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ARTICLE INFO ABSTRACT

Keywords: Extracting representative features to recognize human activities through the use of wearables is an area of
Human activity recognition (HAR) on-going research. While hand-crafted features and machine learning (ML) techniques have been sufficiently
Wearables well investigated in the past, the use of deep learning (DL) techniques is the current trend. Specifically,
Wearable sensors Convolutional Neural Networks (CNNs), Long Short Term Memory Networks (LSTMs), and hybrid models

Moti . . . . . PR
D:e;;()l: ::::isr?; have been investigated. We propose a novel hybrid network architecture to recognize human activities through

Hybrid network models

the use of wearable motion sensors and DL techniques. The LSTM and the 2D CNN branches of the model
that run in parallel receive the raw signals and their spectrograms, respectively. We concatenate the features

NN
ESTM extracted at each branch and use them for activity recognition. We compare the classification performance
CNN-LSTM of the proposed network with three single and three hybrid commonly used network architectures: 1D CNN,
Feature extraction 2D CNN, LSTM, standard 1D CNN-LSTM, 1D CNN-LSTM proposed by Ordéiiez and Roggen, and an alternative
Model complexity 1D CNN-LSTM model. We tune the hyper-parameters of six of the models using Bayesian optimization and test
UCI HAR dataset

the models on two publicly available datasets. The comparison between the seven networks is based on four
performance metrics and complexity measures. Because of the stochastic nature of DL algorithms, we provide
the average values and standard deviations of the performance metrics over ten repetitions of each experiment.
The proposed 2D CNN-LSTM architecture achieves the highest average accuracies of 95.66% and 92.95% on
the two datasets, which are, respectively, 2.45% and 3.18% above those of the 2D CNN model that ranks the
second. This improvement is a consequence of the proposed model enabling the extraction of a broader range
of complementary features that comprehensively represent human activities. We evaluate the complexities of
the networks in terms of the total number of parameters, model size, training/testing time, and the number of
floating point operations (FLOPs). We also compare the results of the proposed network with those of recent
related work that use the same datasets.

Daily and Sports Activities (DSA) dataset

Smart environment based and wearable sensor based solutions to
HAR exist (Wang et al., 2019). In the former approach, besides the
Through the pervasiveness of a communicating network of inter- high installation cost and confining the user to a bounded area, the

connected devices and computing intelligence, wearables have become common use of videos, sometimes supplemented with audio signal
one of the key elements of the Internet of Things (IoT) ecosystem.

Continuous streaming of easily accessible signals, acquired from sensors
embedded in wearable devices, provide vast amounts of data that
carry valuable information about the user state and well being. Proper
processing of these data allows developing innovative solutions to
challenging problems (Niknejad et al., 2020).

The aim of human activity recognition (HAR) is to detect and
monitor activities automatically through the use of sensory input (Ra-

1. Introduction

recordings, entails privacy issues. A more favorable and less costly
approach is based on wearable sensor technology which allows direct
recording of time-series signals in 3D without any occlusion effects or
correspondence problem (Fig. 1). Time-series signals are recorded from
multiple sensor axes which can possibly be partitioned into shorter
time segments. Accelerometers, gyroscopes, and magnetometers are the
commonly used wearable sensor types. Fig. 2 illustrates sample raw

manujam et al., 2021; Dhiman and Vishwakarma, 2019). It is per- signal recordings from the two datasets that we have employed in this
tinent to areas such as ambient intelligence, context-aware systems, study.
assistive technologies, healthcare, biomechanics, sports science, and One of the challenges of activity recognition, which involves a clas-

ergonomics (Gil-Martin et al., 2020; Zhang et al., 2022; Haktanir and sification task, is the extraction of features (Chen et al., 2022). Recent
Kahraman, 2022; Lattanzi and Freschi, 2020). studies have favored DL models over ML techniques (Mekruksavanich
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Fig. 1. Human activity recognition through the use of wearable devices.

and Jitpattanakul, 2021; Yen et al., 2020; Xia et al., 2020) since the
former has the advantage of providing automated feature extraction
and superior classification performance, despite the intensive computa-
tional requirements. Specifically, single CNN, single LSTM, and hybrid
models that combine CNN and LSTM in different ways are being inves-
tigated for HAR. Since DL models learn from data to extract features
automatically, generalizable DL models need to be trained on large
datasets that contain diverse samples from different classes. Computer
vision and natural language processing (NLP) areas are associated with
considerably large datasets. Hence, strong vision and language models
can be trained that have the capability to extract generalizable features.
However, the datasets available in the wearable sensor based HAR
area are typically smaller in size. This prevents the DL models to learn
diverse features which results in extracting features that are not gen-
eralizable for unseen data. Therefore, extracting generalizable features
from relatively smaller datasets is a challenging problem for wearable
sensor based HAR which enables high classification performance on
unseen data.

In this study, we investigate the best DL architecture for extract-
ing highly representative features for the accurate classification of
human activities through the use of wearable motion sensors. We
propose a new 2D CNN-LSTM hybrid architecture and compare its
performance with six existing, commonly used DL models which are
1D CNN, 2D CNN, LSTM, standard 1D CNN-LSTM, 1D CNN-LSTM
model proposed in Ordéfiez and Roggen (2016), and an alternative
1D CNN-LSTM. We evaluate the seven models based on four perfor-
mance metrics and their complexities, using two publicly available
datasets. Finally, we compare our results with those of recent studies
that use the same datasets.

The main contribution of this article is the proposed 2D CNN-
LSTM hybrid network architecture which differs from the standard
1D CNN-LSTM hybrid architectures in three respects: First, the pro-
posed network has 2D CNN and LSTM layers in parallel branches
instead of sequential (series) form. Second, each branch receives the
input signal in a different form as appropriate for the type of layers
used in that branch. Third, features extracted in each branch are
concatenated and input signals are classified by using the merged
features instead of the features extracted from a single model. Although
there is a considerable number of works comparing the performances
of different network structures, this study focuses on investigating the
effect of using several different types of layers on network performance
by keeping other factors very similar for each network. Finally, we
identify the best way of combining CNN and LSTM layers to create a
hybrid model by comparing four hybrid structures, one of which is the
proposed one.

The rest of this article is organized as follows: Section 2 reviews
the related work employing CNN, LSTM, and hybrid models for HAR
through the use of wearable sensor signals. Section 3 starts by present-
ing the proposed 2D CNN-LSTM hybrid architecture. This is followed
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by a description of the two publicly available datasets that we have
used, preprocessing of the data, resources and implementation of the
models, layer and hyper-parameter selection, and the details of the
methodology on training, validation, testing, and performance analysis.
Section 4 presents the experimental results where we also provide the
results of the ablation studies that we have conducted and discuss
the results. Finally, we summarize and draw conclusions in Section 5,
providing some future research directions.

2. Related work

Since LSTM models provide favorable results on time-series data
(Fig. 3(a)), they are a suitable choice for HAR based on wearable sen-
sors (Barut et al., 2020; Chung et al., 2019; Lv et al., 2020; Tufek et al.,
2020). CNNs, which are particularly successful models for processing
image data, have also been used for HAR (Tufek et al., 2020; Zhu et al.,
2019; Sena et al., 2021; Qin et al., 2020) where the acquired signals are
typically time-series data. When this is the case, a commonly preferred
approach is to use 1D CNNs and perform the convolution only along the
time axis (Fig. 3(b)). However, other methods can be also employed
such as extracting the spectrogram of the raw signal and feeding it
as input to a 1D or 2D CNN (Fig. 3(c)). Although 2D CNNs with
spectrogram inputs have been used in processing micro-Doppler radar
signals for various purposes (Zhu et al., 2020; Park et al., 2016; Kim
and Toomajian, 2016; Kim and Moon, 2016), they are not sufficiently
well investigated for wearable sensor signals. To our knowledge, there
is a handful of studies where spectrograms of wearable sensor signals
are provided as input to a 1D CNN (Ravi et al., 2017; Yao et al., 2017;
Pravallika et al., 2020) or to a 2D CNN (Lawal and Bano, 2020; Ito
et al., 2018; Li et al., 2020; Pardo et al., 2019).

