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Abstract

In this study, physical models are used to model re-
flections from target primitives commonly encountered
i a mobile robot’s environment. These targets are dif-
ferentiated by employing a multi-transducer pulse/echo
system which relies on both amplitude and time-of-
flight data, allowing more robust differentiation. Tar-
get features are generated as being evidentially tied to
degrees of belief which are subsequently fused by em-
ploying multiple logical sonars at different geographi-
cal sttes. Feature data from multiple logical sensors are
fused with Dempster-Shafer rule of combination to im-
prove the performance of classification by reducing per-
ception uncertainty. Dempster-Shafer fusion results
are contrasted with the results of combination of sen-
sor beliefs through simple majority vote. The method is
verified by experiments with a real sonar system. The
evidential approach employed here helps to overcome
the vulnerability of the echo amplitude to noise and
enables the modeling of non-parametric uncertainty in
real time.

1 Introduction

One mode of sensing which 1s potentially very use-
ful and cost-effective for mobile robot applications is
sonar. Since acoustic sensors are light, robust and in-
expensive devices, they are widely used in applications
such as navigation of autonomous vehicles through
unstructured environments, map-building [1], target-
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tracking [2] and obstacle avoidance [3]. Sensory in-
formation from a single sonar has poor angular res-
olution and is not sufficient to differentiate the most
commonly encountered target primitives [4]. The most
popular sonar ranging system is based on the time-of-
flight (TOF") measurement which is the time elapsed
between the transmission of a pulse and its reception.
Since the amplitude of sonar signals is very sensitive
to environmental conditions and since standard elec-
tronics for the Polaroid sensor [5] do not provide the
echo amplitude directly, most sonar systems exploit
only TOF information. Differential TOF models of
targets have been used by several researchers in map-
building, robot localization and target tracking appli-
cations: In [6], using a single mobile sensor for map
building, edges are differentiated from planes and cor-
ners from a single location. Planes and corners are
differentiated by scanning from two separate locations
using TOF information from complete sonar scans of
the targets. In [1], a similar approach has been pro-
posed to identify these targets as beacons for mobile
robot localization. Manyika has used differential TOF
models for target tracking [7].

For improved target classification, multi-transducer
pulse/echo systems which rely on both amplitude and
TOF information can be employed. In earlier work
by Barshan and Kuc, a methodology based on TOF
and amplitude information is introduced to differenti-
ate planes and corners [4]. Here, we extend this work
and fuse the decisions of multiple sensing agents at
distinct geographical sites using belief functions. The
ultrasonic reflection process from commonly encoun-
tered target primitives is modeled such that sonar
pairs became evidential logical sensors. Logical sen-
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sors, as opposed to physical sensors that simply ac-
quire data, process real sensory data in order to gener-
ate perception units which are context-dependent in-
terpretations of actual data. An automated percep-
tion system for mobile robots fusing uncertain sen-
sory information must be reliable in the sense that
it is predictable. Therefore quantitative approaches
to uncertainty are needed. These considerations fa-
vor measure-based methods of handling sensory data
(both physical and logical) at different levels of gran-
ularity related to the resolution of the data as well as
the time constants of the different sensors. This desire
motivates our attempt to abstract the sensor integra-
tion problem in a conceptual model where uncertainty
about evidence and knowledge can be measured and
systematically reduced.

Section 2 explains the sensing configuration used in
this study and introduces the target primitives. In Sec-
tion 3, beliefs are assigned to these target primitives
based on both TOF and amplitude characteristics of
the data. A description of feature fusion is included
when multiple sensing sites are used. Consensus of
multiple sensors at these sites is obtained by using the
Dempster-Shafer rule of combination. In Section 4,
the methodology is verified experimentally in an un-
cluttered rectangular room where the feature fusion
process is demonstrated by employing one to fifteen
sensing sites. The results of Dempster-Shafer fusion
are also contrasted with those arising when the sen-
sors combine beliefs by simple majority vote. In the
last section, concluding remarks are made and direc-
tions for future research are motivated.

2 Sonar Sensing

The most popular sonar ranging system is the TOF
system. In this system, an echo is produced when the
transmitted pulse encounters an object and a range
value r is produced when the echo amplitude waveform
first exceeds a preset threshold level 7:

ct,

r=5% M

Here t, is the TOF of the echo signal at which the
echo amplitude first exceeds the threshold level and ¢
is the speed of sound in air (¢ = 343.3 m/s at room
temperature).

In this study, the far-field model of a piston type
transducer having a circular aperture is used [8]. The
amplitude of the echo decreases with the inclination
angle §, which is the deviation angle from normal in-
cidence as illustrated in Figure 1. The echo amplitude
falls below the threshold level when 8 > 8, where 68,
is the beam angle which depends on the aperture size
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Figure 1: Sensitivity region of an ultrasonic trans-
ducer.

and the resonant frequency of the transducer by:

6, =sin~! (%EE) (2)

Here a is the transducer aperture radius and f, is the
resonant frequency of the transducer.

