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Evaluation of a Solid-State
Gyroscope for Robotics Applications

Billur Barshan and Hugh F. Durrant-Whyte, Member, IEEE

Abstract— The evaluation of a low-cost solid-state gyroscope
for robotics applications is described. An error model for the
sensor is generated and included in a Kalman filter for estimating
the orientation of a moving robot vehicle. Orientation estimation
with the error model is compared to the performance when the
error model is excluded from the system. The results demonstrate
that without error compensation, the error in localization is
between 5-15°/min but can be improved at least by a factor
of 5 if an adequate error model is supplied. Like all inertial
systems, the platform requires additional information from some
absolute position-sensing mechanism to overcome long-term drift.
However, the results show that with careful and detailed modeling
of error sources, inertial sensors can provide valuable orientation
information for mobile robot applications.

1. INTRODUCTION

NERTIAL navigation systems are self-contained, nonra-

diating, nonjammable, dead-reckoning navigation systems
which provide dynamic information through direct measure-
ments. In most cases an INS must be integrated with other
absolute location-sensing mechanisms to provide useful infor-
mation about vehicle position. Models that describe the outputs
of inertial sensors sufficiently accurately are essential if the
information is to be used effectively. Fundamentally, gyros
provide angular rate information, and accelerometers provide
velocity rate information. Although the rate information is
reliable over long periods of time, it must be integrated to
provide absolute measurements of orientation, position and
velocity. Thus, even very small errors in the rate information
provided by inertial sensors cause an unbounded growth in
the error of integrated measurements. As a consequence, an
INS by itself is characterized by position errors that grow
with time and distance. One way of overcoming this problem
is to periodically reset inertial sensors with other absolute
sensing mechanisms and so eliminate this accumulated error.
In robotics applications, a number of systems have been
described which use some form of absolute sensing mecha-
nisms for guidance (see [1] or [2] for surveys). Such systems
typically rely on the availability of easy-to-see beacons or
landmarks, using simple encoder information to predict vehicle
location between sensing locations. This works well when
the density of beacons or landmarks is high and the ground
over which the vehicle travels is relatively smooth. In cases
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where the beacon density is sparse, such systems can easily
lose position track. Inertial navigation systems can potentially
overcome this problem. Inertial information can be used to
generate estimates of position over significant periods of time,
independent of landmark visibility and of the validity of
encoder information. Clearly, positions derived from inertial
information must occasionally be realigned using landmark
information, but a system that combines both inertial and
landmark sensing can cope with substantially lower landmark
density and can also deal with rough terrain where encoder
information has limited value. '

Inertial navigation systems have been widely used in
aerospace applications [3], [4] but have yet to be seriously
exploited in robotics applications where they have consider-
able potential. In [5], the integration of inertial and visual
information is investigated. Methods of extracting the motion
and orientation of the robotic system from inertial information
are derived theoretically but not directly implemented as a
real system. In [6], inertial sensors are used to estimate the
attitude of a mobile robot. With the classical three-gyro, two-
accelerometer configuration used in aeronautics, experiments
are performed to estimate the roll and pitch of the robot when
one wheel climbs onto a plank using a small inclined plane.
In [7], a rate gyroscope is used to lock the heading of a semi-
autonomous mobile robot to a prespecified direction. Here,
the bias of the gyroscope is measured when the robot is not
in motion, and it is assumed to be constant throughout the
experiments. More sophisticated error modeling is necessary
to reduce and compensate for the drift error of low-cost rate
ZYT0SCopes.

One reason that inertial systems are widely used in
aerospace applications but not in robotics applications is
simply that high-quality aerospace inertial systems are com-
paratively too expensive for most robotics systems. However,
low-cost solid-state inertial systems, motivated by the needs
of the automotive industry, are increasingly being made
commercially available. Although a considerable improvement
on past systems, they clearly provide substantially less accurate
position information than equivalent aerospace systems.
However, as we describe in this paper, such systems are
at a point that, by developing reasonably detailed models of
the sensors involved, they can provide valuable information
in many robot positioning tasks.

To make best use of low-cost inertial sensing systems, it
is important that a detailed understanding of the mechanisms
causing drift error are understood and a model for these
derived. The approach taken in this paper is to incorporate in
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Fig. 1. Hardware implementation of the INS.

the system a priori information about the error characteristics
of the inertial sensors and to use this directly in a Kalman Filter
(KF) to estimate position before supplementing the gyroscope
with absolute sensing mechanisms. Section II introduces the
gyroscope being evaluated and briefly describes the hardware
configuration. Section III focuses on generating an error model
for the gyroscope and testing it for adequacy of representation.