Besides the single CNN and LSTM models, hybrid structures aiming
to combine the strong aspects of both models exist. Hybrid models
usually involve a series (cascaded) connection such as CNN-LSTM and
LSTM-CNN where the output of the first model is fed as input to the sec-
ond one in the sequence. Fig. 4 illustrates the standard 1D CNN-LSTM
model that we have also implemented in this study for comparison
with our proposed model. Some standard 1D CNN-LSTM hybrid model
architectures used in previous studies are provided in Table 1. Mekruk-
savanich and Jitpattanakul (Mekruksavanich and Jitpattanakul, 2021)
propose a 1D CNN-LSTM network structure using a four-layer 1D CNN
and a single-layer LSTM and show that this structure has superior per-
formance compared to a single LSTM model. However, that study does
not compare the performance of the 1D CNN-LSTM hybrid model with
CNN models. Studies reported in Mutegeki and Han (2020) and Deep
and Zheng (2019) also compare the 1D CNN-LSTM with the LSTM and
confirm that using this hybrid model improves the activity classification
accuracy. Ordénez and Roggen (2016) use four 1D CNN and two
LSTM layers. The use of two LSTMs in sequence distinguishes it from
other studies which usually use only a single LSTM layer. It compares
the standard 1D CNN-LSTM (named as DeepConvLSTM in Ordonez
and Roggen (2016)) proposed there with baseline 1D CNN, but not
with a single LSTM model. Mekruksavanich and Jitpattanakul (2020)
compare the 1D CNN-LSTM with both a single CNN and a single LSTM,
verifying that this hybrid model classifies the activities more accurately
compared to these two single models. The study reported in Wang et al.
(2020) uses three 1D CNN layers and a single recurrent neural network
(RNN) layer. Different variations of RNNs are implemented in that
study which are LSTM, Gated Recurrent Unit (GRU), and bi-directional
LSTM (BiLSTM). GRUs are a gating mechanism in RNNs (Cho et al.,
2014) similar to LSTM with a forget gate but has fewer parameters than
LSTM since they lack an output gate. BiLSTM is a sequence processing
model comprising two LSTMs, one taking the input in the forward and
the other in the backward direction. The study compares the results
with single 1D CNN and LSTM models. It is shown that while the
hybrid model with LSTM layer achieves better accuracy compared to
a single 1D CNN and LSTM, hybrid models with GRU and BiLSTM do
not improve the single model performances.
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Fig. 2. Sample raw sensor signals acquired from the (a) UCI HAR Dataset and the (b) DSA Dataset.

Table 1
Existing standard 1D CNN-LSTM hybrid model architectures.

Ref. Mekruksavanich and Ref. Mutegeki and Han Ref. Deep and Zheng

Ref. Ordoénez and Roggen  Ref. Mekruksavanich and Ref. Wang et al. (2020)

Jitpattanakul (2021) (2020) (2019) (2016) Jitpattanakul (2020)

1D CNN 1D CNN 1D CNN 1D CNN 1D CNN 1D CNN
1D CNN pooling 1D CNN 1D CNN 1D CNN pooling
1D CNN flatten dropout 1D CNN dropout 1D CNN
1D CNN LSTM pooling 1D CNN pooling pooling
dropout softmax flatten flatten LSTM 1D CNN
pooling LSTM dropout dropout pooling
flatten dropout LSTM softmax LSTM
LSTM dense dropout dense
dropout softmax LSTM batch
dense dropout softmax
softmax softmax

As examples of some non-standard models (not included in Table 1),
Yao et al. (2017) propose a hybrid architecture composed of GRU
and CNN networks. The proposed architecture outperforms four ML
algorithms and three variants of the proposed method. Hamad et al.
(2020) use 1D CNN and LSTM separately to extract features from raw
data which are then concatenated. Their study shows that using two
different models enables better feature extraction compared to employ-
ing two models of the same type (both being LSTMs or both being

1D CNNs) for the same purpose. Huynh-The et al. (2021) combine CNN-
extracted features with hand-crafted features to improve the activity
recognition performance. In Peng et al. (2018), the authors employ a
LSTM layer following a CNN layer to recognize complex activities while
they use a single CNN model for simple activities. Mukherjee et al.
(2020) use majority voting over three different DL models to classify
the activities. Most of the previous studies have compared hybrid mod-
els with either single CNN or single LSTM models (but not both) despite
that a comparison with both would have been more comprehensive in
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Fig. 3. Single network models. (a) The LSTM model and the (b) 1D CNN model processing the raw input signals, and the (c) 2D CNN model processing the spectrogram of the

raw input signals.

verifying the superiority of hybrid models. Furthermore, investigating
different ways of combining CNN and LSTM networks could enhance
the performance even further. However, this issue is not considered at
all in the above-mentioned studies.

There are also studies that propose some novelty at the layer level
rather than the model architecture level. Tang et al. (2023) propose
to use the hierarchical-split idea for CNN layers that can improve
the ability to represent features at multiple scales by capturing a
broader range of receptive fields associated with human activities in a
single feature layer. Another study (Han et al., 2022) proposes a novel
approach that uses heterogeneous convolution inspired by grouped
convolution to enhance the performance of activity recognition with-
out increasing the computational overhead. Authors of Huang et al.
(2022a) propose a new type of CNN that leverages filter activation
to activate the seemingly unimportant filters from the perspective of
enhancing accuracy. The proposed approach requires only a single
network instead of multiple networks to be deployed on resource-
limited embedded devices. To address the issue of sequential weakly
labeled multi-activity recognition and localization, Wang et al. (2021)
propose a recurrent attention network (RAN) that iteratively applies
attention to multiple activities within a single sample. By doing so, the
RAN effectively reduces the need for manual labeling and annotation.
Huang et al. (2022b) propose Channel Equalization (CE) as a solution to
the ‘channel collapse’ problem where most channels do not contribute
much information and only a few are relied on. CE tackles this by
activating all channels via a whitening or decorrelation operation.

3. Methodology
3.1. The proposed model

We propose a hybrid model where a 2D CNN and a LSTM network
are combined in parallel, as illustrated in Fig. 5. Since LSTMs are
favored for time-series data and CNNs are more suitable for process-
ing image data, we feed the LSTM branch with the raw time-series
sensor readings and the CNN branch with the spectrogram of the raw
sensor recordings. While LSTM focuses on the time-dependent patterns
in the data, CNN considers the frequency patterns as well, enabling
each model to extract features representing different characteristics of
the signal that convey complementary information. By merging such
features, we can obtain better feature representation of the signal,
resulting in improved activity classification performance.

3.2. Datasets

In this subsection, we briefly describe the two publicly available
datasets that we have employed in this study.

3.2.1. UCI HAR dataset

Thirty participants between the ages 19 and 48 perform six activities
while the accelerometer and gyroscope sensors of a smartphone (Sam-
sung Galaxy S2), carried on their waist, records the data (Reyes-Ortiz
et al., 2015; Anguita et al., 2013; Reyes-Ortiz et al., 2016). Recorded
activities are walking on a flat surface, walking upstairs, walking
downstairs, sitting, standing, and laying. The number of samples in
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each activity class are comparable but not equal, causing this dataset
to be slightly imbalanced. The accelerometer captures tri-axial linear
acceleration while the gyroscope detects tri-axial angular velocity (or
rate) at a sampling frequency of f, = 50 Hz. Both the total acceleration
and the body component of acceleration are provided in this dataset.
Body components are obtained by subtracting the gravitational com-
ponent from the total acceleration. Signals are segmented by using an
overlapping sliding window with a length of 128 readings/window.
Each time segment contains data from nine channels in parallel: x, y,
and z axes of (i) accelerometer total components, (ii) accelerometer
body components, and (iii) gyroscope angular velocity components.
The acquired dataset has been randomly partitioned into two, where
data from 70% of the subjects are used for training and data from the
remaining 30% are employed for testing.

3.2.2. Daily and sports activities (DSA) dataset

Eight subjects (four male, four female) between the ages 20 and 30
perform 19 different daily and sports activities (Altun and Barshan,
2019, 2013). During the experiments, the subjects wear five sensor
units placed on their chest, right/left arm, and right/left leg. Each
sensor unit contains three tri-axial sensors: accelerometer, gyroscope,
and magnetometer. These three sensor types capture signals in the x, y,
and z axes at a sampling frequency of f, = 25 Hz. Hence, there are
45 signal channels (5 sensor units x 3 sensor types x 3 axes). The
subjects perform each activity for five minutes after which the recorded
signals are divided into non-overlapping 5-sec segments. The activity
classes are balanced since there is an equal number of samples from
each activity type.

