, 640, and 640, respectively).
Finally, the order of the data instances is rearranged with a random
permutation.

As part of the preprocessing, raw data acquired from the mo-
tion sensor unit attached to the waist of the subject are filtered
using three-point median filtering in order to eliminate the high-
frequency noise components of the signals.

3.3. Feature extraction

After preprocessing, 27 simple features are extracted from
the whole duration of the recording of each trial at the sensor
unit worn on the waist: minima, maxima, and the mean val-
ues of the accelerometer, gyroscope, and magnetometer data in
the x, y, and z directions. The feature set consisting of these
27 (= 3 sensor types × 3 axes × 3 features per axis) features is
normalized to have zero mean and unit standard deviation.

3.4. Description of the ML classifiers considered

Eight state-of-the-art ML classifiers are implemented for com-
parative evaluation of their performances based on the dataset
described above for fall-direction classification. These are, namely,
Bayesian decision making (BDM), least squares method (LSM),
k-nearest neighbor classifier (k-NN), artificial neural networks
(ANNs), support vector machines (SVMs), decision-tree classifier
(DTC), random forest (RF), and adaptive boosting or AdaBoost (AB).
Some of these classifiers have parameters that need to be tuned
for the best performance of the classifier [41]. These parame-
ters are often optimized via cross validation. In this study, we
employ subject-based cross validation, which is described in the
next section. The classifiers BDM, LSM, and DTC do not have any
parameters to be optimized whereas the parameters of the remain-
ing five classifiers (k-NN, ANN, SVM, RF, and AB) are optimized
6

through a grid search. Separate grid searches for each parameter
are conducted and the best results are provided and used. Brief
descriptions of the ML classifiers are given below, together with
information on the parameter selection of five of the classifiers,
indicating the intervals of the grid searches for the optimization of
their parameters. Ranges of optimal parameter values for various
folds of cross validation are also provided. More detail on these
classifiers can be found in [41–43].

BDM BDM is based on fitting multi-variate Gaussian distributions
to the data from each class — in our case, four classes — and
obtaining the mean vectors and covariance matrices of these Gaus-
sian distributions. Once these parameters are obtained, the training
process is completed and the testing phase continues with calcu-
lating the a posteriori probabilities of each test data for each class
and assigning the test data to the class that gives the largest a pos-
teriori probability. No parameters need to be selected for BDM.

LSM In the training phase of classification with the LSM, the
mean vectors of the data from each of the four classes are cal-
culated and stored. In testing, sums of squared distances of a test
instance to the mean vectors of each class are calculated and the
test instance is assigned to the class whose mean is the closest to
it in the feature space. LSM has no parameters to be selected.

k-NN Training of the k-NN classifier comprises the storage of the
training feature vectors. In the testing phase, the Euclidean dis-
tances of a test feature vector to every training feature vector are
calculated and the nearest k training feature vectors are selected.
The test feature vector is then assigned to the most frequently oc-
curring class among these k training feature vectors. The parameter
k is optimized through a grid search, taking integer values from 1
to 50 and an optimal k value of 1 is obtained.

ANN ANNs are networks of units called neurons, arranged in mul-
tiple layers [44]. In this study, an ANN with only a single hidden
layer of neurons is implemented for fall-direction classification.
The input layer (the very first layer) consists of the input neu-
rons, each of which takes the value of a feature in the feature
vector as input; therefore, the number of neurons in the input
layer is exactly the same as the number of features used (27). Each
input-layer neuron is connected to the neurons in the hidden layer
(the layer in the middle) with unique weights. At each neuron in
the hidden layer, a non-linear activation function is applied to the
weighted sum of the input neurons using the connection weights
from each of the input neurons to that hidden-layer neuron. A sim-
ilar connection is then made from the hidden layer to the output
layer (the third layer). In this study, the activation function used in
all hidden and output neurons is a sigmoid function of the form
g(x) = (1 + e−x)−1, where x is the weighted sum of the outputs of
the neurons in the previous layer.

The ANN implemented in this study has four output neurons
which use the same sigmoid activation function as the hidden-
layer neurons and can display output values ranging from 0 to 1.
When a data instance is given as input to the ANN and the non-
linear activation function is applied to the weighted sum of the
outputs of all neurons in the hidden layer, the output of the ANN
is obtained. The values obtained at each one of these four out-
put neurons indicate the confidence levels of that data instance
belonging to each one of the classes. Finally, the feature vector is
assigned to the class with the highest confidence level. The con-
nection weights are initialized with a uniform random distribution
between 0 and 0.2, and training is performed using iterative on-
line (stochastic) backpropagation algorithm with a learning rate of
0.3. The algorithm is terminated when there is not a significant re-
duction in the average errors of all training data. While learning

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129
the weights corresponds to determining the weights of the ANN,
testing is equivalent to multiplying the feature values of the test
data with the obtained weights to identify its label. The number
of hidden-layer neurons is optimized through a grid search where
integer values from 1 to 50 are considered. Optimal values for this
parameter range between 19 to 46.

SVM SVMs were originally designed for binary classification and
are based on creating a hyperplane in the feature space that has
the maximum margin between two classes in the training data.
However, here, we have a multi-class problem with four classes. It
has been shown in [45] that the performances of the one-against-
one and one-against-all variants of multi-class SVM are comparable
but the training time of the former is shorter. Therefore, we use
the one-against-one approach. A kernel function can be utilized to
transform the original feature space to another space, which can
prove to be useful when the training data are not linearly sepa-
rable in the original feature space. In this study, Gaussian Radial
Basis Function kernel, fGRBF(�x, �y) = e−γ ||�x−�y||2 is used, where γ
is the kernel parameter and �x and �y are two feature vectors. Af-
ter the transformation to another space, an optimization process
is conducted to find the hyperplane that maximizes the margin
between the data of each pair of classes with the penalty parame-
ter C . MATLAB’s LIBSVM toolbox is used for the implementation of
SVM. The parameters γ and C are optimized through a grid search
where both are ranged from 10−5 to 105 on a logarithmic scale.
Optimal values in the intervals [10−2, 101] and [10−3, 10−1] are
obtained for these two parameters, respectively.

DTC DTC is an ML classifier based on decision stumps: a simple
structure applying a threshold to one feature, that is, comparing
the value of that feature to a threshold to determine if it is higher
or lower. At each node of a DTC, there is a decision stump to pro-
duce two branches which are then connected to two other nodes.
Final nodes of a DTC, which do not utilize stumps (a feature and
a threshold value) and thus do not lead to any more nodes, are
called leafs. At the leaf nodes of a DTC, the decision about the es-
timated class of the data instance is made. The features and the
thresholds to be used in the nodes of a DTC are selected using a
splitting criterion in a greedy fashion; that is, the split that yields
the optimal value of a specific criterion is selected at each node
without considering the optimality of the overall tree structure. In
this study, Gini impurity criterion is selected as the splitting crite-
rion, which is a measure of the frequency of incorrectly classifying
a randomly chosen data instance when it is classified according to
the distribution of the classes in that split. The value of this crite-
rion is zero when the nodes created by that split are pure, that is,
all training instances in one leaf belong to a specific class. Build-
ing the tree structure from the training set until all leafs are pure
results in overfitting to the training set. Therefore, different prun-
ing techniques are employed to prevent trees having an excessive
depth and number of nodes. In this study, prepruning technique is
employed to prevent DTC from overfitting, which involves reject-
ing to add any more nodes when building the tree if the size of a
node is sufficiently small, even though the node is not pure. DTC
does not have any parameters to optimize.

