Proceedings of the 2000 IEEE
International Conference on Robotics & Automation
San Francisco, CA e April 2000

Neural network based target differentiation using sonar
for robotics applications

Billur Barshan and Birsel Ayrulu
Department of Electrical Engineering
Bilkent University
Bilkent, 06533 Ankara, Turkey

Abstract

This study investigates the processing of sonar sig-
nals using neural networks for robust differentiation
of commonly encountered features in indoor environ-
ments. The neural network can differentiate more tar-
gets, and achieves high differentiation and localization
accuracy, improving on previously reported methods.
It achieves this by exploiting the identifying features in
the differential amplitude and time-of-flight character-
istics of these targets. An important observation fol-
lows from the robustness tests, which indicate that the
amplitude information is more crucial than time-of-
flight for reliable operation. The study suggests wider
use of neural networks and amplitude information in
sonar-based mobile robotics.

1 Introduction

Neural networks have been employed efficiently as
pattern classifiers in numerous applications [5]. These
classifiers make weaker assumptions on the shape of
the underlying distributions of input data than tra-
ditional statistical classifiers and can prove more ro-
bust when the underlying statistics are unknown or
the data is generated by a nonlinear system.

Sonar is a very useful and cost-effective mode of
sensing for mobile robots. This paper investigates
the use of neural networks to process sonar signals
encountered in target differentiation and localization
applications for indoor environments. The pattern
recognition capability of neural networks allows dif-
ferentiation of more targets with increased accuracy
by exploiting the identifying features in the differen-
tial amplitude and time-of-flight characteristics of the
reflected signals. The robustness of the network per-
formance to partial removal of the input information
has been investigated, demonstrating that the network
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is robust to different failure modes, and indicating
that the amplitude information is more crucial than
time-of-flight for reliable target differentiation and lo-
calization. A comparison with previously investigated
approaches indicates improved performance.

The most common sonar ranging system is based
on time-of-flight (TOF) which is the time elapsed be-
tween transmission and reception of a pulse. Differen-
tial TOF models of targets have been used by several
researchers (8, 9]. Systems combining amplitude, en-
ergy, and duration of the echo signals along with TOF
information [1, 2, 4], or exploiting the complete echo
waveform [6] have also been considered.

Accurate target classification can be achieved by us-
ing sonar systems employing both amplitude and TOF
information. In the present paper, neural networks are
used to process amplitude and TOF information so as
to reliably handle the target classification problem.

2 Background on Sonar Sensing

In the commonly used TOF systems, an écho is pro-
duced when the transmitted pulse encounters an ob-
ject and a range value r = ct, /2 is produced when the
echo amplitude first exceeds a preset threshold level 7
at time t,. Here, t, is the TOF and c is the speed of
sound in air (at room temperature, ¢ = 343.3 m/s.).

In general, it is observed that the echo amplitude
decreases with increasing target range and azimuth 6
(Fig.1(a)). The echo amplitude falls below 7 when
|| > 6., which is related to the aperture radius a
and the resonance frequency f, of the transducer by
8, = sin™"! (9;‘}1—':) [17).

With a single stationary transducer, it is not pos-
sible to estimate the azimuth of a target with better
resolution than 26,. In our system, two identical ultra-
sonic transducers a and b with center-to-center separa-
tion d are employed to improve the angular resolution.
Each transducer can operate both as transmitter and
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receiver and detect echo signals reflected from targets
within its sensitivity region (Fig.1(a)).. Both members
of the sensor configuration can detect targets located
within the joint sensitivity region, which is the overlap
of the individual sensitivity regions (Fig.1(b)).
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Figure 1: (a) Sensitivity region of an ultrasonic trans-
ducer. (b) Joint sensitivity region of two transducers.

sonar sensor

The target primitives modeled in this study are
plane, corner, acute corner, edge, and cylinder (Fig.2).
Since the wavelength (A & 8.6 mm at f, = 40 kHz)
is much larger than the typical roughness of surfaces
encountered in laboratory environments, targets in
these environments reflect acoustic beams specularly,
like a mirror. Detailed physical reflection models of
these target primitives with corresponding echo sig-
nal models are provided in [1]. In the following,
Aga, Agb, Ape, and Apy denote the maximum val-
ues of the sonar echo signals, and t,4, teb, tes, and
tps denote the TOF readings extracted from these sig-
nals. The first index in the subscript indicates the
transmitter, the second index denotes the receiver.