It is notable that the UCI HAR Dataset contains a small number
of activities (six) performed by a large number of participants (30)
whereas the DSA Dataset contains a large number of activities (19)
performed by a smaller number of participants (eight). The UCI HAR
Dataset contains 269 MB data while the DSA Dataset comprises 402 MB
data. Given the smaller number of participants of the DSA dataset,
resulting in less variation in the acquired data, and the larger number
of activities it contains which need to be differentiated, this dataset is
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more challenging in terms of learning the discriminatory characteristics
of the different activities compared to the UCI-HAR Dataset.

3.3. Preprocessing

3.3.1. Preprocessing the data for the 1D CNN and LSTM branches of the
DL models
Since each sensor type provides output in different ranges with
different units, the signals can be normalized or standardized. Mekruk-
savanich and Jitpattanakul (2021) employ standardization for the UCI
HAR Dataset and Yurtman and Barshan (2017), Yurtman et al. (2018),
Barshan and Yurtman (2020), Yurtman et al. (2021) employ normaliza-
tion for the DSA Dataset. For compatibility with these related studies,
we standardized the signals in the UCI HAR Dataset and normalized
those in the DSA Dataset, considering each signal channel separately.
We standardized the UCI HAR Dataset as follows:
x[n] — x[n]

X[n]gandardized = p

X

where x[n] is the data sequence in one time segment of data, x[n] is
the average value of x[n], and o, is the standard deviation of x[n].
Standardized sequences have zero mean and unit variance.

For the DSA Dataset, we modified the normalization formula by sub-
tracting the average value of the sequence from the sequence instead of
its minimum value. Thus, we normalized the data using the following
equation:

x[n] — x[n]
x[n]normalizcd =
max ~ Xmin
Here, x.;, and x are the minimum and maximum values of the

min max
sequence x[n], respectively.

3.3.2. Preprocessing the data for the 2D CNN branches of the DL models
We did not standardize/normalize the data for the 2D CNN because
these operations remove the zero frequency (DC) component of the
signal, which is not desirable. We directly convert the data in each
time segment of each signal channel into a spectrogram by taking
the magnitude of its short-time Fourier transform (STFT) (Oppenheim
et al., 1999). To do this, we first padded the beginning and the end of
each time segment with zeroes to obtain a total of 140 samples per time
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Fig. 6. Sample spectrograms obtained from the UCI HAR Dataset for the activities of (a) walking on a flat surface, (b) walking upstairs, (c) walking downstairs, (d) sitting,

(e) standing, and (f) laying.

segment for both datasets. Based on the 140 samples, we have obtained
14 subsegments of 20 samples each, with 50% overlap between consec-
utive subsegments. We took the Discrete Fourier Transform (DFT) of
each subsegment to get 11 frequency components in the interval [0, LR
with frequency increments of ;—6 where f is the sampling frequency.
As a result, the spectrogram of each time segment has dimensional-
ity 11 x 14 for both datasets. Thus, the time segments of the two
datasets with dimensionalities 128 x 9 and 125 x 45 are respectively
transformed to spectrograms with dimensionalities 11 x 14 x 9 and
11 x 14 x 45. Sample spectrograms obtained from the two datasets are
provided in Figs. 6 and 7.

3.4. Implementation and resources

We have implemented all seven models using the Keras and Ten-
sorflow libraries in Python. Since tuning the hyper-parameters and
processing the datasets are computationally intensive, we used the
GPUs of two different platforms to expedite the computations. These
are the Amazon Web Services (AWS) platform with EC2 p2.xlarge GPU

for tuning the hyper-parameters and the Google Colab platform that
provides 12 GB NVIDIA Tesla K80 GPU for testing the final models.
We used Intel(R) Core(TM) i7-10510U CPU while measuring the testing
times.

3.5. Layer selection

Layers can be selected in two ways while making a performance
comparison between the different DL models. The first option is to
optimize the number of each layer type for each model. While this
approach seems to be optimal, it brings an uncertainty about whether
the performance differences among the different models are caused by
different layer types or different numbers of layers. The alternative
is to fix the type and the number of layers for each model and only
change the type of a single layer as appropriate to each model. In this
approach, performance differences are only the result of the different
layer type employed in only one layer of each model. To be able to test
our proposed model in both situations, we used the UCI HAR Dataset
for the first case and the DSA Dataset for the second case.
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Fig. 7. Sample spectrograms obtained from the DSA Dataset for the activities of (a) lying on the right side, (b) ascending stairs, (c) walking on a treadmill at a speed of 4 km/h

in flat position, (d) rowing, (e) jumping, and (f) playing basketball.

In processing the UCI HAR Dataset, we optimized the number of lay-
ers in each type of network before selecting the other hyper-parameters.
In these experiments, we observed the effect of changing the number
of layers while keeping the other hyper-parameter values fixed. Model
layers are displayed in Figs. 8 and 9. We obtained the optimum number
of layers as four for 1D CNN, two for 2D CNN, three for LSTM, and
three for the standard 1D CNN-LSTM. The optimal numbers of dense
(fully connected) layers are one, two, one, and one, respectively. Since
using a pooling layer did not improve the performance of 1D CNN
and 2D CNN models, we did not use pooling layers in the networks
developed in this study. Because the alternative 1D CNN-LSTM and the
proposed 2D CNN-LSTM model are composed of single networks whose
layers are already optimized as described above, we did not conduct a
separate layer selection process for them. We used dropout layers as
regularizers in between two layers which are placed before the dense
layers in all seven models.

In processing the DSA Dataset, we fixed the total number of layers in
each model and only changed the type of the first layer. The first layers
used in the respective models are 1D CNN, 2D CNN, LSTM, 1D CNN
and LSTM in series, 1D CNN and LSTM in parallel, 2D CNN and LSTM

in parallel. Model layers are illustrated in Figs. 10 and 11. Since the
remaining layers of the networks are identical, differences in the results
with this dataset are the consequence of including different types of first
layers.

3.6. Hyper-parameter selection

After determining the number of layers in each type of network, we
need to select the other hyper-parameters. Although hyper-parameter
selection is an on-going research area, there are some common prac-
tices, one of which is grid searching. However, when the number
of hyper-parameters is large, the time required for grid searching
grows exponentially. Finding the optimal hyper-parameters through
this computationally intensive process takes a long time.

Another approach is selecting the hyper-parameters sequentially or
one at a time. In this method, the value of only one hyper-parameter is
changed over an interval. After the best value is selected for that hyper-
parameter, it is kept fixed. Then, the next hyper-parameter is tuned in
a pre-determined interval. Since many hyper-parameter combinations
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Fig. 8. Series structure and layers of the 1D CNN, 2D CNN, LSTM, standard 1D CNN-LSTM, and the Ordéiiez and Roggen 1D CNN-LSTM models used in processing the UCI HAR

Dataset.

are not considered, this method is not optimal but computationally less
intensive.

The third method is Bayesian optimization (Snoek et al., 2012)
used in Mekruksavanich and Jitpattanakul (2021) for HAR. This is
the method that we have adopted for hyper-parameter selection. We
have used Scikit-Optimize library in Python for the necessary imple-
mentation tools. We have employed EC2 p2.xlarge GPU instance in the
AWS platform and the “gbrt minimize” function from Scikit-Optimize
library for hyper-parameter tuning using Bayesian optimization. Before
the optimization process, the set of model hyper-parameters to be
optimized and their initial values are provided as input to the function.
During the optimization process, based on the model performance for
the previously selected hyper-parameter values, a new set of hyper-
parameter values is automatically selected by the algorithm to improve
the model performance. The total number of repetitions for this process
is chosen as 50 for each model, taking into account the time and
the computational resources. Thus, we have considered 50 hyper-
parameter combinations for each model to determine the optimum set
of hyper-parameter values that provide the best performance for that
model.

For the UCI HAR Dataset, the number of epochs was set to 50. With
the L1SO cross validation we used for the DSA Dataset (see Section 3.7),
we conducted 20 epochs per subject, resulting in a total of 160 epochs
(= 8 subjects X 20 epochs/subject).

There are some common practices on the choice of some of the
hyper-parameter values for the network layers. Among these hyper-
parameters are the optimizer, loss function, and the activation function
which we have selected directly, without tuning. We have employed
Adam as the optimizer and Categorical Cross Entropy as the loss function
for all models. We have used the sigmoid activation function for the
dense layers and the ReLU activation function for the 1D CNN layers
of the models developed for processing both datasets, as well as the
2D CNN layers used for processing the UCI HAR Dataset. However,
excluding activation functions in the 2D CNN layers while processing

the DSA Dataset resulted in better classification accuracy. Therefore,
we did not use any activation function for those layers. Also, the last
dense layers of six of the networks developed for processing the DSA
Dataset do not contain any activation functions.