RF RF is a special classifier employing bagging (bootstrap aggre-
gating) technique: an ensemble learning technique which involves
taking a large number of subsets from the training set and com-
bining the results of the classifiers that are trained by each of
these subsets to obtain the final decision. As the name suggests,
RF is based on training a large number of DTCs with the randomly
generated subsets of the training set and combining the results of
each classifier to end up with a final decision. Because training a
7

large number of DTCs is computationally intensive, a randomly se-
lected subset of the features is used in their training. Using the
decisions of a large number of decision trees trained on subsets
of the training set, RF eliminates the problem of overfitting that is
usually pronounced with DTCs. Two parameters are optimized: the
number of trees to be trained is ranged from 40 to 240 to observe
that the optimal parameter values are between 120 and 200, and
the number of features to be used in the training of trees is varied
from 1 to 27 to obtain optimal values between 1 and 10.

AdaBoost AdaBoost is a boosting algorithm, that is, it utilizes
the whole training set to iteratively train a large number of weak
learners. At the first iteration, a weak learner is trained where all
instances in the training set have equal weights. Afterwards, at
each iteration, the weights of the training instances that are in-
correctly classified by the previous weak learner are increased to
train a new weak learner with the updated weight distribution of
the training set. The AB algorithm utilizes decision stumps as weak
learners, and the number of weak learners to be used is a param-
eter that needs to be optimized. The number of weak learners is
varied from 50 to 250 to obtain optimal parameter values between
100 and 190.

3.5. Description of subject-based cross validation

Subject-based multi-fold cross validation with parameter op-
timization is employed in evaluating the performances of fall-
direction classification algorithms. This is preferred over randomly
partitioned multi-fold cross validation in this work because it is
attempted to make a more realistic evaluation of the algorithms
where the data of the test subjects are not used in the determi-
nation of parameters. It is highly likely that any user of such a
fall-direction classification system will not have contributed to this
dataset, if any algorithm presented here were to be embedded in
a hardware system for real-world use. Therefore, by excluding all
of the data of the test subjects from the training data, we seek
to avoid optimistic results that may be caused by the correlation
among the data from the same subject. This selection, in turn,
causes relatively high variations in the performance metrics of the
eight different training and test set combinations.

Using the record of the subject index for each data instance,
the fall dataset is partitioned into eight folds in a subject-based
fashion: seven folds of data from one male and one female subject
each, and one fold of data from two male subjects. A pseudocode
of the subject-based cross validation with parameter optimization
is given in Algorithm 1. In an outer loop, each one of these eight
folds is separated to be used as the test set whilst the remaining
seven folds are combined to form the training set, which will be
used for parameter optimization and training. At each iteration of
an intermediate loop, a grid mesh of parameter values is swept
and specific parameter value(s) are considered. While performing
parameter optimization, sufficiently large intervals are considered
for the parameters to avoid obtaining optimal parameter values on
the limits of the intervals; furthermore, the intervals of parame-
ter sweep are updated, should such a situation be encountered.
At every iteration of the intermediate loop, training data are di-
vided into seven sub-folds of data from the same combinations of
subjects that formed it in the first place. In an inner loop, each
one of the seven sub-folds is taken as the test set for the pa-
rameter selection (called sub-test set to avoid confusion) and the
remaining six sub-folds are combined to obtain the training set for
the parameter selection (similarly, called sub-training set). In every
iteration of the inner loop, the classifier is trained using the corre-
sponding parameter value(s) and sub-training set combination and
tested using the corresponding parameter value(s) and sub-test set
combination. After the inner loop is completed, the average of the

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129
Algorithm 1 Pseudocode of the cross validation with parameter
optimization.

Divide the whole dataset into eight folds with respect to the subjects
for Each Fold {Outer Loop} do

This fold is the test set
Remaining seven folds are combined to obtain the training set
Best Accuracy = 0
for Each Value of the Parameter(s) {Intermediate Loop} do

Divide the training set into seven sub-folds with respect to the subjects
for Each Sub-Fold {Inner Loop} do

This sub-fold is the sub-test set
Remaining six sub-folds are combined to obtain the sub-training set
Train the classifier with the sub-training set and the parameter value(s)
Test the classifier with the sub-test set and the parameter value(s)
Store accuracy

end for
Find the average accuracy over all seven iterations of the Inner Loop
if Average Accuracy > Best Accuracy then

Optimal Parameter Value(s) = This Parameter Value(s)
Best Accuracy = Average Accuracy

end if
end for
Train the classifier with the training set and the optimal parameter value(s)
Test the classifier with the test set and the optimal parameter value(s)
Store the confusion matrix

end for

sub-test accuracies of all seven runs is calculated and stored. At
the end of the intermediate loop, the parameter value(s) that yield
the highest average sub-test accuracy is selected. At the end of
one iteration of the outer loop, the classifier is trained using the
corresponding training set (seven of eight folds) and the selected
parameter value(s) and tested with the corresponding test set (one
of eight folds). The confusion matrix for each of these training and
test combinations obtained in every iteration of the outer loop is
stored. At the very end of the subject-based cross validation with
parameter optimization, eight confusion matrices are obtained.

3.6. Comparative evaluation of the ML classifiers

In this section, some basic definitions and the methodology of
the comparative study that is undertaken are given, followed by its
results.

Fall-direction classification is a multi-class decision problem
that requires a decision on whether a detected fall is in one of
the considered directions. While testing the algorithms, for each
fall direction, we may encounter four different cases:

• true positive (TP): the fall is in a particular direction and the
classifier correctly detects that direction

• false positive (FP): the fall is not in a given direction but the
classifier incorrectly detects that direction

• true negative (TN): the fall is not in a given direction and the
classifier correctly does not detect that direction

• false negative (FN): the fall is in a particular direction but the
algorithm incorrectly does not detect that direction

A FP corresponds to a false alarm and a FN corresponds to a
missed detection in radar terminology which is a two-class (bi-
nary) classification scenario. Since fall-direction classification is a
multi-class decision problem, one needs to define TP, FP, TN, FN
for each class separately. Thus, we denote these four cases for spe-
cific classes with subscripts. For instance, TPF, TPB, TPR, and TPL
denote the TP cases for forward (F), backward (B), right (R), and
left (L) fall classes, respectively.

Having described these four types of outcomes for each class, a
confusion matrix can be constructed as in Fig. 4, where F, B, R, and
L represent the total numbers of true falls in the forward, back-
ward, right, and left directions, respectively. Furthermore, F′ , B′ , R′ ,
and L′ represent the total numbers of detected falls in the same
8

Fig. 4. A 4 × 4 confusion matrix for fall-direction classification.

four directions, respectively. Specifically, based on the definitions
of TP, FP, TN, FN and the confusion matrices in Fig. 4, the following
relationships are derived for the forward fall (F) class:

TPF = FF′

FPF = F′ − FF′ = BF′ + RF′ + LF′

TNF = B − BF′ + R − RF′ + L − LF′

FNF = F − FF′ = FB′ + FR′ + FL′ (1)

These can similarly be defined for the other fall classes.
Based on the aforementioned fundamental definitions, five per-

formance metrics (accuracy, precision, sensitivity, specificity, and
F -measure) are calculated. In particular, accuracy of a fall-direction
classifier is calculated as the ratio of correctly classified falls to all
fall instances:

Accuracy = FF′ + BB′ + RR′ + LL′

F + B + R + L
(2)

Moreover, precision, sensitivity, and specificity metrics are cal-
culated separately for each class using the definitions of the four
outcomes above. Below, the definitions of these metrics are given
for the forward fall (F) class and their definitions for the other
three classes follow similarly:

PrecisionF = TPF

TPF + FPF
= FF′

F′

SensitivityF = TPF

TPF + FNF
= FF′

F
(3)

SpecificityF = TNF

TNF + FPF
= B − BF′ + R − RF′ + L − LF′

B + R + L

Obviously, there is an inverse relationship between sensitivity
and specificity metrics. The FP and FN ratios can be easily obtained
in terms of specificity and sensitivity: FP ratio = 1 −Specificity and
FN ratio = 1 − Sensitivity. This indicates a compromise between an
aggressive algorithm that may incorrectly classify many falls into
a particular direction, and a finicky algorithm that may mistakenly
not classify many falls into a particular direction.

