seems promising in terms of the calculation times, and allows the
use of the same paradigm for the simulation of hybrid models.
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Performance comparison of four time-of-
flight estimation methods for sonar signals

B. Barshan and B. Ayrulu

Performances of four methods of time-of-flight estimation for
sonar signals are compared in terms of their bias, standard
deviation and complexity: thresholding, curve fitting, m-out-of-N
sliding-window, and correlation detection. Whereas correlation
detection represents the theoretical optimum, simpler and faster
suboptimal methods can offer acceptable performance at much
lower cost. The experimental results are in close agreement with
the simulations.

Introduction: Most sonar systems depend on reliable time-of-flight
(TOF) estimates for accurate target localisation. The target range r
is related to the TOF ¢, by the speed of sound: r = ¢z,/2.

This Letter compares the performances of four methods of TOF
estimation, three of which are suboptimal but are fast and simple
to implement in real time: thresholding, sliding-window, and curve
fitting. These are compared to the optimum correlation detection
method which maximises the signal-to-noise ratio (SNR). A com-
parison of the methods is based on their bias, standard deviation,
and complexity.

Time-of-flight estimation: In simple thresholding, the estimated
TOF is the time ¢, at which the echo amplitude first exceeds a pre-
set threshold 7 (Fig. 1). The TOF estimate thus obtained is usually
larger than the actual TOF, which corresponds to the onset of the
echo signal. This bias on the thresholding estimate is difficult to
model or describe analytically since it is a function of the thresh-
old level, target location, and type.

Another practical TOF estimation method is curve fitting in
which an iterative nonlinear least-squares procedure is employed
to fit a parabola to the onset of the sonar echo. The vertex of the
fitted parabola is taken as an estimate of the TOF (Fig. 1). This
estimate usually falls to the left of the thresholding estimate, and
reduces the bias considerably [1].

The third suboptimal method considered is the sliding window,
which has not been applied to sonar signals before. It originates
from the m-out-of-N (or double thresholding) detection method,
first used for radar signals [2]. A window of length N is slid
through the echo signal one sample at a time. At each window
position, the number of samples exceeding the preset threshold 1 is
counted. If this number exceeds a second threshold m, then a tar-
get is assumed to be present and a TOF estimate is obtained. The

advantage of this method is its robustness to noise spikes of total
duration < m, since the target detection is based on at least m
samples exceeding the threshold, instead of a single one as in sim-
ple thresholding. We have considered three variations of this
method where the TOF estimate is taken as: (i) the first sample
exceeding T within the window, (ii) the sample at the centre of the
window, and (iii) the (N — m)th sample of the window. The per-
formance of the sliding window depends on the window length N,
the second threshold value m, and the variation used.

amplitude

!
|
t time
(curve fit) (threshold)

Fig. 1 Envelope of sonar echo and TOF estimation by thresholding and
curve fitting

Inset: Typical real sonar waveform

The classical optinum correlation detection method for TOF
estimation is also unbiased, and maximises the SNR. It employs a
matched filter that contains a replica of the echo waveform to
determine its most probable location in the received signal. Since
the echo shape varies with target location and type, a large
number of reference templates are required for the correlation
operation.

Simulation results: For a target at range r and azimuth 6 in the far
zone of the transducer, the received time signal can be modelled
by

—to— 4832
02 (t=to—~4%)

so(t) = k(r)e *5e 7 sim2rf(t—t)] (1)

Here, k(r) is a function of the target type and range » [1]. The
angular beam profile is modelled as a zero-mean Gaussian with
suitably chosen variance 6 [3]. This model for the echo signal is
capable of representing observed signals for a wide variety of tar-
get types and locations [3].

First, the problem of finding suitable values for the window
length N and the second threshold value m in the sliding-window
method is considered. Different N and m values in the range S <N
<50 and 1 < m < N have been tried when r = 0.3, 0.5, 0.7, 1.0m
and © = 0°, £10°, £20°. Choosing N = 40 and m = N/4 results in
the smallest bias in the TOF estimate in most cases. Thus these
values of N and m are used for the sliding-window method
throughout this study. The first threshold 1 is taken as five times
the noise standard deviation in all the suboptimal methods.

In the simulations, the values r = 0.3, 0.5, 0.7, 1.0m, 6 = 0°,
+10°, £20°, f, = 40kHz, ¢ = 343.5m/s, 6, = 27°, and o, = 0.0003s
are used. To estimate the bias and the standard deviation, 100
realisations are generated by adding zero-mean white Gaussian
noise to the signal. For the correlation method, an average over
100 simulated signals is computed to produce the echo template. A
comparison among the four TOF estimators is made in Table 1 in
terms of their biases and standard deviations. We have considered
the three processing options: the original time signal modelled by
eqn. 1 (O), the rectified signal (R), and its envelope (E). Since the
performances of R and O are comparable, only the results for O
and E are presented in the Table. The data for all combinations of
r and O are not presented due to space limitations. We have, how-
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ever, observed that the effect of increasing r and || is to degrade
the estimation accuracy. This is mostly caused by the decreasing
SNR as the signal amplitude decreases with increasing r and |6
(eqn. 1).