SUN STATION

or
IBM-PC

In Section IV, the error model is exploited in a KF to
compensate for the error. The system performance with the
error model is compared to the performance with no error
model in Section V, and a statement of accuracy is included.
In the concluding Section VI, the usefulness of low-cost
gyroscopes in robotics applications is discussed for guidance
systems for mobile robots.
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II. IMPLEMENTATION OF THE INS

A fundamental requirement for an autonomous mobile robot
is the ability to localize itself with respect to the environment.
In the Oxford AGV laboratory, an INS is under current
development to aid in accomplishing various robotic tasks
such as localization and target tracking in a 2-D environment.
The system comprises a Solid STate Angular Rate Transducer
(START) gyroscope (approximate cost: £ 1500), a linear
triaxial accelerometer, and two Electrolevel inclinometers. The
block diagram for the hardware implementation of the inertial
sensors is shown in Fig. 1.

The START gyroscope is an inertial sensor originally in-
tended for the guided munition market in the 1980’s but
which has also proved to be very suitable for the vehicle
control market [8], [9]. The device consists of a small cylinder
with integral piezoelectric transducers and an integrated-circuit
module [10]. The principal of operation is to measure the
Coriolis acceleration caused by angular rotation of a vibrating
cylinder, chosen for its symmetry, around the principal axis.
The cylinder is open at one end and supported on a base
at the other end. Eight piezoelectric transducers are attached
symmetrically around the open end of the cylinder for driving,
controlling and measuring the vibrations via the integrated-
circuit module [11].

The gyroscope generates a voltage output proportional to
the angular velocity of the vehicle around the principle axis of
the device. The maximum rate that can be measured with the
particular START gyro under investigation is +200°/s within
its linear range. If the input rate goes beyond the maximum
limits, the rate and orientation information become erroneous
and need to be reset.

The angular rate from the gyroscope is multiplexed with
information from other inertial sensors in the system and fed
to a 12-bit A/D converter. The digitized output is interfaced
to an INMOS-T805 transputer network.

III. CONSTRUCTING AN ERROR MODEL FOR THE GYROSCOPE

Building error models for inertial sensors is motivated by
an attempt to reduce the effect of unbounded position and
orientation errors. Depending on how successful these models
are, inertial sensors may possibly be used in an unaided mode
or for longer durations on their own. The gyroscope drift in
its various manifestations is the most important contributor
to navigation system errors, and is mainly dependent upon
the device technology. A detailed treatment of modeling
aerospace INS’s can be found in the first volume in [12].
For a robotic INS, the scale, nature and parameters of the
localization problem are different than in aerospace. Hence,
INS’s developed for aerospace applications cannot be directly
implemented on mobile ground vehicles. In addition, systems
developed for aerospace are far too expensive to be used in
robotics applications.

To develop an error model for the gyroscope under in-
vestigation, its output was recorded over long periods of
time when subjected to zero input, i.c., the gyroscope was
stationary on the laboratory bench. The experiments were
performed overnight when the vibrations in the building were
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Fig. 2. The mobile robot equipped with the gyro.

at a minimum. The result of sample experiments over a period
of 12 hours is shown in Fig. 3 for START. Ideally, the output
for zero input would be a constant voltage level corresponding
to the digital output of 2048 for a 12-bit A/D converter as
shown by the thick, solid horizontal line in the figure. The
standard deviation of the output fluctuations is approximately
0.16°/s. The real output data is at a lower level than ideal at
start-up, and the mean value gradually increases with time in
an exponential fashion. Repeatability of these results indicates
that an apparently small time-varying bias is characteristic of
this gyroscope. Although a single specimen of START has
been available for the experiments, three specimens of another
solid-state gyro have also been shown to have the same type
of exponential error model with different parameter values
[13]. The time variation of the bias is attributed to thermal
effects based on the observation that the device gradually heats
up during operation. The bias can taper off to a negative or
positive value depending on the ambient temperature.

In the following, let €(¢) be the bias error associated with
measuring the angular rate of rotation using the START. A
nonlinear parametric model of the following form was fitted
to the data from the gyroscope using the Levenberg-Marquardt
iterative least-squares fit method [14]:

€ model () = C1(1 —€"T) +C, 0

where € 04e1(t) is the fitted error model to the gyroscope
output when zero input was applied, with parameters C1, Cz
and T to be tuned. Starting with reasonable initial guesses for
the parameters, convergence to a local minimum is achieved
within 5-10 iterations. The best fitting parameter values to
the experimental data are C1=2.3 A/D units (or 0.300°/sec),
C,=2 045.5 A/D units (or —0.326°/sec) and 771=1.06 hr (or
63.6 min) with the corresponding fitted curve shown in the
thin solid line in Fig. 3.