After computing the class-based precision, sensitivity, and
specificity values, the values of these metrics for the overall fall-
direction classification algorithm are calculated as the arithmetic

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129
Table 3
Confusion matrices in fall-direction classification.

BDM: classified

tr
ue

⎡
⎢⎢⎣

640 0 0 0
0 720 0 0
0 0 640 0
0 0 0 640

⎤
⎥⎥⎦

LSM: classified

tr
ue

⎡
⎢⎢⎣

616 0 15 9
0 696 3 21
0 8 632 0
0 0 0 640

⎤
⎥⎥⎦

k-NN: classified

tr
ue

⎡
⎢⎢⎣

628 0 9 3
0 720 0 0
0 0 640 0
0 0 0 640

⎤
⎥⎥⎦

ANN: classified

tr
ue

⎡
⎢⎢⎣

616 4 13 7
0 717 0 3
0 4 636 0
4 0 0 636

⎤
⎥⎥⎦

SVM: classified

tr
ue

⎡
⎢⎢⎣

629 0 9 2
0 720 0 0
0 4 636 0
0 0 0 640

⎤
⎥⎥⎦

DTC: classified

tr
ue

⎡
⎢⎢⎣

621 5 1 13
3 687 12 18
4 16 620 0

12 32 0 596

⎤
⎥⎥⎦

RF: classified

tr
ue

⎡
⎢⎢⎣

640 0 0 0
0 717 0 3
0 4 636 0
0 0 0 640

⎤
⎥⎥⎦

AB: classified

tr
ue

⎡
⎢⎢⎣

619 0 1 20
0 717 0 3
4 24 612 0
4 4 0 632

⎤
⎥⎥⎦

mean of their class-based values. Therefore, the overall precision,
sensitivity, and specificity of the fall-direction classification algo-
rithm are given as:

Precision = 1

4
(PrecisionF + PrecisionB + PrecisionR + PrecisionL)

Sensitivity = 1

4
(SensitivityF + SensitivityB + SensitivityR

+ SensitivityL) (4)

Specificity = 1

4
(SpecificityF + SpecificityB + SpecificityR

+ SpecificityL)

As the last performance metric, F -measure of the fall-classifi-
cation algorithm is obtained by multiplying the harmonic mean of
precision and sensitivity metrics by two:

F -measure = 2 · Precision · Sensitivity

Precision + Sensitivity
(5)

Note that we have used class-based precision, sensitivity, and
specificity metrics averaged over the four classes since the sizes
of the classes are comparable, albeit not exactly the same. The F -
measure metric in Equation (5) provides a combined performance
measure of a system using the two metrics that have an inverse
relationship.

Eight 4 × 4 confusion matrices that are obtained at each itera-
tion of the outer loop of the cross-validation process are summed
up and shown in Table 3 to reflect the overall performance of each
classifier. Upon inspecting this table, one can see that forward falls
are mostly confused with right and left falls by LSM, k-NN, ANN,
SVM, DTC, and AB classifiers. Furthermore, LSM, ANN, RF, and AB
can classify falls from the backward direction class into the left di-
rection class. DTC further confuses falls in the backward direction
with those to the right and to the left. Although some misclassi-
fications occur, no major problems are observed in Table 3 other
than those mentioned.

Performance metrics of the eight ML classifiers are calculated
separately for each of the four classes as described above and
are averaged over all four classes. The values of the five perfor-
mance metrics for the eight ML classifiers are tabulated in Table 4
in mean plus/minus one standard deviation format. It is evident
from this table that, with the selected feature set, BDM achieves
perfect classification on the fall dataset with subject-based cross
validation. This result is highly satisfactory, especially consider-
ing the size of the dataset; that is, BDM classifies the directions
9

of all fall instances correctly without needing any parameter op-
timization and any complex features. The performances of three
other classifiers are also very good. Namely, the k-NN classifier
follows BDM with the average values of all performance metrics
being above 99.5%. Similarly, SVM and RF yield performance met-
rics above 99.4%, only within 0.1% of k-NN. Although their perfor-
mances are not comparable to the top three ML classifiers, ANN
and LSM produce performance metrics above 98.6% and 97.8%, re-
spectively. Among the eight classifiers, the use of DTC results in the
lowest average value and the largest standard deviation for each
of the performance metrics. The overall high performance of the
ML classifiers considered here indicates that the extracted features
bear adequate information for reliable and accurate fall-direction
classification.

3.7. Run-time analysis of the ML classifiers

All eight ML classifiers are trained and tested on MATLAB ver-
sion R2015a installed on a computer with Intel® Core™ i5-3230M
CPU running at 2.60 GHz, 4.00 GB RAM, and Windows 7 Home Pre-
mium 64-bit operating system while no other external application
or program is running.

To determine the run times of the algorithms, subject-based
cross validation of each algorithm is executed without parameter
optimization. First, the whole dataset is partitioned into eight folds
of data based on subject pairs as before, and in a loop, each one
of these eight folds is used as test data while the remaining seven
are combined to obtain the training data. At each iteration of this
loop, the classifiers are trained using the corresponding training
data and fixed parameter value(s) and then tested with the corre-
sponding test data and the same parameter value(s). This process
is equivalent to executing only the outer loop in Algorithm 1. Both
the training and testing times of the classifiers are recorded at each
iteration. Training, testing, and total run times of the eight ML clas-
sifiers run for fall-direction classification are given in Table 5 in
mean plus/minus one standard deviation format for the classifica-
tion of a single data instance. The total run time is the sum of the
training and testing times.

It can be observed from Table 5 that the total run time of the
LSM classifier is significantly lower than those of the other algo-
rithms. In fact, it is nearly as low as one tenth of the next fastest
algorithm, k-NN. Note that k-NN is the only classifier that does
not require any training. Average total run times of k-NN and SVM
are on a par with each other and significantly lower than the to-
tal run times of BDM, ANN, DTC, RF, and AB. Although the total
run time of ANN is over 70 times more than that of LSM, it cor-
responds to an average of 2.72 ms for the classification of a single
data instance. We believe that this run time is feasible for real-
world operation, especially considering that such an algorithm will
be pre-trained in such a scenario. The training times are acceptable
for all classifiers since training will be executed only once. How-
ever, the training times would increase if more classes are added.
Despite displaying a high degree of performance, RF displays a to-
tal run time that is nearly as much as four times that of ANN.
Furthermore, AB requires even more time to train and test a single
data instance, because it uses all 27 features in each weak classi-
fier that it trains. Considering the relatively large total run time of
DTC, the run-time results of these two algorithms that use a large
number of DTCs are expected to be slow.

The authors of a fall-detection and localization study [46] com-
pare the average training and testing times (as well as the perfor-
mance metrics) of k-NN, SVM, and Gaussian Process (GP) classifiers
implemented on Raspberry Pi programmable boards. In that study,
80% of the data from six subjects is used for training and 20% used
for testing. The evaluation process is conducted on five different
Raspberry Pis for each classifier. Our results confirm those in [46]

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129

Table 4
Results of the comparison for fall-direction classification (Acc: accuracy, Pr: precision, Se: sensitivity, Sp: speci-
ficity, F -m: F -measure).

Classifier Acc (%) Pr (%) Se (%) Sp (%) F -m (%)

BDM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
LSM 97.88 ± 1.85 98.04 ± 1.66 97.92 ± 1.83 97.88 ± 1.84 97.98 ± 1.74
k-NN 99.55 ± 1.17 99.57 ± 1.10 99.53 ± 1.20 99.54 ± 1.17 99.55 ± 1.15
ANN 98.68 ± 2.10 98.77 ± 1.91 98.65 ± 2.17 98.67 ± 2.11 98.71 ± 2.04
SVM 99.43 ± 1.20 99.47 ± 1.12 99.41 ± 1.23 99.43 ± 1.20 99.44 ± 1.18
DTC 95.61 ± 3.67 96.10 ± 3.20 95.61 ± 3.72 95.61 ± 3.68 95.86 ± 3.45
RF 99.43 ± 0.89 99.47 ± 0.83 99.43 ± 0.92 99.43 ± 0.90 99.45 ± 0.87
AB 97.73 ± 2.52 97.94 ± 2.37 97.67 ± 2.61 97.72 ± 2.53 97.80 ± 2.48
Table 5
Run-time results for fall-direction classification.