3.7. Training, validation, testing methods, and performance analysis

Ideally, a large dataset should be divided into three parts or three
separate datasets should be used for the training and testing (inference)
process of a DL model: training, validation, and test datasets. Training
and validation sets should be used in tuning the hyper-parameters to
select their optimal values. Then, the final model should be trained on
the union of the training and validation sets and the final performance
analysis should be done on the test set. Also, each participant’s data
should be included in only one of the three sets (training, validation,
test sets) to eliminate any bias during the performance analysis. If there
is any overlap in the data used during training, validation, and testing,
this would not be a fair evaluation since the models would be tested on
data similar to what they were trained on. Furthermore, in real-world
applications, it is likely for a DL model to encounter new (unseen) data,
different than those used for training.

The UCI HAR Dataset is originally partitioned into training and
test sets as follows: Of the 30 subjects, data from subjects 2, 4, 9, 10,
12, 13, 18, 20, and 24 are assigned as test data whereas data from
the remaining subjects are used for training. Since a validation set is
not provided, we partitioned the data acquired from the 21 training
subjects into two. We used data from subjects 1, 3, 5, 6, 7, 8, 11, 14,
15, 16, 17, 19, 21, 22, 23, 25 for training and those from subjects 26,
27, 28, 29, and 30 for validation. While selecting the hyper-parameters,
we trained the model on the training set and validated the results for
the given set of hyper-parameters on the validation set. After this step,
we determine the hyper-parameter values performing the best on the
validation set as the optimum ones which are then used in building the
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Fig. 9. Parallel structure and layers of the alternative 1D CNN-LSTM and the proposed 2D CNN-LSTM models used in processing the UCI HAR Dataset.

final model. We train the final model on the union of the training and
validation sets and evaluate its performance on the test set.

Accuracy is one of the commonly used performance measures.
However, when the activity classes are not balanced, F, score, recall,
and precision measures are more appropriate for evaluating the per-
formance. In this study, we used all four performance metrics when
processing the UCI HAR Dataset, which is somewhat imbalanced, and
employed the accuracy metric for the DSA Dataset which is balanced
in that it contains an equal number of samples from each activity
class.

When the amount of data is limited, cross-validation techniques
can be employed. For processing the DSA Dataset in this study, we
employ leave-one-subject-out cross validation (L1SO) which uses all
the data except one subject’s data for training and tests the trained
model with the data from the left-out subject. The process is repeated
for all subjects and the average value of the performance metric is
calculated over the subjects. L1SO method is preferred to the multi-fold
cross-validation technique where each subject’s data are distributed
randomly to both the training and the test set, resulting in a bias
against the test set. Consequently, the performance measure does not
reflect the actual performance of the model on real data. We used L1SO
cross validation for both hyper-parameter selection and testing the final
models when processing the DSA Dataset because of its smaller number
of subjects.

Since DL models are stochastic, single execution of an experiment
can provide misleading results. Therefore, repeating each experiment
multiple times (10 times in this study) and reporting the average and
standard deviation values would be more appropriate. This is done for
the L1SO cross validation used with the DSA Dataset as well where the
whole cross-validation process was repeated 10 times.

4. Experimental results and discussion
4.1. Hyper-parameter optimization results

The tuned hyper-parameter values for the proposed 2D CNN-LSTM
hybrid model are provided in Tables 2 and 3 for the two datasets. Those
for six of the other models that we have implemented in this compara-
tive study are provided in Tables A.1-A.10 of Appendix. We note that
we did not tune the parameters of Ordénez and Roggen’s 1D CNN-
LSTM model and used the hyper-parameters already provided in their
paper (Ordonez and Roggen, 2016). This is because, like the standard
1D CNN-LSTM model, this model comprises a series combination of
1D CNN and LSTM single models and we have already optimized the
parameters of the standard 1D CNN-LSTM model.

Total times spent for tuning the hyper-parameters of the models
on both datasets are displayed in Tables 4 and 5. Tuning the hyper-
parameters of the models is a computationally intensive process that
took about 29.79 h for the UCI HAR Dataset and 25.53 h for the
DSA Dataset, totaling to 55.32 h (for six of the models). Note that
hyper-parameter tuning needs to be done only once and the tuned
hyper-parameters can be used in (near) real-time applications without
tuning at each run of the DL algorithms.

4.2. Performance comparison of the proposed model with the six existing
models

The results of our experiments on the two datasets are tabulated
in Tables 6 and 7. Since the imbalance of the UCI HAR Dataset is
not too significant, the four performance metrics for each model are
comparable for this dataset. The accuracy performance metric values
based on the UCI HAR Dataset (Table 6) are consistently higher than
those based on the DSA Dataset (Table 7) by 2.71-11.31%. This is
mainly because there are only six activities to recognize in the UCI HAR
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Fig. 10. Series structure and layers of the 1D CNN, 2D CNN, LSTM, standard 1D CNN-LSTM, and the Ordénez and Roggen 1D CNN-LSTM models used in processing the DSA

Dataset.

Fig. 11. Parallel structure and layers of the alternative 1D CNN-LSTM and the proposed 2D CNN-LSTM models used in processing the DSA Dataset.

Dataset whereas there are 19 in the DSA Dataset. The standard devia-
tions in the two tables are comparable.

The results indicate that the proposed 2D CNN-LSTM hybrid model
achieves better accuracy, F|, recall, and precision scores compared to
the six existing models, namely, 1D CNN, 2D CNN, LSTM, standard
1D CNN-LSTM, 1D CNN-LSTM model proposed in Ordéniez and Roggen
(2016), and the alternative 1D CNN-LSTM. The proposed hybrid net-
work achieves an average accuracy of 95.66% on the UCI HAR Dataset
and 92.95% on the DSA Dataset. These figures are, respectively, 2.45%
and 3.18% above the accuracy of the single 2D CNN model that ranks

10

the second in all performance metrics. In fact, the proposed 2D CNN-
LSTM hybrid model outperforms both of its individual components
(the single 2D CNN and the single LSTM models) considerably for
both datasets. For the UCI HAR Dataset, the four performance metrics
improve by 1.98-2.52% and by 4.89-5.63% compared to the single
2D CNN and the single LSTM models, respectively. On the other hand,
for the DSA Dataset, the accuracy metric improves by 3.18% with
respect to the single 2D CNN and by 14.23% compared to the single
LSTM.

When we compare the results of the standard 1D CNN-LSTM model
with its individual components (the single 1D CNN and LSTM), we
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Table 2
Optimized hyper-parameters of the proposed 2D CNN-LSTM in processing the UCI HAR
Dataset.

Hyper-parameter Optimum value Search interval

CNN layer 1 filter number 64 [4, 256]
CNN layer 2 filter number 64 [4, 256]
CNN layer 1 filter width 3 [3, 7]
CNN layer 2 filter width 3 [3, 7]
LSTM layer 1 neuron number 64 [8, 512]
LSTM layer 2 neuron number 64 [8, 512]
LSTM layer 3 neuron number 64 [8, 512]
dense layer 1 neuron number 64 [8, 512]
dense layer 2 neuron number 64 [8, 512]
dense layer 3 neuron number 64 [8, 512]
dropout layer 1 probability 0.5 [0.1, 0.9]
dropout layer 2 probability 0.5 [0.1, 0.9]
dropout layer 3 probability 0.5 [0.1, 0.9]
dropout layer 4 probability 0.5 [0.1, 0.9]
dropout layer 5 probability 0.5 [0.1, 0.9]
dropout layer 6 probability 0.5 [0.1, 0.9]
learning rate 0.001 [107°, 0.1]

Table 3
Optimized hyper-parameters of the proposed 2D CNN-LSTM in processing the DSA
Dataset.

Hyper-parameter Optimum value Search interval

CNN layer filter number 103 [4, 256]
CNN layer filter width 5 [3, 71
LSTM layer neuron number 297 [8, 512]
dense layer 1 neuron number 197 [8, 512]
dense layer 2 neuron number 144 [8, 512]
dense layer 3 neuron number 399 [8, 512]
dropout layer probability 0.76497736 [0.1, 0.9]
learning rate 4.16143569x1075 [10-°, 0.1]

Table 4
Total hyper-parameter tuning times for the UCI HAR
Dataset for 50 hyper-parameter combinations and 50
epochs.