In general, a model fitted to experimental data is regarded as
being adequate if the residuals from the fitted model constitute
a white, zero-mean process. Hence, one can start with any
reasonable model based on inspecting the original data and
develop it further if necessary until the residuals are white.
Following this route, the sufficiency of the above model in
Equation 1 is determined for the gyroscope by applying a
whiteness test to the residuals in the autocorrelation domain.
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Fig. 3. Digitized angular rate output of the START gyroscope when subjected to zero input. Data was collected over a period of 12 hours by sampling
every minute when no angular rotation was applied around the principal axis.
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For a discrete system with sampling interval T, the residual
w(k) at time kT, is computed as follows:

w(k) = e(k) — € model (k)- @)

Since the process w(k) is assumed to be stationary, the
autocovariance R, is only a function of the lag A between
two data samples. When only a finite set of N data samples is
available for estimation, the expression for the sample biased
autocovariance estimate is given by [15]

) | N-laj-1
Rpu(B)=5 3 wku(k+d). ©)
k=0

If N is sufficiently large (N >16), it can be shown that [16] the
distribution of the sample autocovariance estimate for nonzero
A is well approximated by a Gaussian distribution with zero
mean and standard error given by
Ruw (0) for

G, (A) = A£0. 4

1
vN

In Fig. 4, the sample autocorrelation estimate is shown for
the START. An ensemble average over the autocorrelation
estimates of M = 10 data sequences (each of 10 s duration)
was taken, reducing the standard error bounds by ﬁ The
dotted lines correspond to +1 and +2 standard error bounds
for the autocorrelation estimate [17]. Since the sample auto-
correlation error distribution of a white process is Gaussian,
the autocorrelation estimate is bound to lie within 1 standard
error 95.5% of the time. In compliance, the results indicate that
the estimate is within these limits about 96% of the time. The
positive outcome of the whiteness test on the model residuals
demonstrates that the model in (1) adequately represents the
slowly varying bias error on the rate output of the START
gyroscope. In the next section, the error models developed are
exploited in a KF to compensate for the errors.

IV. IMPLEMENTATION OF THE GYROSCOPE ERROR MODEL

The parametrized model of (1) for the bias error can be
represented by the following differential equation:

C1+Cy 1

T E%(t) ®)

é5(t) =
with initial conditions ¢3(0) = Cp and é5(0) = $-. Af-
ter discretization using the backward difference method, (5)
becomes
T T,
; = ———¢; Ci+C
ep(k+1) T1+T3€‘I’(k) T +T( 1+ Ca)

with €5(0) = Cs. ©)
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The minimum possible T; of 30 ms was chosen to keep
the discretization error small. Due to its recursive nature, this
difference equation is independent of start-up time but relies
on a good estimate of the initial bias.

The system observation is the erroneous rate output of the
gyroscope which corresponds to the true value of the rate plus
the bias error (see (7), shown at the bottom of the page)or in
matrix notation:

2(k) = H®(k) + v(k) ®)

where v(k) is a white measurement noise process.

Given the erroneous observations, the states that need to be
estimated are the true values of orientation, angular rate and
the errors associated with them. Hence, the state equations of a
linear KF are augmented by (6) and its integral to estimate and
compensate for the bias error. The resulting state equations of
the filter are as follows (see (9), shown at the bottom of the
page) or in matrix notation:

®(k+1) =FP(k) + u+w(k). (10)

The first four states are the frue values of the orientation
and its derivatives, and the last two states constitute the
error model for the gyroscope. Note that the error states are
coupled to the relevant true states only through the observation
and not by the structure of the state transition matrix F. In
setting the covariance matrix Q for the process noise w(k), a
continuous-time white-noise model assumption has been made
as described in [18]. This assumption leads to the following
process covariance matrix in discrete time:

— T —
Q=Biwhw B} =
T, o9 T, 2 T, 2 T; 2
Z‘s‘gau ;’%—O‘u Efz'o'u 5‘%—0'“ 0 0 1
2 2 T, 2 I .2
z'%-cru ?jou ;8‘:0'“ ;s:au 0 0
2 2 2 2
g‘fjd'u "1—§"3-0'u ‘;:?‘:O'u —2"0'u 0 0 1)
2 2
52'0’1‘ "'6'0’,,2‘ —2‘—0',,2‘ Tsau 30 20
I, 2 I, 2
0 0 0 0 —3’-0',(” > 0w
L o 0o o o0 Lo T2
502, T,o,, ]

where o, = 0.05°/sec, and the o, is the standard deviation of
the residuals from the fitted model experimentally determined
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to be 2.14 A/D units or 0.2%/sec. The state vector estimated
by the filter is given by

Sk + 1k +1) = F®(k|k) + u+ W(k + L)p(k+1) (12)

where W (k + 1) is the filter gain, and v(k + 1) = z(k +
1) — H®(k + 1|k) is the innovations vector provided by the
new observation at time (k+1)7,. A detailed treatment of KF
prediction and update equations can be found in [18].