Classifier Training (μs) Testing (μs) Total (μs)

BDM 3.05 ± 2.58 1004.39 ± 66.21 1007.44 ± 65.79
LSM 0.51 ± 0.19 36.53 ± 1.88 37.04 ± 1.98
k-NN — 327.93 ± 374.67 327.93 ± 374.67
ANN 2605.01 ± 84.74 115.50 ± 14.51 2720.51 ± 92.19
SVM 210.43 ± 27.69 135.92 ± 261.27 346.35 ± 288.18
DTC 362.95 ± 316.11 587.93 ± 1127.23 950.89 ± 1438.55
RF 10170.05 ± 300.71 230.55 ± 378.49 10400.59 ± 671.46
AB 41504.24 ± 4736.56 24810.02 ± 42173 66314.32 ± 5063.93

showing that the training time of k-NN is significantly shorter than
that of SVM; however, it suffers from a considerably larger testing
time.

4. Robustness analysis of fall-direction classification system

In the previous section, the performances of eight fall-direction
classification algorithms are evaluated in classifying detected falls
into four basic directions. Such an evaluation implicitly makes the
assumption that all fall types are associated with one of these four
well-defined directions. However, falls may not always have such
well-defined directions in the way they occur, for instance, syn-
cope (fainting) and falling out of bed. A fall-direction classification
system that only classifies a fall instance into one of these four di-
rections would erroneously classify such falls into one of the four
directions regardless. An effective fall-direction classification sys-
tem should be able to assign the falls that do not belong to any of
the four basic directions to the unknown (zero or null) class. How-
ever, the standard implementations of the eight ML classifiers that
are considered in this study do not provide such functionality.

Thus, we next address the problem of fall-direction classifica-
tion in the presence of test data from an unknown class. To our
knowledge, such an investigation has not been considered previ-
ously in the fall-direction classification realm. The standard im-
plementations of four of the eight ML classifiers are modified to
handle feature vectors from an unknown class and included in a
robustness analysis where test instances from falls whose direc-
tions do not belong to any one of the four basic directions are also
used.

4.1. Descriptions of the modified ML classifiers

Modifications to the standard implementations of BDM, LSM,
k-NN, and ANN classifiers are briefly described below. Note that
BDM was the best performing classifier in Section 3 followed by k-
NN in terms of the accuracy criterion. Therefore, two out of the
selected four classifiers had top-ranking performance. ANN was
the fifth best performing classifier. Including the remaining four
classifiers in this part of the study would have required extensive
modifications to their training and testing routines and, therefore,
not considered within the scope of this study.
10
BDM Modifications are made both to the training and the test
phases of the BDM classifier. After calculating the mean vectors
and the covariance matrices of the classes, a posteriori probabilities
of each training instance for all classes are obtained in a loop. For
each class, the minimum a posteriori probability among all training
instances is stored to obtain a 4 × 1 threshold vector of minimum
a posteriori probability values for each class. In the test phase, if
the maximum a posteriori probability of a test instance to one of
the four classes does not exceed the average of the 4 × 1 threshold
vector over the four classes, the test instance is assigned to the
unknown class.

LSM Similar to the BDM classifier, both the training and the test
phases of the LSM classifier are modified. Upon calculating the
mean vectors of the classes in the training phase, the sum of the
squared Euclidean distance of every training instance to the mean
vector of the class that it belongs to is calculated. A 4 × 1 thresh-
old vector is constructed where each element of the vector is the
maximum of the sum of squared distances for a particular class.
In the test phase, after the classification of each test instance, the
sum of the squared Euclidean distances from the test instance to
the mean vector of the class that it is assigned to is compared to
the minimum value in the 4 × 1 threshold vector. If the obtained
sum of squared distance is greater than this threshold value, the
test instance is assigned to the unknown class.

k-NN A distance threshold similar to the modified LSM is also
employed in the k-NN classifier. After storing the training instances
in the training phase, Euclidean distances from every training in-
stance to the others of the same class are calculated. The maxi-
mum distance from one training instance to another of the same
class is then stored for each class. A 4 × 1 distance threshold vec-
tor consisting of these maximum distances for all classes is stored
to terminate the training process. In the standard test procedure
of the k-NN classifier, after the label of the test instance is esti-
mated as the most frequent class among its k nearest neighbors,
the distance from the test instance to the nearest neighbor is cal-
culated and compared to the average of the four 4 × 1 distance
threshold vectors. If the nearest distance is greater than this dis-
tance threshold, the test instance is assigned to the unknown class.
A grid search for k from 1 to 50 is conducted for parameter op-
timization in the modified subject-based cross-validation process
that will be explained in Section 4.2, and the optimum k value of
1 is obtained for each fold.

ANN Recall from Section 3.4 that the values obtained at each one
of the four output neurons indicate the confidence levels of that
data instance belonging to each one of the four classes. To make
the ANN classifier capable of recognizing an unknown fall type, a
threshold on the confidence level is set. After obtaining the con-
fidence levels of class memberships of each test data through the
standard test procedure of ANN, the maximum of these confidence
levels is compared to the confidence threshold. If it is less than

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129
the confidence threshold, the data instance is assigned to the un-
known class. Given that the output values range between 0 and
1, an empirical confidence threshold value of 0.85 is employed.
The number of hidden-layer neurons is considered as a parameter
of the modified ANN and optimized in the subject-based cross-
validation process. This parameter is varied from 1 to 50 and the
optimal parameter values are found to be in the interval of [2, 22]
for the eight folds.

These four modified ML classifiers are evaluated on the fall
dataset that is described in Section 3.1. In that section, only 15
of a total of 20 fall types are used and the remaining five types of
falls are excluded from the evaluation of the standard fall-direction
classification algorithms. The remaining five fall types that are la-
beled as “undefined” in Table 2 do not have well-defined direc-
tions unlike the other fall types that belong to one of the four
basic directions. These five fall types are, therefore, used here as
an unknown (zero or null) fall class to evaluate the robustness of
the four modified fall-direction classification algorithms. Excluded
from any training or validation set in parameter selection, these
fall types are to be used only in the test procedure of already
trained classifiers with already optimized parameters. Since there
is a total of 400 fall instances in this unknown class, the whole set
of 1600 (= 1200 + 400) fall instances is used in this part of the
study.

4.2. Description of the modified subject-based cross validation

The same subject-based cross validation with parameter opti-
mization that is employed in Section 3.5 is also used here with
a minor modification. After dividing the folds and sub-folds of
data and separating the training, test, sub-training, and sub-test
sets corresponding to every iteration of the three (inner, inter-
mediate, and outer) loops, data from the unknown class are also
segmented into eight folds based on the same pair-wise subject
combinations used previously. Every fold of data from the un-
known class is then added to the test set of the corresponding
iteration. At the end, every training set in the outer loop con-
sists of a total of 1050 (= 15 fall types × 14 subjects × 5 trials)
data instances whilst every test set in the outer loop consists of
a total of 200 (= 20 fall types × 2 subjects × 5 trials) data in-
stances.

4.3. Comparative evaluation of the modified ML classifiers

Here, we compare the classification performance of the modi-
fied ML classifiers in the presence of data from an unknown class
in terms of confusion matrices and performance metrics described
previously. The 5 ×5 confusion matrices are calculated in the same
way as in Section 3.6 with the addition of an unknown direc-
tion class to the fifth row and column. Consequently, the defini-
tions and calculations of the five performance metrics described
in that section are valid as well, with the addition of the new
class.