Model name Total time (s)

1D CNN 4,438
2D CNN 3,659
LSTM 30,911
standard 1D CNN-LSTM 3,740
alternative 1D CNN-LSTM 32,563
proposed 2D CNN-LSTM 31,926

Table 5
Total hyper-parameter tuning times for the DSA dataset for 50 hyper-parameter
combinations and 160 epochs.

Model name Total time (s)

1D CNN 7,464
2D CNN 4,141
LSTM 11,324
standard 1D CNN-LSTM 10,621
alternative 1D CNN-LSTM 41,724
proposed 2D CNN-LSTM 16,649

do not observe a similar performance boost. This is mainly because
of the inferior performance of the standard 1D CNN-LSTM network
compared to the proposed model. The four performance metrics of
the standard 1D CNN-LSTM model are below those of the proposed
2D CNN-LSTM hybrid network by 4.04-4.45% for the UCI HAR Dataset
whereas its accuracy metric is lower than that of the proposed 2D CNN-
LSTM model by 8.67% when the DSA Dataset is processed. The different
performances of the two hybrid networks stem from the differences in
their network architecture as well as the type of input that they receive
and process. The standard 1D CNN-LSTM architecture uses the 1D CNN
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and LSTM networks consecutively to extract features from only one
kind of input signal (the raw signals) while the proposed model employs
the 2D CNN and LSTM in separate branches in parallel, each receiving
a different form of input (spectrogram and raw signals, respectively).

To determine whether the superiority of the proposed 2D CNN-
LSTM network model arises from the use of two different types of input
or from its parallel architecture, we also compare it with an alternative
1D CNN-LSTM network (Hamad et al., 2020), which has a parallel
structure similar to that of the proposed model. In both the proposed
model and the alternative 1D CNN-LSTM network, the parallel running
CNN and LSTM subnetworks extract their own features which are then
merged and classified with a softmax layer. The main difference is that
while the proposed model takes input signals in two different forms,
the alternative 1D CNN-LSTM hybrid model receives the raw signals
as input for both the 1D CNN and LSTM branches of the network. The
results in Tables 6 and 7 indicate that the performance metrics of the
alternative 1D CNN-LSTM model are consistently lower than those of
the proposed 2D CNN-LSTM model by 4.47-5.26% for the UCI HAR
Dataset and by 8.35% for the DSA Dataset. The performance of the
alternative 1D CNN-LSTM is comparable to the performances of its
two individual components. More specifically, the four performance
metrics of the alternative 1D CNN-LSTM in Table 6 consistently lie
in between the individual performance metrics of the single 1D CNN
and single LSTM models. This is also the case in Table 7, although the
accuracy figure is much closer to that of 1D CNN. Since the alternative
1D CNN-LSTM model performance metrics are always lower than those
of the 1D CNN, and consistently with larger standard deviation values,
between these two models, it would be preferable to use the 1D CNN
model which requires less training time.

The performance comparison between the proposed 2D CNN-LSTM
and the alternative 1D CNN-LSTM models reveals that using inputs of
different nature (raw signals and spectrogram) enables the proposed
model to extract features that enhance and complement each other
whereas using the same form of input in both branches of the network
causes the alternative 1D CNN-LSTM model to extract possibly over-
lapping or redundant features. Hence, the proposed model succeeds in
extracting features with better representation of activities, resulting in
improved activity recognition performance.

The results indicate that the use of spectrograms has a particularly
positive effect on DL model performance. We note that the single
2D CNN, also using the spectrogram of the raw signals as input,
exhibits the second best performance on both datasets. The use of two
inherently different subnetwork models (2D CNN and LSTM) that run
in parallel also contributes to the superiority of the proposed model.

4.3. Loss versus epoch, accuracy versus epoch graphs and confusion matri-
ces of the proposed model

Figs. 12-14 show the loss versus epoch plot, accuracy versus epoch
plot, and the confusion matrix for the proposed 2D CNN-LSTM hybrid
model processing the UCI HAR Dataset. The corresponding results for
the DSA Dataset are provided in Figs. 15-17.

Fig. 12 indicates that the proposed model for the UCI HAR Dataset
works properly since the loss decreases gradually during both training
and testing. In Fig. 13, we observe that there is no overfitting issue
since there is a small gap between the training and test accuracies. This
is achieved by using dropout layers for regularization.

Fig. 15 illustrates that the loss decreases quite smoothly which is
an indicator of a good learning rate for the proposed model used in
processing the DSA Dataset. On the other hand, this model has a very
large dropout probability of 0.76 which means that the model does not
use most of the neurons during the training phase while it uses all of
them for testing. Therefore, we observe in Fig. 16 that the test accuracy
is above the training accuracy until the last few epochs. Then, training
and test accuracies converge approximately to the same value. This is a
good indicator for the generalizability of the model. The large dropout
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Table 6

Comparison of the implemented single and hybrid models in terms of their subnetworks, merging method, and performance metrics. Average values

Engineering Applications of Artificial Intelligence 124 (2023) 106529

of accuracy, F, score, recall,

and precision metrics plus/minus one standard deviation are provided for processing the UCI HAR Dataset.

Model name Subnetworks Merging Input types Accuracy + std F, Score + std Recall + std Precision + std
method (%) (%) (%) (%)
1D CNN N/A N/A raw input 90.93 + 0.50 91.23 + 0.49 91.17 + 0.48 91.47 + 0.48
Single models 2D CNN N/A N/A spectrogram 93.21 + 1.60 93.18 + 1.65 93.15 + 1.64 93.67 + 1.41
LSTM N/A N/A raw input 90.03 + 0.68 90.41 + 0.69 90.30 + 0.69 90.76 + 0.66
standard 1D CNN series raw input 91.21 + 0.57 91.43 + 0.58 91.39 + 0.60 91.61 + 0.52
1D CNN-LSTM LSTM
Hvbrid model Ordéilez-Roggen 1D CNN series raw input 87.12 + 0.98 87.61 + 0.89 87.48 + 0.96 88.43 + 0.00
ybrid MOCEls  1p CNN-LSTM LSTM
alternative 1D CNN parallel raw input + raw input 90.40 + 0.79 90.77 + 0.73 90.66 + 0.78 91.18 + 0.60
1D CNN-LSTM LSTM
proposed 2D CNN parallel spectrogram + raw input 95.66 + 0.63 95.62 + 0.65 95.67 + 0.63 95.65 + 0.63
2D CNN-LSTM LSTM

Table 7

Comparison of the implemented single and hybrid models in terms of their subnetworks, merging method, and accuracy performance metric. Average value of
accuracy plus/minus one standard deviation is provided for processing the DSA Dataset.

Model name Subnetworks Merging Input types Accuracy + std
method (%)
1D CNN N/A N/A raw input 85.75 + 0.75
Single models 2D CNN N/A N/A spectrogram 89.77 + 0.97
LSTM N/A N/A raw input 78.72 + 1.43
standard 1D CNN series raw input 84.28 + 1.76
1D CNN-LSTM LSTM
Hybrid model Ordéiiez-Roggen 1D CNN series raw input 82.06 + 0.90
ybrid models 1D CNN-LSTM LSTM
alternative 1D CNN parallel raw input + raw input 84.60 + 0.94
1D CNN-LSTM LSTM
proposed 2D CNN parallel spectrogram + raw input 92.95 + 0.47
2D CNN-LSTM LSTM

probability enables different neurons to extract features independently
and allows the development of a more robust and generalizable model.

The confusion matrix of the UCI HAR Dataset in Fig. 14 indicates
that the model has similar recognition accuracies for all six activities
(Recall that this dataset is somewhat imbalanced with comparable but
unequal number of samples from each activity type.). On the other
hand, the confusion matrix for the DSA Dataset in Fig. 17 shows that
the activity 18 (jumping) has a lower recognition rate compared to
the other activities. It is incorrectly classified as activity 6 (descending
stairs) in 39 out of 60 instances.

4.4. Ablation studies

We have conducted ablation studies to show the contribution of
the proposed method on the classification performance. We have con-
sidered three key hyper-parameters in these experiments which un-
derlie the innovation that our proposed model brings. These hyper-
parameters are the connection type of the branches (series or parallel),
type of input (raw data or their spectrograms), and the type of branch
(LSTM or 2D CNN). In our experiments, we have modified these hyper-
parameters to see their effect on the classification performance of the
proposed model. Tables 8 and 9 display the results of the ablation
studies for the two datasets.

4.4.1. Connection type of branches

To investigate the effect of the connection type, we first conducted
experiments using a series connection of 2D CNN and LSTM modules
where the output of the 2D CNN is given as input to the LSTM.