PR
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Figure 2: Target primitives used in this study.

3 Target Differentiation Algorithm

In this section, the target differentiation algorithm
used in earlier work [1] is reviewed. This will not only
be useful in motivating the structure of the inputs to
be used in the neural network, but will also provide
a basis for comparison of its performance. The algo-
rithm is based on the idea of exploiting amplitude and
TOF differentials in resolving target type and may be
summarized in the form of rules:
if {taa (C!) —tap (a)] > kiop and [tbb(a) —tha (a)] > kioy

then acute corner — exit

if [Aga(@) — Agp ()] > kaoa and [App(a) — Apa(@)] >

ka0 4 then plane — exit

if [max{As.(c)}—-max{Aw(a)}] < kaos and

[ma.x{Abb(a)}—ma,x{Aab(a)}] < kaogs

then corner — exit

else edge, cylinder or unknown — exit :
Here, 0 4(0:) is the amplitude (TOF) noise stan-

dard deviation, and k4(k;) is the number of o4(0;)

which is employed as a safety margin to achieve ro-

bustness in the differentiation process. Differentiation

is achievable only in those cases where the differentials

exceed ka0 4(kto). If this is not the case, a decision

cannot be made and the target type remains unknown.

4 Target Classification and Localiza-
tion with Neural Networks

The algorithm summarized above does not provide
a distinctive rule to differentiate edges and cylinders.
One way of differentiating edges and cylinders is to use
the radius of curvature estimation method proposed
in [3]. In this work, neural networks are employed
to identify and resolve parameter relations embedded
in the characteristics of experimentally-obtained sonar
returns from all target primitives in a robust manner.

Panasonic transducers are used with aperture ra-
dius a = 0.65 cm, resonance frequency f, = 40 kHz,
and 6, = 54° [11] (Fig.1). The center-to-center sep-
aration of the transducers used in the experiments is
d = 25 cm. The entire sensing unit is mounted on a
small stepper motor with step size 1.8°. The motion
of the stepper motor is controlled through the paral-
lel port of a PC 486 with the aid of a microswitch.
Data acquisition from the sonars is through a DAS-50
A/D card with 12-bit resolution and 1 MHz sampling
frequency. Echo signals are processed on a PC 486 in
the C programming language. Starting at the trans-
mit time, 10,000 samples of each echo signal are col-
lected and thresholded. The amplitude information is
extracted by finding the maximum value of the signal
after the threshold is exceeded.

The targets employed in this study are: cylinders
with radii 2.5, 5.0 and 7.5 cm, a planar target, a cor-
ner, an edge (6, = 90°) and an acute corner (¢, =
60°). Amplitude and TOF data from these targets are
collected at 25 different locations (r, #) for each target,
from § = —20° to = 20° in 10° increments, and from
r =35 cm tor = 55 cm in 5 cm increments (Fig.3).
The target primitive located at r and @ is scanned by
the sensing unit for scan angle —52° < o < 52° with
1.8° increments. With the given scan range and mo-
tor step size, 58 (= 2732) sets of amplitude and TOF
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target position

Figure 3: Discrete network training locations.

data (Aga, Aabs Aba, Abb ; taas tass tsa, tss) are ac-
quired for each target location. The structure of these
amplitude and TOF characteristics is provided in [1].

The network employed has one hidden, one input
and one output layer. The inputs to the neural net-
work are 58 samples each of the difference signals
Aga (a) ~Agb (a), Abb(a) — Apa (a)’ taa(a) —tab (a)y and
tpr (@) — tpa(a), resulting in 232 input layer neurons.

The hidden layer comprises 100 neurons. This num-
ber was determined by a process known as enlarging,
which starts with a relatively small number of neu-
rons and increases the size of the hidden layer until
learning occurs. The number of output layer neurons
is 21. The first seven neurons encode the target type.
The next seven represent the target range r which is
binary coded with a resolution of 0.25 cm. The last
seven neurons represent the target azimuth 6 with re-
spect to the line-of-sight of the sensing unit, which is
also binary coded with resolution 0.5°.