The overall confusion matrices of the four modified classifiers
that are obtained by summing up the eight 5 × 5 confusion matri-
ces acquired in the outer loop of the cross-validation process are
provided in Table 6. This table suggests that there is an obvious
trade-off to be made between detecting the falls in the four basic
directions correctly and rejecting to make a decision when a data
instance from the unknown class is encountered. Modified BDM,
k-NN, and ANN classifiers exhibit a strict approach in rejecting to
make a decision; that is, they classify a considerable number of
falls that actually belong to one of the four basic directions into the
unknown class. However, these three classifiers correctly classify
the data that belong to the unknown class with high accuracies.
Modified LSM algorithm, on the other hand, displays a less strict
11
Table 6
Confusion matrices in the robustness analysis.

BDM: classified

tr
ue

⎡
⎢⎢⎢⎢⎣

592 0 0 0 48
0 690 0 0 30
0 0 580 0 60
0 0 0 624 16
6 7 0 0 387

⎤
⎥⎥⎥⎥⎦

LSM: classified

tr
ue

⎡
⎢⎢⎢⎢⎣

615 0 0 1 24
0 693 3 15 9
0 8 616 0 16
0 0 0 636 4

11 95 0 28 266

⎤
⎥⎥⎥⎥⎦

k-NN: classified

tr
ue

⎡
⎢⎢⎢⎢⎣

572 0 0 0 68
0 711 0 0 9
0 0 620 0 20
0 0 0 632 8
0 7 0 2 391

⎤
⎥⎥⎥⎥⎦

ANN: classified

tr
ue

⎡
⎢⎢⎢⎢⎣

599 0 0 0 41
0 708 0 0 12
0 0 612 0 28
0 0 0 620 20
1 2 2 3 392

⎤
⎥⎥⎥⎥⎦

approach in rejecting to make a decision. It shows high accuracy
in classifying fall instances that belong to one of the four basic
directions; however, it does not show acceptable performance in
rejecting to make a decision in the presence of data from an un-
known class.

After obtaining the confusion matrices for each of the eight
folds, the five performance metrics are calculated in the same way
as in Section 3.6. The results of the robustness analysis for the four
modified fall-direction classification algorithms are provided in Ta-
ble 7 in mean plus/minus one standard deviation format.

The performance metrics of the modified fall-direction classifi-
cation algorithms in the presence of data from an unknown class
are all above 90.8%. ANN achieves the highest average values in all
performance metrics, followed by k-NN, which is within only 0.4%
of ANN in all of the performance metrics. BDM and LSM classifiers
follow the performances of these two classifiers with performance
values above 94.5% and 90.9%, respectively. Comparing the results
in this table with those in Table 4, one can observe a significant
decline in the overall performances of the classifiers. This decline
is caused by not only the fall instances with a well-defined di-
rection that are assigned to the unknown class but also the fall
instances from the unknown class that are classified into one of
the four directions. This performance degradation, however, is not
dire considering the difficult nature of detecting data from the
unknown class with simple modifications to the standard ML clas-
sifiers.

It is also evident in Table 7 that the variations (standard de-
viations) in the results of the performance metrics over different
combinations of training and test data are larger than those in the
previous case. Overall, satisfactory results are obtained in the pres-
ence of test data from an unknown class, where the average values
of all performance metrics are above 90.9%.

4.4. Run-time analysis of the modified ML classifiers

The run times of the modified classifiers are also measured and
recorded. Because of the additions in the training and test phases
of the classifiers, we expect their training, testing, and total times
to be considerably larger than those in Table 5.

The same procedure as the one in Section 3.7 is followed to
obtain the training, testing, and total times of the four modified
fall-direction classification algorithms. The MATLAB version and
the specifications of the computer used for running the algorithms
are the same. The same subject-based cross validation without pa-
rameter optimization as described in Section 3.7 is employed here,
albeit with a minor modification: the test data belonging to the
unknown class is also segregated into eight folds according to
the same two-subject combinations as used previously and each
of these folds of additional test data from the unknown class is
then added to the test data of the corresponding iteration of the
loop. Training, testing, and total run times of the four modified
fall-direction classification algorithms are presented in Table 8 in

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129

Table 7
Results of the robustness analysis (Acc: accuracy, Pr: precision, Se: sensitivity, Sp: specificity, F -m: F -
measure).

Classifier Acc (%) Pr (%) Se (%) Sp (%) F -m (%)

BDM 94.51 ± 4.68 94.70 ± 3.73 94.64 ± 4.48 94.51 ± 4.67 94.67 ± 4.10
LSM 92.96 ± 2.05 92.83 ± 2.62 90.89 ± 2.11 92.87 ± 2.05 91.85 ± 2.32
k-NN 96.25 ± 2.78 95.84 ± 2.55 96.30 ± 2.78 96.25 ± 2.78 96.07 ± 2.66
ANN 96.41 ± 3.11 96.20 ± 3.05 96.62 ± 2.95 96.42 ± 3.11 96.41 ± 3.00
Table 8
Run-time results for the robustness analysis.

Classifier Training (ms) Testing (ms) Total (ms)

BDM 1.438 ± 0.016 1.359 ± 0.017 2.797 ± 0.033
LSM 0.054 ± 0.001 0.061 ± 0.002 0.144 ± 0.003
k-NN 2.554 ± 0.010 2.223 ± 0.032 4.777 ± 0.039
ANN 4.734 ± 0.183 0.181 ± 0.039 4.915 ± 0.188

mean plus/minus one standard deviation format and for the clas-
sification of a single data instance.

It is observed in Table 8 that there are significant changes in the
run times and especially in the training times of the fall-direction
classification algorithms when compared to the run times in Ta-
ble 5. The total run time of the ANN classifier in this table is
almost twice as much as that in Table 5, whereas the increase
is almost three times in BDM, four times in LSM, and more than
14 times in k-NN. These differences are mainly caused by the
fact that every training instance needs to be considered in the
training phase in order to obtain the thresholds. For instance, the
significant increase in the run times of k-NN when compared to
the former case is a result of calculating the distance from ev-
ery training instance to every other training instance of the same
class, meaning that it considers all combinations of pairs within all
classes in the training set. On the whole, the rankings of the total
run times of the modified fall-direction classification algorithms
are the inverse of the rankings of their performances in the ro-
bustness analysis. That is, the best performing algorithm, ANN, is
the slowest in Table 8, which is followed by k-NN, BDM, and LSM,
which are the second, third, and fourth best performing algorithms
in the robustness analysis, respectively. Even with a total run time
of nearly 5 ms for the classification of a single data instance, ANN
yields satisfactory results in the robustness analysis and it can be
implemented in a real-world fall-detection and classification sys-
tem.

5. Summary and conclusions

In the first part of this fall-direction classification study, eight
different ML classifiers are implemented to classify fall actions
(with well-defined directions) into four basic directions. A set of
27 simple features extracted from the motion sensor unit data ac-
quired from the waist of the subject is used for this purpose. After
optimizing the parameters of the classifiers through a grid search,
the classifiers are evaluated over 1200 directional fall instances us-
ing subject-based cross validation.

BDM classifies all test instances correctly, achieving 100% clas-
sification rate, followed by k-NN, SVM, and RF with all of their
average performance metrics being above 99.4%. A comparison of
the run times of the considered classifiers indicates that the ma-
jority of the selected classifiers can train and test a single data
instance in about 1 ms time. Besides, the four best performing al-
gorithms (BDM, k-NN, SVM, and RF) achieve smaller total average
run times than AB.

The results indicate that BDM, k-NN, SVM, and RF can be
used for superior fall-direction classification in real-world scenar-
12
ios where it is necessary to consider the robustness of classifiers
to data from an unknown class.