When the envelope of the signal is processed with the subopti-
mal methods, minimum bias is obtained with curve fitting. How-
ever, the variance obtained with this method is the largest. As
expected, bias performance of this method degrades when the orig-
inal signal is used, due to the fluctuations of the waveform around
the onset of the signal. When the original signal is processed curve
fitting is even worse than simple thresholding.

Table 1: Results for » = 0.5m, 6 = 0° and SNR = 20dB

Simulation Experiment

Method Bias c;, Bias c;,

$ s 8 ]
THD | O | 1.81x10+# | 3.07x10-* | 1.82x10+* | 2.49x10-
E | 1.41x10# | 2.77x10° | 1.41x10+* | 2.40x10-*
SW | O | L7Ix10* | 1.59x10~ | 1.69x10+ | 1.73x10-*
@ E | 1.65x10+ | 2.22x10-5 | 1.60x10-* | 2.04x10*
SW | O | 2.09x10+ | 1.59x10-° | 2.07x10+ | 1.73x10-*
(i1) E | 1.97x10~ | 1.84x10 | 1.94x10+ | 1.74x10-
SW | O | 2.39x10# | 1.59x10°% | 2.37x10+ | 1.73x10-
(i) | E | 2.27x10# | 1.84x10° | 2.24x10+ | 1.74x10-°
CUF | O | 2.14x10+* | 1.49x10* | 2.02x10* | 1.53x10
E | 1.34x10* | 2.98x10-> | 1.34x10* | 2.50x10-°
COR | O | 9.04x107 | 2.62x10-1% | 1.19x10-5 | 1.71x10-
E | 2.36x106 | 2.62x105 | 4.96x10-6 | 1.37x10

THD: thresholding, SW: sliding window, CUF: curve fitting,
COR: correlation, O: original, E: envelope

In terms of variance, the sliding-window method always outper-
forms the thresholding and curve-fitting methods. However, its
bias performance depends on the SNR and the variation of the
method used. Although not presented here, we have investigated
the effect of varying the SNR from 12dB to infinity. The conclu-
sion is that variation (i) gives the smallest bias when the SNR is
low. Performance of variation (ii) is slightly worse, and (iii) is the
worst. For a larger SNR, the situation is reversed: variation (iii)
performs best, and (ii) and (i) have worse performance in the given
order. This result is due to the variation of the threshold with
noise; when the noise standard deviation is small (large SNR), 7 is
chosen small. Then, the samples of the signal exceed the threshold
level 7 at the tail of the Gaussian envelope which occurs within the
second half of the time window. Therefore, variations (ii) and (iii)
perform better. For high noise standard deviations (low SNR), the
threshold is chosen larger, and the bias between the actual TOF
and the point at which the threshold is exceeded becomes larger.
In this case, the beginning of the time window is closer to the
actual TOF, and variations (ii) and (iit) perform better. The transition
between the low and high SNR cases occurs around SNR = 35dB.

In order of increasing computational complexity, the methods
can be sorted as thresholding, sliding-window, curve fitting, and
correlation detection. For the processing of a single echo, the
required CPU times on a SUN SPARC 20 workstation are 5.6, 8.3
and 11.1ms, respectively, for the first three methods. The classical
correlation detection method would require many orders of mag-
nitude greater time.

Experimental results: Experiments have been performed with wide-
beam f, = 40kHz transducers [4]. A planar target is positioned at r
= 0.5m and 6 = 0°. Data acquisition from the sonars is accom-
plished by using a DAS-50 A/D card with 12bit resolution and
1MHz sampling frequency. Starting at the transmit time, 10,000
samples of each echo signal have been collected. A typical wave-
form obtained from the real sonar system is shown as the inset of
Fig. 1. As in the simulations, an average over 100 noisy sonar
waveforms is computed to produce the correlation template.
Experimentally obtained biases and standard deviations for all
four methods, computed over 100 echo waveforms, are tabulated
in Table 1. The results are in very good agreement with the corre-
sponding simulations.

Conclusion. Four TOF estimation methods are compared on the
basis of bias error, standard deviation, SNR dependence and com-
plexity. Three of the methods are suboptimal but fast and simple
to implement. The fourth method, correlation detection, is optimal
but computationally more complex, with certain disadvantages in
a real-time implementation. It has been included mainly as a refer-
ence in this study. When the signal envelope is processed, mini-
mum bias is obtained with the curve-fitting method, which is,
however, computationally more complex and more difficult to
implement than the two other suboptimal methods. In terms of
standard deviation, the sliding-window method always outper-
forms the thresholding and curve-fitting methods. Its bias per-
formance is dependent on the SNR and the variation of the
method used. Overall, the three simpler, suboptimal methods dis-
cussed provide a variety of attractive compromises between accu-
racy and system complexity.
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