Four sets of data are collected for each target lo-
cation for each target primitive, resulting in 700 (= 4
data sets x 25 locations x 7 target types) sets of wave-
form data for training. The network is trained with
these 700 sets of data, using the back-propagation al-
gorithm {16] with a learning constant equal to 0.01,
momentum constant equal to 0.9, and a sigmoid-
type nonlinearity. With the software tool PlaNet, the
weights are found in about one hour [12].

The network is tested as follows: Each target prim-
itive is placed in turn in each of the 25 locations shown
in Fig.3. Four sets of measurements are collected for
each combination of target type and location, again

resulting in 700 sets of experimentally obtained data.
The neural network estimates the target type, range,
and azimuth from this data.

target|| % of [ % of correct r estim. {|% of correct 8 estim.
type |[correct |[ error tolerance e, error tolerance €g

classif. || £1em[+5cm[£10cm]| £2° [£10° [ +20°
P 100(90) |[66(50) ] 78(69)| 88(80) [|96(68) |98(93)|99(92)
C 99(100) |[90(72)[92(86)] 95(91) ||90(85) |92(90) [93(90)
E 99(96) [[59(56) |82(78)| 52(90) || 77(69) |89(81)[97(95)
AC__ || 98(99) |[83(75)[91(83)| 95(88) ||87(80) [93(90) [97(92)
CY1 || 90(88) |[80(60)[89(78)| 94(87) |[97(83)|97(95) [93(99)
CY2 |[89(70) |[77(65)|82(78)| 89(91) |[8(78)|99(98)[99(96)
CY3 |[92(86) |[86(60)|92(76)] 98(86) ||97(60) |99(94)|99(96)
[AVG 1 95(90) [[77(63)]87(78)] 93(88) [[92(75)[95(92)[97(94)

Table 1: The percentages of correct classification,
range (r) and azimuth () estimation.

In Table 1, the numbers outside the parentheses
give the resulting percentages of correct target-type
classification, correct range and correct azimuth esti-
mation. A range or azimuth estimate is considered
correct if it is within an error tolerance of ¢, or €y of
the actual range or azimuth respectively. The aver-
age percentages over all target types-are also given in
the last row of the table. The percentage of correct
target type classification is high at 95%. The per-
centage of correct range estimation lies in the range
77% to 93%, and that for correct azimuth estimation
lies in the range 92% to 97%, depending on the error
tolerance level (e, or €g). For comparison, the aver-
age correct target type classification obtained using
the differentiation algorithm given in Section 3 on the
same data set is 61% and the average correct range
and azimuth estimation percentages are 72% and 59%
respectively for |e.| = 1 cm and |ep| = 2°.

The network is also tested for targets situated ar-
bitrarily in the continuous estimation space and not
necessarily confined to the 25 locations of Fig.3. The
results are given in Table 1 in parentheses. As ex-
pected, the percentages in this case are lower than
those for the training positions; the network gives the
best results when a target is situated exactly at one of
the training sites. Noting that the network was trained
only at 25 locations and at grid spacings of 5 cm and
10°, it can be concluded from the percentage of cor-
rect r and @ estimates obtained at error tolerances of
lex| = 1 cm and |eg| = 2°, that the network demon-
strates the ability to interpolate between the training
grid locations. Thus, the neural network maintains a
certain spatial continuity between its input and out-
put and does not haphazardly map positions which are
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not drawn from the 25 locations of Fig.3. The correct
target type percentages in Table 1 are quite high and
the localization accuracy would be acceptable in many
applications. If better estimates are required, this can
be achieved by reducing the training grid spacing in
Fig.3.

In addition to the above structure, multi-stage and
modular network structures have also been imple-
mented and tested. In the multi-stage network, train-

ing is performed in two or three stages by introducing:

the target type, range and azimuth information in se-
quence. In the modular structure, three separate net-
works for target type, range, and azimuth have been
employed. However, these structures did not result
in substantial improvement in the differentiation and
localization results.