In the second part of this study, BDM, LSM, k-NN, and ANN
classifiers are modified to handle the presence of data from an
unknown class. Robustness analysis is conducted where 400 test
instances belonging to an unknown fall-direction class are included
in the test set to evaluate the performance of the modified clas-
sifiers. The highest average classification accuracies of 96.4% and
96.3% are achieved by the ANN and k-NN classifiers, respectively.
The modified algorithms attain robustness to test data from an
unknown class at the expense of considerably larger run times
than those in the first part of the study. Besides, the achieved
performance levels in the robustness analysis are not compara-
ble with the perfect classification obtained in the classification of
falls into four basic directions; however, the results obtained in
this robustness analysis bear considerable importance in the eval-
uation of the fall-direction classification algorithms in a realistic
scenario. This robustness analysis is especially valuable since to
our knowledge, this is the first study in the fall-classification area
to consider the presence of data from an unknown class, mod-
ify the classifiers as needed, and analyze their robustness. Such
an analysis is not necessary in a fall-detection study where bi-
nary decisions are made between fall and non-fall activities with-
out the involvement of unknown classes. Classifying the direc-
tion of a fall, however, is a type of multi-class activity recogni-
tion process where this kind of investigation happens to be cru-
cial.

Further research can be conducted towards benchmarking var-
ious fall-classification methods on assorted datasets. Such a study
would considerably increase the real-world applicability of the im-
plemented methods. Although the dataset used in this study is
extensive in size, it consists of segmented data collected during
laboratory experiments from young and healthy subjects. Eval-
uating the algorithms based on real-world data acquired from
middle-aged and/or elderly subjects would be highly beneficial.
Embedding the algorithms in hardware for real-world use would
facilitate the comparative evaluation based on such real-world
data.

Although the fall-direction classification system developed in
this article exhibits satisfactory performance, it is susceptible to
the misalignment of the sensor unit. Attaining invariance to the
position and orientation of the sensor units has been investigated
in [1,2] for daily activity recognition and can be extended to cover
fall detection and classification as well. Another promising future
direction in fall classification is combining information from the
other sensory elements of IoT which are not body-worn but em-
bedded in a smart environment.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129
References

[1] A. Yurtman, B. Barshan, S. Redif, Position invariance for wearables: interchange-
ability and single-unit usage via machine learning, IEEE Int. Things J. 8 (10) (15
May 2021) 8328–8342, https://doi .org /10 .1109 /JIOT.2020 .3044754.

[2] B. Barshan, A. Yurtman, Classifying daily and sports activities invariantly to
the positioning of wearable motion sensor units, IEEE Int. Things J. 7 (6) (June
2020) 4801–4815, https://doi .org /10 .1109 /JIOT.2020 .2969840.

[3] L. Chen, C.D. Nugent (Eds.), Human Activity Recognition and Behaviour Analysis
for Cyber-Physical Systems in Smart Environments, Springer Nature Switzer-
land AG, Cham, Switzerland, 2019.

[4] A. Patel, J. Shah, Sensor-based activity recognition in the context of ambient
assisted living systems: a review, J. Ambient Intell. Smart Environ. 11 (4) (July
2019) 301–322.

[5] World Health Organization, Falls, http://www.who .int /mediacentre /factsheets /
fs344 /en/. (Accessed 15 June 2021).

[6] L.J. Baraff, R. Della Penna, N. Williams, A. Sanders, Practice guideline for the ED
management of falls in community-dwelling elderly persons, Ann. Emerg. Med.
30 (4) (October 1997) 480–492.

[7] N. Pannurat, S. Thiemjarus, E. Nantajeewarawat, Automatic fall monitoring: a
review, Sensors 14 (7) (July 2014) 12900–12936.

[8] A. Singh, S. Ur Rehman, S. Yongchareon, P.H. Joo Chong, Sensor technologies for
fall detection systems: a review, IEEE Sens. J. 20 (13) (July 2020) 6889–6919.

[9] A. Ramachandran, A. Karuppiah, A survey on recent advances in wearable fall
detection systems, BioMed Res. Int. (January 2020) 2167160.

[10] X. Wang, J. Ellul, G. Azzopardi, Elderly fall detection systems, Front. Robot. AI
7 (71) (June 2020), https://doi .org /10 .3389 /frobt .2020 .00071.

[11] M.Ş. Turan, Fall Detection and Classification Using Wearable Motion Sensors,
M.Sc. Thesis, Department of Electrical and Electronics Engineering, Bilkent Uni-
versity, Bilkent, Ankara, Turkey, September 2017.

[12] A.T. Özdemir, B. Barshan, Detecting falls with wearable sensors using machine
learning techniques, Sensors 14 (6) (June 2014) 10691–10708.

[13] E. Principi, D. Droghini, S. Squartini, P. Olivetti, F. Piazza, Acoustic cues from
the floor: a new approach for fall classification, Expert Syst. Appl. 60 (October
2016) 51–61.

[14] S. Taghvaei, K. Kosuge, Image-based fall detection and classification of a user
with a walking support system, Front. Mech. Eng. 13 (3) (2018) 427–441.

[15] O. Ojetola, E.I. Gaura, J. Brusey, Fall detection with wearable sensors—SAFE
(SmArt Fall dEtection), in: Proc. IEEE 7th Int. Conf. on Intelligent Environments,
IE, Nottingham, U.K., 25–28 July, 2011, pp. 318–321.

[16] M. Tolkiehn, L. Atallah, B. Lo, G.-Z. Yang, Direction sensitive fall detection using
a triaxial accelerometer and a barometric pressure sensor, in: Proc. 33rd Annual
Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Boston, MA,
U.S.A., 30 August–3 September, 2011, pp. 369–372.

[17] M.V. Albert, K. Kording, M. Herrmann, A. Jayaraman, Fall classification
by machine learning using mobile phones, PLoS ONE 7 (5) (May 2012)
e36556–e36561.

[18] Y. Choi, A.S. Ralhan, S. Ko, A study on machine learning algorithms for fall
detection and movement classification, in: Proc. IEEE Int. Conf. on Information
Science and Applications, ICISA, Jeju Island, South Korea, 26–29 April, 2011.

[19] C. Dinh, M. Struck, A new real-time fall detection approach using fuzzy logic
and a neural network, in: Proc. IEEE 6th Int. Workshop on Wearable Micro
and Nano Technologies for Personalized Health (pHealth), Oslo, Norway, 24–26
June, 2009, pp. 57–60.

[20] Y. Tao, H. Qian, M. Chen, X. Shi, Y. Xu, A real-time intelligent shoe system for
fall detection, in: Proc. IEEE Int. Conf. on Robotics and Biomimetics, ROBIO,
Phuket, Thailand, 7–11 December, 2011, pp. 2253–2258.

[21] N. Pannurat, S. Thiemjarus, E. Nantajeewarawat, A hybrid temporal reasoning
framework for fall monitoring, IEEE Sens. J. 17 (6) (2017) 1749–1759.

[22] S.B. Kwon, J.-H. Park, C. Kwon, H.J. Kong, J.Y. Hwang, H.C. Kim, An energy-
efficient algorithm for classification of fall types using a wearable sensor, IEEE
Access 7 (2019) 31321–31329, https://doi .org /10 .1109 /ACCESS .2019 .2902718.

[23] S.S. Kambhampati, V. Singh, M.S. Manikandan, B. Ramkumar, Unified frame-
work for triaxial accelerometer-based fall event detection and classification
using cumulants and hierarchical decision tree classifier, Healthc. Technol. Lett.
2 (4) (2015) 101–107.

[24] B. Andò, S. Baglio, C.O. Lombardo, V. Marletta, A multisensor data-fusion ap-
proach for ADL and fall classification, IEEE Trans. Instrum. Meas. 65 (9) (2016)
1960–1967.

[25] N. El-Bendary, Q. Tan, F.C. Pivot, A. Lam, Fall detection and prevention for the
elderly: a review of trends and challenges, Int. J. Smart Sens. Intell. Syst. 6 (3)
(June 2013) 1230–1266, https://doi .org /10 .21307 /ijssis -2017 -588.

[26] I. Putra, J. Brusey, E. Gaura, R. Vesilo, An event-triggered machine learning ap-
proach for accelerometer-based fall detection, Sensors 18 (1) (December 2017)
20, https://doi .org /10 .3390 /s18010020.