12

Since such an architecture can receive only one type of input, we
have given either the raw signals or the spectrogram as input. In the
former case, all four performance metrics are below 90% for the UCI-
HAR Dataset. When we use spectrogram images as input, resulting
performance improves and is similar to that of the parallel model with
two spectrogram inputs. This validates other experiments which usually
display better results with the spectrogram input type. We also repeated
the experiments by changing the order of the 2D CNN and LSTM
modules which lowered the performance metrics in general. The main
reason could be that such an architecture does not have the benefit of
having a deep learning 2D CNN module at the input to receive and
process the signals.

4.4.2. Input type

We have already considered feeding the two input types to a series
connection in the previous part. Here, we consider network architec-
tures with two branches in parallel which can receive different input
types. Our proposed model receives two types of input where the
raw sensor signals and their spectrograms are given as input to the
LSTM and 2D CNN branches, respectively. To investigate the effect
of the input type, we have conducted experiments with four pos-
sible input combinations to a parallel structure, namely, raw-raw,
raw-spectrogram, spectrogram-raw, and spectrogram-spectrogram.

When we use raw signals as input to both branches, classification
performance is similar to that of a single-branch model comprising
the branch with the higher classification accuracy. When we use spec-
trogram images as input to both the LSTM and 2D CNN branches,
classification accuracy decreases to a level similar to that of a single
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Fig. 12. Loss versus epoch graph of the proposed model based on the test set of the
UCI HAR Dataset.
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Fig. 13. Accuracy versus epoch graph of the proposed model based on the test set of
the UCI HAR Dataset.
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Fig. 14. Confusion matrix of the proposed model based on the test set of the UCI HAR
Dataset.

2D CNN model with spectrogram input. This means that the LSTM
branch does not extract additional features from the spectrogram that
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Fig. 15. Loss versus epoch graph of the proposed model based on testing with the

second subject’s data of the DSA Dataset.
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Fig. 16. Accuracy versus epoch graph of the proposed model based on testing with
the second subject’s data of the DSA Dataset.
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Fig. 17. Confusion matrix of the proposed model based on testing with the second
subject’s data of the DSA Dataset.

complement those of the 2D CNN branch. Therefore, diversity in feature
extraction is low and classification performance is similar to that of
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Table 8
Ablation study results for the proposed model on the UCI HAR Dataset.
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Removed Remaining Merging Input types Accuracy + std F, Score + std Recall + std Precision + std
branch(es) branch(es) method (%) (%) (%) (%)
none 2D CNN, LSTM series raw 89.19 + 1.45 89.46 + 1.43 89.47 + 1.45 89.68 + 1.38
none 2D CNN, LSTM series spectrogram 94.35 + 0.47 94.36 + 0.49 94.33 + 0.51 94.57 + 0.33
none 2D CNN, LSTM series (reverse) raw 85.28 + 2.61 85.99 + 2.61 85.65 + 2.58 86.83 + 2.27
none 2D CNN, LSTM series (reverse) spectrogram 85.06 + 4.18 85.64 + 4.29 85.43 + 4.11 86.35 + 4.34
none 2D CNN, LSTM parallel raw + raw 89.70 + 0.80 90.04 + 0.81 90.03 + 0.77 90.43 + 0.75
none 2D CNN, LSTM parallel raw + spectrogram 90.17 + 0.48 90.40 + 0.49 90.39 + 0.51 90.58 + 0.48
none 2D CNN, LSTM parallel spectrogram + raw 95.66 + 0.63 95.62 + 0.65 95.67 + 0.63 95.65 + 0.63
none 2D CNN, LSTM parallel spectrogram + spectrogram 93.91 + 0.73 93.92 + 0.73 93.94 + 0.72 94.08 + 0.69
2D CNN LSTM N/A raw 88.63 + 0.95 89.11 + 0.87 88.92 + 0.95 89.62 + 0.68
2D CNN LSTM N/A spectrogram 85.03 + 4.43 83.53 + 5.80 85.05 + 4.58 87.99 + 2.97
LSTM 2D CNN N/A raw 89.99 + 0.48 90.18 + 0.49 90.18 + 0.53 90.35 + 0.41
LSTM 2D CNN N/A spectrogram 93.65 + 0.92 93.66 + 0.93 93.66 + 0.88 93.90 + 0.95
2D CNN, LSTM none N/A spectrogram + raw 81.67 + 0.30 81.30 + 0.32 81.33 + 0.32 81.71 + 0.31
Table 9
Ablation study results for the proposed model on the DSA Dataset.

Removed Remaining Merging Input types Accuracy + std

branch(es) branch(es) method (%)

none 2D CNN, LSTM series raw 56.86 + 1.36

none 2D CNN, LSTM series spectrogram 89.46 + 0.74

none 2D CNN, LSTM series (reverse) raw 67.54 + 2.00

none 2D CNN, LSTM series (reverse) spectrogram 45.00 + 6.61

none 2D CNN, LSTM parallel raw + raw 69.90 + 0.96

none 2D CNN, LSTM parallel raw + spectrogram 68.85 + 1.76

none 2D CNN, LSTM parallel spectrogram + raw 92.95 + 0.47

none 2D CNN, LSTM parallel spectrogram + spectrogram 90.91 + 0.47

2D CNN LSTM N/A raw 7291 + 1.88

2D CNN LSTM N/A spectrogram 63.45 + 2.88

LSTM 2D CNN N/A raw 60.06 + 0.49

LSTM 2D CNN N/A spectrogram 90.67 + 0.70

2D CNN, LSTM none N/A spectrogram + raw 89.89 + 0.47

a single 2D CNN model. Thus, we can state that using the same
input type for both branches does not bring additional improvement
in performance compared to using a single model which can receive
only one type of input.

Lastly, we have swapped the input types of the two branches so
that we used spectrograms as input to the LSTM and the raw signals as
input to the 2D CNN branch. This input combination and the raw-raw
input combination gave worse classification accuracy compared to the
other two input combinations. Overall, our proposed model results in
the best classification performance. Therefore, we conclude that using
spectrogram input for the 2D CNN branch and raw input for the LSTM
branch is the most suitable way of feeding inputs to the proposed
architecture.

4.4.3. Removal of branches

In this part, we investigate the effect of the removing one or both of
the branches of the proposed parallel structure. Initially, we remove the
LSTM branch and test the classification performance of the remaining
model. When we remove either the LSTM or the 2D CNN branch, we ob-
serve performance degradation. This indicates that using two branches
with the proposed architecture increases the classification performance
of the model. Also, we observe that the effect of removing the 2D CNN
branch is greater than that of removing the LSTM branch. We also
repeated these experiments by reversing the input types, which affected
the performance negatively. Lastly, we conducted an experiment by
removing both the LSTM and 2D CNN branches. We combined the
flattened version of the spectrogram and the raw signals and fed this
to a fully connected neural network. For the UCI HAR Dataset, this
model gives the lowest accuracy as expected. For the DSA Dataset,
it ranks the fourth, following the proposed model, parallel structure
with spectrograms at both inputs, and the 2D CNN with spectrogram
input. Surprisingly, it gives better results compared to the two single
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LSTM models and the 2D CNN with raw input. When we consider that
the DSA Dataset was acquired from a smaller number of participants
(eight subjects) performing a larger number of activities compared
to the UCI-HAR Dataset, it is expected that the deep models might
have some difficulties learning from a limited number of samples per
activity. However, our proposed model overcomes this difficulty and
achieves learning from a limited amount of samples as well, providing
the highest classification accuracy for both datasets.