testing condition type range | azimuth

% % %
Aga — Agp = 0 58(50) | 20(13) | 34(19)
Avy — Apg = 0 59(45) | 22(16) | 35(19)
tae — tap = 0 94(83) | 71(58) | 89(73)
tob — tpa = 0 95(84) | 71(58) | 89(73)
Aca =taa =0 25(22) | 13(10) 16(11)
Ay = top =0 22(19) | 17(14) 15(10)
Ago =tap =0 16(15) 9(7) 16(9)
Apa = the = 0 25(24) | 13(9) 13(7)
faa =0 94(82) | 69(56) | 89(73)
oo =0 95(83) | 74(61) 90(74)
toa = 0 05(82) | 74(60) | 90(74)
top = 0 94(81) | 67(55) | 87(72)
Aga = 0 25(21) | 13(10) | 22(i4)
Aap =0 16(15) 9(7) 16(10)
Apa =0 24(23) 9(7) 13(8)
App = 0 23(19) | 17(13) 15(9)
25% of inputs zeroed || 81(73) | 38(32) 65(53)

Table 2: The percentages of correct classification,
range, and azimuth estimation when the targets are
tested in the training positions and at arbitrary posi-
tions (in parentheses).

The network is further tested to investigate its ro-
bustness in physically plausible failure or missing data
situations. The same 700 sets of test data are used,
but with some of the network inputs equated to zero.
The results are tabulated in Table 2 for the cases where
testing is done at the training locations and at ar-
bitrary locations. Rows 1-4 correspond to the case
when one of the differential input channels is made
completely unavailable to the network. Rows 4-8 rep-
resent failure of one of the transducers. Rows 7 and 8
also correspond to the case when the target does not
fall within the joint sensitivity region of the two trans-

ducers. Rows 9-12 correspond to the case when the
amplitudes of the echo waveforms fall completely be-
low the preset threshold level. This happens when the
target is very far away from the sensor or too far off
its line-of-sight. In this case, TOF information can-
not be extracted although amplitude information is
still available. Rows 13-16 correspond to the comple-
mentary case where TOF information is available but
amplitude information is not. Finally, the effect of
the absence of randomly selected samples of the input
data is investigated and presented in row 17. Here,
25% of the input data is made unavailable to the net-
work by randomly setting some of the input samples
to zero. Note that this percentage is the same as the
percentage of samples excluded when one of the input
channels is completely blocked. The result of these
tests indicate that amplitude information is much less
dispensable, despite the fact that TOF is the more
commonly used parameter. In addition, there is a 1%
to 16% decrease in performance when the object is at
an arbitrary location as compared to when it is at a
training location.
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_Figure 4: The experimental test room. For each node,

correct decision percentages are given for the differen-
tiation algorithm (DA) and the neural network (NN).

The sensing unit has been mounted on a small mo-
bile robot navigating in a test room consisting of eight
planes, six corners and two edges. Data were collected
at five different positions by scanning the environment
(Fig.4). At each scan angle a, a decision about the
type of the target which is closest to the line-of-sight
of the sensing unit is made by employing both the
differentiation algorithm and the neural network clas-
sifier. The correct decision percentages averaged over
the entire scan are shown in Fig.4, indicating that the
neural network outperforms the differentiation algo-
rithm at all five positions. We emphasize that the
neural network employed here is the same one trained
with the discrete locations of Fig.3; it was not trained
specifically for this room. Yet, it had a success rate
varying between 71% to 90%, except for position 1
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where the proximity of the several features to each
other, and the fact that the two edges are closer to
the robot than the minimum training distance over-
whelm the network. This example also shows that the
neural network classifier is robust to higher-order and
multiple reflections in the environment.

The next example involves path planning of a mo-
bile robot in an environment cluttered with cylinders.
In addition, there is a corner behind the cylinders
which causes higher-order and multiple reflections. A
mobile robot equipped with the previously described
sensing unit is needs to find the minimum path from
its current position to the goal (Fig.5). We again com-
pare the differentiation algorithm with the neural net-
work classifier. The decisions made when the sensor
is looking towards each of the three cylinders are also
indicated on the same figure. The differentiation algo-
rithm detects two of the cylinders as planes and one
as a corner, whereas the neural network classifier can
correctly identify all cylinders. (In this example, use
of the differentiation algorithm would have resulted in

_doubling of the path length.)

mobile '
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Figure 5: Mobile robot path planning: The dotted
and dashed lines correspond to the minimum paths
designed by employing the neural nietwork (NN) and
the differentiation algorithm (DA) respectively.