[27] K.-H. Chen, Y.-W. Hsu, J.-J. Yang, F.-S. Jaw, Evaluating the specifications of
built-in accelerometers in smartphones on fall detection performance, Instrum.
Sci. Technol. 46 (2) (2018) 194–206, https://doi .org /10 .1080 /10739149 .2017.
1363054.
13
[28] L. Martínez-Villaseñor, H. Ponce, J. Brieva, E. Moya-Albor, J. Núñez Martínez, C.
Peñafort Asturiano, UP-fall detection dataset: a multimodal approach, Sensors
19 (9) (April 2019) 1988.

[29] H. Ponce, L. Martínez-Villaseñor, Approaching fall classification using the UP-
fall detection dataset: analysis and results from an international competi-
tion, in: H. Ponce, L. Martínez-Villaseñor, J. Brieva, E. Moya-Albor (Eds.), Chal-
lenges and Trends in Multimodal Fall Detection for Healthcare, Springer Nature
Switzerland AG, Cham, Switzerland, 2020, pp. 121–133.

[30] H. Ponce, L. Martínez-Villaseñor, J. Brieva, E. Moya-Albor (Eds.), Challenges and
Trends in Multimodal Fall Detection for Healthcare, Springer Nature Switzer-
land AG, Cham, Switzerland, 2020.

[31] R. Espinosa, H. Ponce, S. Gutiérrez, L. Martínez-Villaseñor, J. Brieva, E. Moya-
Albor, Application of convolutional neural networks for fall detection using
multiple cameras, in: H. Ponce, L. Martínez-Villaseñor, J. Brieva, E. Moya-Albor
(Eds.), Challenges and Trends in Multimodal Fall Detection for Healthcare,
Springer Nature Switzerland AG, Cham, Switzerland, 2020, pp. 97–120.

[32] L. Wang, L. Cheng, G. Zhao, Machine Learning for Human Motion Analysis: The-
ory and Practice, IGI Glob., Hershey, PA, U.S.A., 2010.

[33] B. Barshan, A. Yurtman, Investigating inter-subject and inter-activity varia-
tions in activity recognition using wearable motion sensors, Comput. J. 59 (9)
(September 2016) 1345–1362.

[34] A.T. Özdemir, B. Barshan, Simulated Falls and Daily Living Activities Data Set,
UCI Mach. Learn. Repository, School Inf. Comput. Sci., Univ. California at Irvine,
Irvine, CA, U.S.A., June 2018 [Online]. Available, http://archive .ics .uci .edu /ml /
datasets /Simulated +Falls +and +Daily +Living +Activities +Data +Set.

[35] A.T. Özdemir, An analysis on sensor locations of the human body for wearable
fall detection devices: principles and practice, Sensors 16 (8) (July 2016) 1161.

[36] P. Ntanasis, E. Pippa, A.T. Özdemir, B. Barshan, V. Megalooikonomou, Investiga-
tion of sensor placement for accurate fall detection, in: P. Perego, G. Andreoni,
G. Rizzo (Eds.), Proc. 6th EAI Int. Conf. on Wireless Mobile Communication and
Healthcare, MobiHealth, Milan, Italy, 14–16 November 2016, in: Lecture Notes
of the Institute for Computer Sciences, Social Informatics, and Telecommuni-
cations Engineering (LNICST), vol. 192, Springer International Publishing AG,
Cham, Switzerland, June 2017, pp. 225–232.

[37] E. Pippa, E.I. Zacharaki, A.T. Özdemir, B. Barshan, V. Megalooikonomou, Global
vs local classification models for multi-sensor data fusion, in: Proc. 10th Hel-
lenic Conf. on Artificial Intelligence, Patras, Greece, 9–12 July, 2018.

[38] S. Abbate, M. Avvenuti, P. Corsini, J. Light, A. Vecchio, Monitoring of human
movements for fall detection and activities recognition in elderly care using
wireless sensor network: a survey, Wireless Sensor Networks: Application-
Centric Design, InTech, Rijeka, Croatia, 2010.

[39] MTw Awinda User Manual and Technical Documentation, Xsens Technologies
B.V., Enschede, The Netherlands, 2021 [Online]. Available, https://www.xsens .
com /hubfs /Downloads /Manuals /MTw _Awinda _User _Manual .pdf. (Accessed 15
June 2021).

[40] M. Kangas, I. Vikman, L. Nyberg, R. Korpelainen, J. Lindblom, T. Jämsä, Com-
parison of real-life accidental falls in older people with experimental falls in
middle-aged test subjects, Gait Posture 35 (3) (March 2012) 500–505.

[41] E. Alpaydın, Introduction to Machine Learning, 2nd ed., MIT Press, Cambridge,
MA, U.S.A., 2010.

[42] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd ed., John Wiley &
Sons, New York, NY, U.S.A., 2000.

[43] A.R. Webb, Statistical Pattern Recognition, 2nd ed., Wiley, West Sussex, U.K.,
2002.

[44] S. Haykin, Neural Networks: A Comprehensive Foundation, 3rd ed., Prentice
Hall, Upper Saddle River, New Jersey, NJ, U.S.A., 2007.

[45] C.-J. Lin, A comparison of methods for multi-class support vector machines,
IEEE Trans. Neural Netw. 13 (2) (March 2002) 415–425.

[46] J. Clemente, F. Li, M. Valero, W. Song, Smart seismic sensing for indoor fall de-
tection, location, and notification, IEEE J. Biomed. Health Inform. 24 (2) (Febru-
ary 2020) 524–532.

Mustafa Şahin Turan received the B.S. degree in
Mechatronics Engineering from Sabancı University, Is-
tanbul, Turkey in 2015 and the M.Sc. degree in Electri-
cal and Electronics Engineering from Bilkent Univer-
sity, Ankara, Turkey, in 2017.

Currently, he is a Ph.D. candidate at École Poly-
technique Fédérale de Lausanne (EPFL), Institute of
Mechanical Engineering, Lausanne, Switzerland. He
was a Research and Teaching Assistant with Bilkent

University between 2015 and 2017. His current research interests include
safe and adaptive networked control of large-scale systems with applica-
tions to microgrids.