4.5. Comparison of computational cost and complexity

Given that the typical wearable device has limited computational re-
sources, memory and computational requirements of DL models should
be considered carefully for wearable device applications. In Tables 10
and 11, we display the total number of parameters, model size, total
training time, testing time per sample, and the total number of floating
point operations (FLOPs) per sample for the seven models that we have
implemented and compared in this study. The total number of parame-
ters is largest for the 1D CNN model for both datasets. The alternative
1D CNN-LSTM model also contains a large number of parameters. The
required memory space (model size) to deploy these models varies
between 2.37-61.88 MB. Among the models implemented to process
the UCI HAR Dataset, the proposed model is the third smallest one
after 2D CNN and Ordéiiez and Roggen’s 1D CNN-LSTM in terms of
the total number of parameters and the model size. It is slower to
train compared to single 1D CNN and 2D CNN models and among the
four hybrid models, it ranks the third, following Ordéiiez and Roggen’s
1D CNN-LSTM and the standard 1D CNN-LSTM which take less time
to train. The model size and the training time of the proposed model
in processing the DSA Dataset are not as favorable as those of the
proposed model developed for the UCI HAR Dataset. However, we
can say that it still has similar complexity measures compared to the
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Table 10
Complexities of the models implemented to process the UCI HAR Dataset.
Model name Total number Model size Total training Testing time FLOPs
of parameters (MB) Time (s) per sample (ms) (million)
1D CNN 5,402,340 61.88 353 0.81 2.70
Single models 2D CNN 302,976 3.51 75 0.10 0.15
LSTM 2,498,327 28.65 2,055 18.98 2.77
standard 1,630,916 18.72 242 0.82 1.84
1D CNN-LSTM
Hybrid model Ordéiiez-Roggen 525,126 4.07 142 0.68 0.39
ybrid models 1D CNN-LSTM
alternative 3,733,560 42.84 1,390 5.63 2.26
1D CNN-LSTM
proposed 767,110 8.88 1,236 1.60 0.43
2D CNN-LSTM
Table 11
Complexities of the models implemented to process the DSA Dataset.
Model name Total number Model size Total training Testing time FLOPs
of parameters (MB) Time (s) per sample (ms) (million)
1D CNN 5,404,163 61.73 25 0.28 2.71
Single models 2D CNN 227,293 2.60 14 0.16 0.11
LSTM 202,929 2.37 79 1.04 0.20
standard 754,419 8.69 28 0.45 0.42
1D CNN-LSTM
Hybrid model Ordénez-Roggen 1,095,379 8.42 41 1.30 0.68
ybric models 1D CNN-LSTM
alternative 1,239,742 14.12 88 0.70 0.64
1D CNN-LSTM
proposed 1,794,638 20.50 118 2.90 1.25
2D CNN-LSTM

Table 12
Comparison of accuracy performance metrics of the proposed model and
the related work for processing the UCI HAR Dataset.

Reference study Model Accuracy (%)
Present paper 2D CNN-LSTM 95.66 + 0.63
Yen et al. (2020) 1D CNN 95.99
Xia et al. (2020) LSTM-2D CNN 95.78
Tufek et al. (2020) LSTM 93.70
Mutegeki and Han (2020) 1D CNN-LSTM 92.13
Deep and Zheng (2019) 1D CNN-LSTM 93.40

other six models. When we consider the performance improvement the
proposed model brings, this difference in complexity can be tolerated.
In case it may not be tolerable for on-device computing in a particular
application, model compression or computation off-loading methods
can be employed (Kosar, 2022).

The testing times of the models vary between 0.10-18.98 ms per
sample on a regular user laptop CPU [Intel(R) Core(TM) i7-10510U
CPU]. Hence, the models can be considered sufficiently fast to be
used in real-time applications. The total number of FLOPs per sample
changes between 0.11-2.77 million.

4.6. Comparison of our results with existing studies

We review the results of five recent studies (Yen et al., 2020; Xia
et al., 2020; Tufek et al., 2020; Mutegeki and Han, 2020; Deep and
Zheng, 2019) that use the UCI HAR Dataset (Table 12) and four recent
works (Yurtman and Barshan, 2017; Yurtman et al., 2018; Barshan
and Yurtman, 2020; Yurtman et al., 2021) our research group has
conducted that process the DSA Dataset (Table 13). However, since
there are some differences among these studies in terms of the imple-
mentation and the performance evaluation details, the results of these
studies are not totally comparable with those of the proposed model.
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Mutegeki and Han (2020) and Deep and Zheng (2019) both show
that the standard 1D CNN-LSTM model improves the performance
of the single LSTM model. Our results also confirm this: When the
standard 1D CNN-LSTM model is used with the UCI HAR Dataset,
there is 0.85-1.18% improvement in the performance metrics whereas
with the DSA Dataset, the accuracy improves by 5.56% compared to
the LSTM. However, these two studies do not make a performance
comparison with the 1D CNN. Ordéiiez and Roggen (2016) demon-
strate that the standard 1D CNN-LSTM improves the performance of
1D CNN. Consistent with this, our results in Table 6 indicate that there
is improvement by 0.14-0.28% in the performance metrics for the
UCI HAR Dataset. However, in Table 7, we observe that the accuracy
metric for the standard 1D CNN-LSTM is lower than that of 1D CNN
by 1.47%, with larger standard deviation. This could be due to some
differences in the implemented models: The standard 1D CNN-LSTM
that we developed for processing the UCI HAR Dataset contains three
layers (two layers of 1D CNN followed by a LSTM layer) whereas the
1D CNN comprises four layers. When we make the comparison based
on the DSA Dataset, we simply add a LSTM layer after the 1D CNN
which is the only difference between the 1D CNN and the 1D CNN-
LSTM models for this dataset. Hence, in the UCI HAR Dataset, we
compare the standard 1D CNN-LSTM with a deeper 1D CNN with four
layers, whereas in the DSA Dataset, we compare the sequential 1D CNN
and LSTM layers that form the standard 1D CNN-LSTM with a single
1D CNN layer. On the other hand, Ordoéfiez and Roggen (2016) replace
the dense layers of the 1D CNN with LSTM layers. In other words,
Ordoénez and Roggen (2016) compare the effect of using LSTM or dense
layers after four 1D CNN layers whereas the present paper compares
the effect of using LSTM or 1D CNN layers after two 1D CNN layers in
processing the UCI HAR Dataset. For the DSA Dataset, we compare the
effect of including or not including a LSTM layer after a 1D CNN layer.

Some other differences in the implementation for the studies that
use the UCI HAR Dataset are as follows: In creating segmented data,
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Comparison of accuracy performance metrics of the proposed model and the related work for processing the DSA Dataset.

Reference study Model Accuracy + std (%)
Present paper 2D CNN-LSTM 92.95 + 0.47
Yurtman and Barshan (2017) SVM 90.36 + 2.28
ANN 89.67 + 3.63
Yurtman et al. (2018) ANN 90.93 + 3.95 (all activities)
87.45 + 11.69 (stationary)
91.86 + 3.85 (non-stationary)
Barshan and Yurtman (2020), ANN 90.93 + 3.95

Yurtman et al. (2021)

(result used from Yurtman et al. (2018))

Yen et al. (2020) use a window size of 256 while the other studies
listed in the table, including ours, use a 128-length sliding window. The
number of test samples provided in Xia et al. (2020) is not the same
as in the other studies which indicates that the way the participants’
data are split into training and test sets is different than in the other
studies. Moreover, in some earlier studies, it is not clear which set is
used for hyper-parameter tuning. Some studies may allocate a separate
validation set for hyper-parameter tuning while others may not. In
this case, the former group would be disadvantaged compared to the
latter. Lastly, since DL models are stochastic in nature, we typically
get a different result at each repetition of an experiment. For a fair
comparison, providing the average and the standard deviation values
of the performance metrics would be more appropriate.

In Table 13, we compare the accuracy result obtained using the
DSA Dataset with the results of our previous studies that use the
same dataset but implement ML algorithms instead of DL models. In
the table, we have chosen to present the results of the most rele-
vant ML classifier used which is artificial neural networks (ANNS).
Among the seven state-of-the-art ML classifiers implemented in Yurt-
man et al. (2018), ANNs result in the highest accuracy of 90.93%,
followed by Support Vector Machines (SVMs) with 90.80%. On the
other hand, among the four ML classifiers compared in Yurtman and
Barshan (2017), SVMs are slightly superior to ANNs with respective
accuracy figures of 90.36% and 89.67%. Yurtman and Barshan (2017),
besides the DSA Dataset, tests the ML algorithms on four other pub-
licly available datasets for which the accuracy varies between 42.35%
and 91.03%. Yurtman et al. (2018) divide the 19 activities into two
broad categories as stationary and non-stationary, for which separate
accuracy figures are provided, as well as the accuracy result of 90.93%
over all activities for ANN. The works Barshan and Yurtman (2020)
and Yurtman et al. (2021) both use the result reported in Yurtman
et al. (2018) as reference for comparison with the performances of the
position and orientation invariant algorithms developed in those stud-
ies. According to this table, using DL models instead of ML classifiers
can improve the classification accuracy by up to 3.28%. We also note
that the standard deviation of the accuracy of the proposed model is
considerably lower than those of the previous studies presented in this
table.

Although there is not much common basis to make a fair comparison
between the studies reviewed above in two groups, in any case, we
have presented the results of recent studies together with our results in
Tables 12 and 13. Once again, it should be noted that for the reasons
explained above, this comparison is not completely like-for-like.