5 Comparative Analysis & Discussion

In this part, the network is compared to the al-
gorithm discussed in Section 3 (for the three target
types identified by that algorithm) and two previ-
ously proposed methods [14]: Dempster-Shafer evi-
dential reasoning [13] and majority voting (7], which
are employed to resolve conflicts in the decisions of
multiple sensors. Dempster-Shafer evidential reason-
ing is useful for representing and manipulating beliefs
of decision-makers about an event, especially in sit-
uations where their beliefs reflect uncertainty or ig-
norance. Voting is a simple tool for resolving con-

method target types % | sensor
discriminated configuration
DA [1, 2] B,C,AC <61% | single
scanning node
DS evidential P,C,AC, 87% | 15 scanning
reasoning [14] {E,CY,U} sensing nodes
voting [14] 88% | 15 scanning
P,C,AC, sensing nodes
{E,CY,U} | 90% | ordered 15 scanning
) sensing nodes
radius of curv. [[ P,CY,{C,E} 80% | single stationary
estimation [3] node
NN P,C,AC,E,CY | 95% | single
scanning node

Table 3: Comparison of the various methods. Target
types in braces can be resolved only as a group.

flicts when the emphasis is on the view of the ma-
jority. Both of these fusion methods and neural net-
works share the feature of being non-parametric (i.e.,
no underlying distribution of input data or noise is
assumed). .

For target differentiation based purely on raw data,
the algorithm of Section 3 gives a correct differenti-
ation percentage of 61%. In [14], based-on this al-
gorithm, sensors assign probability masses to plane,
corner and acute corner target types using Dempster-
Shafer evidential reasoning. Combining the opinions
of 15 sensing nodes using Dempster’s rule improves the
correct decision percentage to 87%. When the sen-
sors’ beliefs about target types aré counted as votes
and the majority vote is taken as the outcome, the
number rises to 88%. Moreover, using various order-
ing strategies in the voting algorithm further increases
this number to 90%. Using these two fusion methods,
only planes, corners and acute corners can be differ-
entiated. Using the neural network described in this
paper, seven different target types can be differenti-
ated and localized employing only a single sensor node,
with a higher correct decision percentage (95%) than
with the earlier-used decision rules employing several
sensors. The fact that the neural network is able to
distinguish all target types indicates that it must be
making more effective use of the available data than
the methods used earlier. The neural network’s perfor-
mance shows that the original training data set does
contain the information sufficient to differentiate the
seven target types, but the other methods mentioned
above are not able to resolve this identifying infor- .
mation. The neural network allows differentiation of
more targets with increased accuracy by exploiting the
hidden identifying features in the differential ampli-
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tude and TOF characteristics of the targets. A com-
parison of the processing methods mentioned is pre-
sented in Table 3.

6 Conclusion

In this study, neural networks are employed to pro-
cess real sonar data after trained to learn identifying
parameter relations for the target primitives. This
system uses amplitude as well as TOF data, allow-
ing for improved differentiation and localization. The
robustness of the network to partial removal of am-
plitude and TOF information has been investigated,
demonstrating that the network is robust to different
failure modes. The results recommend that ampli-
tude measurements should be more widely exploited,
rather than limiting oneself to the more conveniently
available TOF measurements.

A comparison with previously investigated ap-
proaches to decision fusion (evidential reasoning and
voting) indicates improved performance. The neural
network approach can classify a larger number of tar-
gets than these methods, often with greater accuracy.
Furthermore, it accomplishes this using only a sin-
gle sensing node. Had the number of sensing nodes
(15) been reduced in the other methods, their accu-
racy would have been even worse. Therefore, among
the methods which have been considered, neural net-
works emerge as the strongest alternative. Although
trained on a discrete and relatively coarse grid, the
network is able to interpolate between the grid loca-
tions and offers higher resolution (especially in 8) than
that implied by the grid size. The correct estimation
rates for target type, range and azimuth can be further
increased by employing a finer grid for training.

The results presented here recommend wider use of
neural networks as robust pattern classifiers in sensor-
based robotics. There is scope for further application
of neural networks to sonar, based on the facts that
sonar data is difficult to interpret, physical models
can be complex even for simple TOF sonar, and ex-
pressions for sonar returns are very complicated even
for the simplest target types. Acoustic propagation
is also subject to distortion with changes in environ-
mental conditions. Future work will investigate scale-
and shift-invariant features which are not affected by
the target’s location and orientation, in order to re-
duce the number of training patterns needed. Unsu-
pervised learning algorithms will also be considered to
make the classification process more robust to changes
in environmental conditions.
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