https://doi.org/10.1109/JIOT.2020.3044754
https://doi.org/10.1109/JIOT.2020.2969840
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibDABAA8BB09F5E0BE99AE8705D9D15CADs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibDABAA8BB09F5E0BE99AE8705D9D15CADs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibDABAA8BB09F5E0BE99AE8705D9D15CADs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibEC7EC2D191E25E23A75B0573EB7742F6s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibEC7EC2D191E25E23A75B0573EB7742F6s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibEC7EC2D191E25E23A75B0573EB7742F6s1
http://www.who.int/mediacentre/factsheets/fs344/en/
http://www.who.int/mediacentre/factsheets/fs344/en/
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibB40965C5E11F5255507BCC78550D3253s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibB40965C5E11F5255507BCC78550D3253s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibB40965C5E11F5255507BCC78550D3253s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibB7DBB0A1118700B2E47CA7B46F653493s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibB7DBB0A1118700B2E47CA7B46F653493s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD9B44FDE2AFC6736D50D629C0592ECFCs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD9B44FDE2AFC6736D50D629C0592ECFCs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibDCE3A5CCF665AAA8969BE5B0E456E74Cs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibDCE3A5CCF665AAA8969BE5B0E456E74Cs1
https://doi.org/10.3389/frobt.2020.00071
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib6960390CD80BFD061E0C2AB88B155BF9s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib6960390CD80BFD061E0C2AB88B155BF9s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib6960390CD80BFD061E0C2AB88B155BF9s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD7081EBCBE8D254AAD6B161D4A3033CEs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD7081EBCBE8D254AAD6B161D4A3033CEs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibC562C44CEAD9807276EE3B4B919A6FA5s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibC562C44CEAD9807276EE3B4B919A6FA5s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibC562C44CEAD9807276EE3B4B919A6FA5s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibB68D7BC30C390F2B1AB6910E401475E9s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibB68D7BC30C390F2B1AB6910E401475E9s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib5ECD2352B2A70F935DA2B525656AEFD7s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib5ECD2352B2A70F935DA2B525656AEFD7s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib5ECD2352B2A70F935DA2B525656AEFD7s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib84D68FF4910805A95AD29CE62C5272D6s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib84D68FF4910805A95AD29CE62C5272D6s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib84D68FF4910805A95AD29CE62C5272D6s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib84D68FF4910805A95AD29CE62C5272D6s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib2DC22C2C0DF1DAA994E390D5988D8887s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib2DC22C2C0DF1DAA994E390D5988D8887s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib2DC22C2C0DF1DAA994E390D5988D8887s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibA249DF4C4A6EDEC344225F7DF5241DA2s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibA249DF4C4A6EDEC344225F7DF5241DA2s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibA249DF4C4A6EDEC344225F7DF5241DA2s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib5CABD5870B66B9D98F643B15CCFE393Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib5CABD5870B66B9D98F643B15CCFE393Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib5CABD5870B66B9D98F643B15CCFE393Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib5CABD5870B66B9D98F643B15CCFE393Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib91EE36CFC4A463AB0DD64E01D84935A0s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib91EE36CFC4A463AB0DD64E01D84935A0s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib91EE36CFC4A463AB0DD64E01D84935A0s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibE1BFF5E58907610FC453E5865FAA86FFs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibE1BFF5E58907610FC453E5865FAA86FFs1
https://doi.org/10.1109/ACCESS.2019.2902718
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib96A1047092DE7EEB61D7900704334416s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib96A1047092DE7EEB61D7900704334416s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib96A1047092DE7EEB61D7900704334416s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib96A1047092DE7EEB61D7900704334416s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib70E8C3DD5240B3DE96FF6F2261B16533s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib70E8C3DD5240B3DE96FF6F2261B16533s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib70E8C3DD5240B3DE96FF6F2261B16533s1
https://doi.org/10.21307/ijssis-2017-588
https://doi.org/10.3390/s18010020
https://doi.org/10.1080/10739149.2017.1363054
https://doi.org/10.1080/10739149.2017.1363054
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib9BBC015585CA4655DB2D4EC436A40205s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib9BBC015585CA4655DB2D4EC436A40205s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib9BBC015585CA4655DB2D4EC436A40205s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib60BFF2E5A1007544F8A358EED3831C85s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib60BFF2E5A1007544F8A358EED3831C85s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib60BFF2E5A1007544F8A358EED3831C85s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib60BFF2E5A1007544F8A358EED3831C85s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib60BFF2E5A1007544F8A358EED3831C85s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib7E333F1670D3D8CFA2294FC1F0611685s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib7E333F1670D3D8CFA2294FC1F0611685s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib7E333F1670D3D8CFA2294FC1F0611685s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib68B629C6AAD957C02C674DD9FB33D586s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib68B629C6AAD957C02C674DD9FB33D586s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib68B629C6AAD957C02C674DD9FB33D586s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib68B629C6AAD957C02C674DD9FB33D586s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib68B629C6AAD957C02C674DD9FB33D586s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib95610BEBA2EE65C203CC2A396D2AD637s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib95610BEBA2EE65C203CC2A396D2AD637s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib2594D2654D8EEF084BA865FAEC5ACB6Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib2594D2654D8EEF084BA865FAEC5ACB6Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib2594D2654D8EEF084BA865FAEC5ACB6Bs1
http://archive.ics.uci.edu/ml/datasets/Simulated+Falls+and+Daily+Living+Activities+Data+Set
http://archive.ics.uci.edu/ml/datasets/Simulated+Falls+and+Daily+Living+Activities+Data+Set
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD0CB29A700C868629180A3D6C527D95Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD0CB29A700C868629180A3D6C527D95Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD05B7D390BBAD63E456FE07178DD5980s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD05B7D390BBAD63E456FE07178DD5980s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD05B7D390BBAD63E456FE07178DD5980s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD05B7D390BBAD63E456FE07178DD5980s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD05B7D390BBAD63E456FE07178DD5980s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD05B7D390BBAD63E456FE07178DD5980s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibD05B7D390BBAD63E456FE07178DD5980s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib20AD2CDA2A99EB7CCC7B9B3B818F8609s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib20AD2CDA2A99EB7CCC7B9B3B818F8609s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib20AD2CDA2A99EB7CCC7B9B3B818F8609s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib88709EA54D151F6101010F88CCC24A1Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib88709EA54D151F6101010F88CCC24A1Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib88709EA54D151F6101010F88CCC24A1Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib88709EA54D151F6101010F88CCC24A1Bs1
https://www.xsens.com/hubfs/Downloads/Manuals/MTw_Awinda_User_Manual.pdf
https://www.xsens.com/hubfs/Downloads/Manuals/MTw_Awinda_User_Manual.pdf
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibAC5D138B42CECBA4ADD0AC3D7EEF67F0s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibAC5D138B42CECBA4ADD0AC3D7EEF67F0s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibAC5D138B42CECBA4ADD0AC3D7EEF67F0s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib423DC11797CA76EEB189B78DAF0DD121s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib423DC11797CA76EEB189B78DAF0DD121s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibBAE57509F031DAE4F54E0D8BF3438C0As1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibBAE57509F031DAE4F54E0D8BF3438C0As1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib7699C660844BFB705A26B8262B1EF58Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib7699C660844BFB705A26B8262B1EF58Bs1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib8E39CE35AA89E0C0BA90F825619C05E6s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib8E39CE35AA89E0C0BA90F825619C05E6s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibECD2BD122DCE46BD8D838FC969E807E5s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bibECD2BD122DCE46BD8D838FC969E807E5s1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib96A3B7DCD7FDFEF175419AFE22AC832Ds1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib96A3B7DCD7FDFEF175419AFE22AC832Ds1
http://refhub.elsevier.com/S1051-2004(21)00168-8/bib96A3B7DCD7FDFEF175419AFE22AC832Ds1

M.Ş. Turan and B. Barshan Digital Signal Processing 125 (2022) 103129
Billur Barshan received the B.S. degrees in elec-
trical engineering and in physics from Boğaziçi Uni-
versity in Istanbul, Turkey, and the M.Sc., M.Phil., and
Ph.D. degrees all in electrical engineering from Yale
University, New Haven, CT, U.S.A.

After working as a post-doctoral researcher in the
Robotics Research Group, Univ. of Oxford, Oxford, U.K.,
she joined the Faculty of Bilkent University, Ankara,
Turkey, where she is currently a Professor with the
14
Department of Electrical and Electronics Engineering. Her current research
interests include wearable sensing, wearable robots and mechanisms, in-
telligent sensing, motion capture and analysis, detection and classification
of falls, machine learning, pattern classification, and multi-sensor data fu-
sion.

Dr. Barshan received the TÜBİTAK Young Scientist Award (1998), METU
Mustafa Parlar Foundation Research Award (1999), and two best paper
awards. She served on the Management Committee of the COST-IC0903
Action MOVE between 2010 and 2013.

	Classification of fall directions via wearable motion sensors
	1 Introduction
	2 Motivation and related work
	3 Fall-direction classification system
	3.1 Description of the dataset
	3.2 Preprocessing
	3.3 Feature extraction
	3.4 Description of the ML classifiers considered
	3.5 Description of subject-based cross validation
	3.6 Comparative evaluation of the ML classifiers
	3.7 Run-time analysis of the ML classifiers

	4 Robustness analysis of fall-direction classification system
	4.1 Descriptions of the modified ML classifiers
	4.2 Description of the modified subject-based cross validation
	4.3 Comparative evaluation of the modified ML classifiers
	4.4 Run-time analysis of the modified ML classifiers

	5 Summary and conclusions
	Declaration of competing interest
	References