5. Conclusions

We have proposed a novel 2D CNN-LSTM hybrid architecture that
enables extracting a broader range of representative features, resulting
in higher activity recognition accuracy. Using spectrograms as input for
the 2D CNN branch of the new model resulted in considerable perfor-
mance improvement. We compared the performance of the proposed
model with six existing DL models: 1D CNN, 2D CNN, LSTM, standard
1D CNN-LSTM, 1D CNN-LSTM model proposed in Ordénez and Roggen
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(2016), and the alternative 1D CNN-LSTM. All seven models were
implemented to process two publicly available datasets (UCI HAR and
DSA Datasets). The proposed model proved to be superior in terms
of the accuracy, F; score, recall, and precision performance metrics,
while offering an acceptable level of complexity. If complexity is a
limiting issue in a specific application, 2D CNN model would be the
second best choice, with lower complexity at the expense of some
accuracy degradation. Our current work is focused on minimizing
the computational complexity of the proposed model to enable real-
time on-device computation for resource-limited wearables without a
significant degradation in the activity recognition performance (Kosar,
2022). In future work, attention layers and transformer architectures
for activity recognition can be investigated.
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Appendix

Optimum hyper-parameter values for five of the existing mod-
els that we have implemented for comparison with the proposed
2D CNN-LSTM model are given in Tables A.1-A.5 for processing the
UCI HAR Dataset, and in Tables A.6-A.10 for using the DSA Dataset.
For the 1D CNN-LSTM model proposed by Ordéiiez and Roggen (2016),
we have used the hyper-parameter values provided in the reference; we
did not conduct hyper-parameter tuning.
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Table A.1
Optimized hyper-parameters of the 1D CNN in processing the UCI HAR Dataset.

Table A.5
Optimized hyper-parameters of the alternative 1D CNN-LSTM in processing the UCI
HAR Dataset.

Search interval

Hyper-parameter

Optimum value

Hyper-parameter

Optimum value

Search interval

CNN layer 1 filter number 255 [4, 256]
CNN layer 2 filter number 251 [4, 256] CNN layer 1 filter number 154 [4, 256]
CNN layer 3 filter number 62 [4, 256] CNN layer 2 filter number 161 [4, 256]
CNN layer 4 filter number 155 [4, 256] CNN layer 3 filter number 96 [4, 256]
CNN layer 1 filter width 4 [3, 71 CNN layer 4 filter number 92 [4, 256]
CNN layer 2 filter width 7 [3, 7] CNN layer 1 filter width 7 [3, 7]
CNN layer 3 filter width 6 [3, 71 CNN layer 2 filter width 6 [3, 71
CNN layer 4 filter width 5 [3, 71 CNN layer 3 filter width 4 [3, 7]
dense layer neuron number 242 [8, 512] CNN layer 4 filter width 6 [3, 7]
dropout layer 1 probability 0.33500743 [0.1, 0.9] LSTM layer 1 neuron number 63 [8, 512]
dropout layer 2 probability 0.21856031 [0.1, 0.9] LSTM layer 2 neuron number 291 [8, 512]
dropout layer 3 probability 0.12632442 [0.1, 0.9] LSTM layer 3 neuron number 101 [8, 512]
dropout layer 4 probability 0.70007760 [0.1, 0.9] dense layer 1 neuron number 493 [8, 512]
learning rate 4.40541658x10~3 [107¢, 0.1] dense layer 2 neuron number 239 [8, 512]
dropout layer 1 probability 0.23502093 [0.1, 0.9]
dropout layer 2 probability 0.25219255 [0.1, 0.9]
dropout layer 3 probability 0.13254391 [0.1, 0.9]
dropout layer 4 probability 0.18250190 [0.1, 0.9]
dropout layer 5 probability 0.35352521 [0.1, 0.9]
dropout layer 6 probability 0.17141114 [0.1, 0.9]
Table A.2 dropout layer 7 probability 0.42956279 [0.1, 0.9]
Optimized hyper-parameters of the 2D CNN in processing the UCI HAR Dataset. learning rate 0.00033614 [10-°, 0.1]

Hyper-parameter

Optimum value

Search interval

CNN layer 1 filter number 7 [4, 256]

CNN layer 2 f%lter nlllmber 23 [4, 256] Table A.6

CNN layer 1 f%lter W%dth 4 (3, 7] Optimized hyper-parameters of the 1D CNN in processing the DSA Dataset.

CNN layer 2 filter width 7 [3, 71

dense layer 1 neuron number 72 (8, 512] Hyper-parameter Optimum value Search interval

dense layer 2 neuron number 493 [8, 512] CNN layer filter number 83 [4, 256]

dropout layer 1 probability 0.11793672 [0.1, 0.9] CNN layer filter width 5 [3, 71

dropout layer 2 probability 0.14386716 [0.1, 0.9] dense layer 1 neuron number 498 [8, 512]

dropout layer 3 probability 0.79227985 [0.1, 0.9] dense layer 2 neuron number 341 [8, 512]

learning rate 0.00354435 [107%, 0.1] dropout layer probability 0.86982345 [0.1, 0.9]
learning rate 0.00172552 [1076, 0.1]

Table A.7
Table A.3 Optimized hyper-parameters of the 2D CNN in processing the DSA Dataset.
Optimized hyper-parameters of the LSTM in processing the UCI HAR Dataset. Hyper-parameter Optimum value Search interval
Hyper-parameter Optimum value Search interval CNN layer filter number 27 [4, 256]
LSTM layer 1 neuron number 474 [8, 512] CNN layer filter width 3 [3, 71
LSTM layer 2 neuron number 362 [8, 512] dense layer 1 neuron number 66 [8, 512]
LSTM layer 3 neuron number 156 [8, 512] dense layer 2 neuron number 141 [8, 512]
dense layer neuron number 275 [8, 512] dropout layer probability 0.26342746 [0.1, 0.9]
dropout layer 1 probability 0.13905174 [0.1, 0.9] learning rate 0.00026890 [10°°, 0.1]
dropout layer 2 probability 0.28673553 [0.1, 0.9]
dropout layer 3 probability 0.51215028 [0.1, 0.9]
learning rate 0.00011890 [10-°, 0.1] Table A.8
Optimized hyper-parameters of the LSTM in processing the DSA Dataset.
Hyper-parameter Optimum value Search interval
LSTM layer neuron number 157 [8, 512]
Table A.4 dense layer 1 neuron number 122 [8, 512]
Optimized hyper-parameters of the standard 1D CNN-LSTM in processing the UCI HAR dense layer 2 neuron number 391 8, 512]
Dataset. dropout layer probability 0.17112627 [0.1, 0.9]
- - learning rate 0.00306971 [107¢, 0.1]
Hyper-parameter Optimum value Search interval
CNN layer 1 filter number 180 [4, 256]
CNN layer 2 filter number 25 [4, 256]
CNN layer 1 filter width 6 [3, 71 Table A.9
CNN layer 2 filter width 7 [3, 71 Optimized hyper-parameters of the standard 1D CNN-LSTM in processing the DSA
LSTM layer neuron number 506 [8, 512] Dataset.
dense layer neuron number 309 [8, 512] Hyper-parameter Optimum value Search interval
dropout layer 1 probabﬂfty 0.25003751 [0.1, 0.9] CNN layer filter number 6 [4, 256]
dropout layer 2 probability 0.40697846 [0.1, 0.9] CNN laver filter width 5 3. 7]
dropout layer 3 probability 0.48942447 [0.1, 0.9] Y ’
. LSTM layer neuron number 104 [8, 512]
dropout layer 4 probability 0.44661285 [0.1, 0.9]
learning rate 000015457 [10-6, 0.1] dense layer 1 neuron number 68 [8, 512]
. > dense layer 2 neuron number 21 [8, 512]
dropout layer probability 0.10679134 [0.1, 0.9]
learning rate 0.00212826 [107¢, 0.1]
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Table A.10
Optimized hyper-parameters of the alternative 1D CNN-LSTM in processing the DSA
Dataset.

Hyper-parameter Optimum value Search interval

CNN layer filter number 76 [4, 256]
CNN layer filter width 7 [3, 71
LSTM layer neuron number 58 [8, 512]
dense layer 1 neuron number 127 [8, 512]
dense layer 2 neuron number 110 [8, 512]
dense layer 3 neuron number 392 [8, 512]
dropout layer probability 0.55504952 [0.1, 0.9]
learning rate 0.00074461 [107¢, 0.1]
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