With a single transducer, it is not possible to es-
timate the azimuth of a target with better resolution
than the angular resolution of sonar which is approx-
imately 26,. In our system, two identical acoustic
transducers a and b with center-to-center separation d
are employed to improve the angular resolution. Each
transducer can operate both as transmitter and re-
ceiver. The typical shape of the sensitivity region of
the ultrasonic transducer pair is shown in Figure 1.
The extent of this region is in general different for each
target type since geometrically or physically different
targets, in general, exhibit different reflection proper-
ties.

In this study, the target primitives modeled are
plane, corner and acute corner whose horizontal cross-
sections are illustrated in Figure 2. Since the wave-
length of our sonar (A = 8.6 mm at 40.0 kHz) is much
larger than the typical roughness of object surfaces en-
countered in laboratory environments, targets in these
environments reflect acoustic beams specularly like a
mirror. Hence, while modeling the received signals
from these targets, all reflections are considered to be
specular which allows transducers both transmitting
and receiving to be viewed as a separate transmitter
T and virtual receiver R in all cases [9].

Detailed physical reflection models of these target
primitives with corresponding echo signal models are
provided in [10].
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Figure 2: Target primitives modeled and differentiated
in this study.

3 Logical Sensing and Feature
Fusion from Multiple Sonars

This section focuses on the development of a logi-
cal sensing module that produces evidential informa-
tion from uncertain and partial information obtained
by multiple sonars at geographically different sensing
sites. The formation of such evidential information
is accomplished using the theory of belief functions.
Belief values are generated by each logical sensor and
assigned to the detected features. These features and
their evidential metric obtained from multiple sonars
are then fused using the Dempster-Shafer rule of com-
bination.

A belief function is a mapping from a class of sets
to the interval [0,1] that assigns numerical degrees of
support based on evidence [11]. This is a generaliza-
tion of probabilistic approaches since one is allowed
to model ignorance about a given situation. Unlike
probability theory, a belief function brings a metric to
the intuitive idea that a portion of one’s belief can be
committed to a set but need not be also committed
to its complement. In the target classification prob-
lem, ignorance corresponds to not having any infor-
mation on the type of target that the transducer pair
is scanning. Dempster-Shafer theory differs from the
Bayesian approach by allowing support for more than
one proposition at a time, allowing lack of data (ig-
norance) to be represented. With this approach, full
description of conditional (or prior) probabilities are
no longer required and incremental evidence can be
easily incorporated. Several researchers have recently
been using evidential reasoning in applications such as
landmark-based navigation [12] and map-building [13].

To differentiate the target primitives, differences in
the reflection characteristics of these targets are ex-
ploited and formulated in terms of basic probability
masses. This logical sensor model of sonar perception
is novel in the sense that it models the uncertainties
associated with the target type. The uncertainty in
the measurements of each sonar pair is represented by
a belief function having target type or feature as a
focal element with basic probability mass m(.) associ-

ated with this feature:

BF = {feature; m(feature)} (3)

Logical sensing of the target primitives is accom-
plished through a metric as degrees of belief assigned
to plane, corner and acute corner according to the am-
plitude and TOF characteristics of the received signals
from these target primitives. The differentiation algo-
rithm is basically an extension of the algorithm in [4]
and is detailed in [10]. Here, we focus on the basic
probability assignment to each feature and the feature
fusion process:

[Aaa(8) =~ Agp(O)[Apt(8) — Agp()]
max[Aaa(0) — Agp(0)] max[App(8) — A,p(0)]
[A44(0) = Aaa(8)] + I3[ A41(8) — App(8)]
Iy max[A,p(8) — Aaa(8)] + I3 max[A 5 (0) — App(9)]
Iy #0orls#0

else 0

m(p)=(1 — I4)I;

m(e)=(1 = Iy)

[taa(8) — tap(O)ltpn(8) = t4p(0)]

max{ltaa(0) — tup(ON[t56(0)  tug(O]] ®

m(ac)=1Iy

where A4;(6) denotes maximum value of Ags(r, 6, d, 1)
which is the signal transmitted by transmitter & and
received by receiver a, and t43(f) denotes TOF ex-
tracted from Aqp(r,8,d,t) at angle § by thresholding.
Definitions of Ay,(#) and Ay (6) are similar. I;, I, I3
and I, are the indicators of the conditions given below:

I =4 1 i [Aaa(8) — Agp(8)] > o4 and [Apy(8) — Agp(8)] > o g
1= 0 otherwise

otherwise

-
[ )
i
—~
o

if [Agp(6) — Aaa(6)] > o 4

1 if [A,p(0) — App(8)) > 04
0 otherwise

Iy = { (1) i(ftht[atrl:vﬁgee) — tap(9)] > o1 and [t54(8) — t4(0)] > o 5

Remaining belief is assigned to an unknown target
type, representing ignorance or undistributed proba-
bility mass, as:

m(u) = 1 = [m(p) + m(c) + m(ac)] (6)
For the Dempster-Shafer rule of combination to be
applicable, the sources of information to be fused must
be independent [11]. This is the case in our applica-
tion. Given two sources with belief functions,
BFy = {fi,m(0)}}_| = {p. e ac,ui m(p), m(e), m(ac), m(u)}

By = {g;,m(g))},_ = p,c,ae, w5 m(p), m(e), m(ac), m(w)} (7)

consensus is obtained as the orthogonal sum:
BF=BF, & BF;
= {rem(n)} =iy eac,u me(p), mole), me(ac), mo(w)18)
which is both associative and commutative with the
resulting operation being shown in Table 1. The se-

quential combination of multiple bodies of evidence
can be obtained for n sensor pairs as:
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I\%F:'l\” plane corner acute corner unknown ‘]
B m1(p) my(e) my(ac) my (w)
plane plane [%] @ plane
ma(p) mi(p)ma(p) | myle)mo(p) | my(ac)ma(p) | my(w)ma(p)
corner [2) corner @ corner
ma(c) my (p)ma(c) my (c)mp(e) my (ac)my(e) my (w)ma(c)
acute corner @ [} acute corner acute corner
ma(ac) my(p)malac) | mi(c)my(ac) | my(acimy(ac) | my(w)mp(ac)
unknown plane corner acute corner unknown
mo(u) my(pimo(w) | mi(gmo(w) | mi(achmap(u) | my(u)mo(w)
Table 1: Target differentiation by Dempster-Shafer

rule of combination.

Using the Dempster-Shafer rule of combination:

Zzhk:f,'ﬂgj m(fi)m(g;)
1-3 th=fingj-_-(a m(fi)m(g;)
where 3 thzf,-ngjz(b m(f;)m(g;) is a measure of

conflict. The consensus belief function representing
the feature fusion process has the metrics

mi1(p)ma(p) + mi(p)ma(u) + mi(u)m2(p)

m(p) = 1 — conflict
m(c) = ma(c)mz(c) + mi(e)ma(u) + mi(u)ma(c)
1 — conflict
m(ac) = mi(ac)ma(ac) + mi(ac)ma(u) + mi(u)ma(ac)
1 — conflict
_ ma(uw)ma(u)
m(u) = 1 — conflict (11)

In the above equations, the term “conflict” represents
the disagreement in the consensus of two logical sens-
ing units, thus representing the degree of mismatch in
the fusion of features perceived at two different sonar
sites. The metric evaluating conflict is expressed as:

conflict = ms(p)m2(c) + mi(c)m2(p) + mi(c)m2a(ac)
+ mi(ac)ma(c) + mi(ac)mz(p) + mi(p)mz(ac)

The beliefs are then rescaled after discounting this
conflict and may be used in further data fusion pro-
cesses.

4 Experimental Verification

In this study, an experimental set-up is employed to
assign belief values to target type based on experimen-
tally obtained TOF and amplitude characteristics of
the target primitives, and to test the proposed fusion
method for target classification. Panasonic transduc-
ers are used with aperture radius ¢ = 0.65 ¢m and
resonant frequency f, = 40 kHz, therefore §, = 54°
for these transducers. These transducers are manufac-
tured with distinct characteristics for transmitting and
receiving; two pairs of vertically very closely spaced
transmitter and receiver, illustrated in Figure 3, are

Figure 3: The logical sensing unit.

used as a single logical sensing unit. The horizontal
center-to-center separation between the transducers is
d = 24 cm. This sensing unit is mounted on a small
6 V stepper motor with step size 0.9°. The motion of
the stepper motor is controlled by the parallel port of
an IBM-PC 486 and the aid of a microswitch. Data
acquisition from the sonars is accomplished by using a
DAS-50 A/D card with 12-bit resolution and 1 MHz
sampling frequency. Echo signals are processed on an
IBM-PC 486 using the C language. Starting at the
transmit time, 10,000 samples of each echo signal have
been collected and thresholded. The amplitude infor-
mation is extracted by finding the maximum value of
the signal after the threshold value is exceeded.

‘dark’ region

x5
.

X f4m

Figure 4: The fifteen sensing sites in the rectangular
room.

The method is tested experimentally in an unclut-
tered rectangular room measuring 1.0m by 1.4m with
specularly reflecting surfaces. The room is scanned by
sensing units located at the fifteen positions shown in
Figure 4. The range readings of the transducer pair 2
located at (—10cm, 10cm) are given in Figure b as an
example. Due to the physical limitations of the hard-

2066



Figure 5: Range readings of the sensor unit 2 located
at (—10cm, 10cm) in the rectangular room.

ware, the sensors cannot cover the whole range of ¢
but rotate over the range 0° < ¢ < 284°.

Feature beliefs are assigned by the sensors based on
the TOF and amplitude characteristics of the sonar
signals reflected from corners and planar walls. Ex-
amples of basic probability assignments by individual
sensors are shown in Figure 6. Note the high degree of
uncertainty since a single logical sensor is employed.
Each of the sensor decisions on target type is referred
to the central position for comparison and fusion. Dur-
ing a scan, a sensor estimates the range and angle of
the target under observation. The values for a target
are weighted by the beliefs assigned to the estimates
and then referred to position (0,0). The sensors’ de-
terminations of beliefs are fused using the Dempster-
Shafer rule of combination. Results are shown in Fig-
ure 7(a).

The sensors’ beliefs about target type were also
combined using simple majority voting. The beliefs
about target type were counted as votes and the ma-
jority vote taken as the outcome. Once again, the
weighted averages were computed and referred to the
central location. The corresponding results are shown
in Figure 7(b). In the room experiment, conflicts over
target type are primarily the result of noisy amplitude
signals when the target is visible. Combination by vot-
ing provides a means of resolving target type in cases
of conflict.

To show the accumulation of evidence, plots of cor-
rect decision percentage as a function of number of
sensor pairs used are given in Figure 8 for both meth-
ods of fusion. In both the case of Dempster-Shafer
fusion and that of simple majority vote, the sensors
arrived at the correct decisions on target type for all
targets. However, the maximum percentage of correct

o |
%04
204
oz
a
R T e m E
L4 P
i | . i
o o o oo
Eal a0l gn énl
Lo o4 £
£ 8o 2o
o3 oz o3 o
J | o 9
e G
w

R W w0 ® R
Ll I o

o cornaty
g—
giars)

drinonty,

(a) (b)
Figure 6: Belief assignment by the sensors located at
(a) (Ocm, Ocm) (b) (—10cm, 10cm).
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decisions achievable is below 100% because at certain
viewpoints during a scan the target may not be visible.
Using a single sensor, percentage of correct decisions
is about 30%. The remaining 70% is attributed to
incorrect decisions due to noise and complete uncer-
tainty which occurs when the target is not visible to
the sensor. When decisions of fifteen pairs are fused
using the Dempster-Shafer method, correct decision
percentage improves to 61.1%. With simple major-
ity voting, the corresponding number is 70.4%. Note
that after simple-voting fusion from about five pairs,
the correct decision percentage remains approximately
constant around 70%, indicating redundancy in the
number of sensors employed.

5 Conclusion

This work presents a novel application of the theory
of evidence for target (beacon) recognition. Physical
models are used to model reflections from target prim-
itives commonly encountered in mobile robot appli-
cations. Target features are generated as being ev-
identially tied to degrees of belief which are subse-
quently fused for multiple sonars at distinct geograph-
ical sites. Using both TOF and amplitude data in
the feature fusion process allows more robust differ-
entiation. The belief function approach is contrasted
with combination of sensor beliefs by simple major-
ity vote. For the simple targets in our room, vot-
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correct
decisions

# of sensor pairs

Figure 8: Correct decision percentage of Dempster-
Shafer rule (dashed line) and simple voting algorithm
(solid line) versus number of sensors employed in the
fusion process.

ing achieves a known and correct target decision in
all cases, resolving conflicts through the taking of the
majority decision. The belief function approach em-
ployed in the differentiation of the target primitives
enables the modeling of non-parametric uncertainty.
Fusion of feature data from multiple sensors using
Dempster-Shafer rule of combination reduces such per-
ception uncertainty. Although there is a consequent
increase in processing time, this is insignificant consid-
ering the fast processing speeds of modern computers.
It has been experimentally demonstrated that the be-
lief function methodology is suitable for real-time ap-
plications when multiple sensing sites are used. The
results have ground for application in mobile robotics
where multiple sensing agents or robots are employed
to survey an unknown environment composed of prim-
itive target types. As for future work, the proposed
fusion method can be extended to include physically
different sensors such as infrared and laser-ranging sys-
tems for map-building, target identification, localiza-
tion and tracking applications. Coordination of the
sensing agents and strategic target recognition while
either or both the sensors and the targets are in mo-
tion is another possible direction for future research.
Future work could also look at more complex voting
strategies and the situation where sensors are non-
equal voters or coalitions are formed.
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