The above filter has a constant ¢ (k) structure augmented
by the error model. Lower-order filters have been implemented
but shown to have a delay and much ringing in their unit-step
response. With this higher-order model, the filter is able to
track abrupt changes in angular velocity very closely as will
be shown in the next section.

The filter structure in (7) and (9) has been implemented
in real time on an INMOS-T805 transputer network where
a minimum sampling interval of T,=50 ms is achieved. The
START gyroscope has been mounted on a rotating platform
whose angular velocity and orientation can be accurately
controlled and measured. A 500-line optical encoder was used
to measure motor shaft position, driving the platform through
a low backlash 40:1 gear box. An HCTL-1 100 chip was used
to control the motor in the integral velocity mode. The motor
position from the encoder is accurate to 1/2 000 of a revolution.
The most significant positioning error is in gear-box backlash.
This is very good, however, and better than 1/10 of a degree.
For comparison purposes, the platform velocity and orientation
are taken to be the “‘true’’ values of these quantities in the
next section. An initial estimate of the bias, €5(0), is made to
initialize the filter by averaging the output of the gyroscope
over a large number of samples when there is no rotational
motion. Since the start time of the experiment can correspond
to any point on the curve in Fig. 3, it is important to have
a good estimate of the initial bias. For an initial estimate
with over 2 000 samples, data collection and estimation take
only 1-2 sec on an INMOS-T805 transputer hosted by an
IBM-80 486 PC. As data is collected by the gyroscope, the
KF process running in parallel filters the measurements and
provides estimates of orientation, its derivatives and the state
of the bias error.

[®(k) + ez (k) +v(k)]=[0 1
®(k+1) 1 T, 3T? §T2 0
®(k+1) 0 1 T %Tz 0
&k +1) 00 1 T, O
@ (k+1) 00 0 1 0
ep(k +1) 00 0 0 1
ep(k+1) 00 0 0 O

a(k)
o(k)
000 1) g((/;)) ) ;
ea(k)
€5 (k)
0 (k) 0 0
o3]S L]
0 0 0
o [leaw|T| o |T]uw "
T E?E’]g n(chicn ?k)
Ti+T, - L% AT ’
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Fig. 5. On the left, angular rate (top) and orientation (bottom) for the
zero-input case of the START gyro when the bias error is negative. On the
right, angular rate (top) and orientation (bottom) when the bias error is positive.
The true values (thin, solid line) and the erroneous observations (dotted line)
are illustrated along with the KF output (heavy, solid line) which compensates
for the error.

V. PERFORMANCE OF THE START GYROSCOPE

To determine the adequacy of the error models, the system
performance with no assumed error model is compared to the
performance when the error model is incorporated in the KF
for the gyroscope.

The results when zero input was applied to the START
gyroscope are shown in Fig. 5 over a duration of five minutes.
The true values and the erroneous observations are illustrated
along with the KF output which compensates for the error. In
Fig. 5(a) and (b), the system was close to start-up, and the bias
error had negative values. At the end of the experiment, the
integrated gyroscope rate output exhibited a worst-case error
of —70.8°/s, whereas the compensated and filtered output was
+8.6°, having had an overall maximum deviation of 412.0°
from the true value. In Fig. 5(c) and (d), the system had
warmed up, and the bias had achieved a positive value. At the
end of the experiment, the integrated gyroscope rate output
was +27.4°/s corresponding to the worst case, whereas the
compensated and filtered output was —0.6°, having had an
overall maximum deviation of —5.1° from the true value. In
both cases, the improvement was approximately a factor of 6.

Fig. 6 illustrates the angular rate and position of the START
gyroscope when nonzero input was applied for a total duration
of five minutes. A new angular rate —25 < d < 25 was
randomly generated every 30 s and applied to the gyro. The
true values and the erroneous observations are displayed along
with the filter results. Note that the drift in the orientation is
more significant than in the angular rate since even very small
errors quickly accumulate when integrated. To make this more
visible, the true and estimated errors in rate and orientation

time(min
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Fig. 6. On the left, angular rate (top) and position (bottom) of the START
gyroscope when nonzero input was applied are shown. A new angular rate was
randomly generated every 30 s and applied to the gyro. The true values (thin,
solid lines) and the erroneous observations (dotted lines) are displayed along
with the KF results (thick, solid lines) which compensate for the error. On
the right, error in the angular rate (top) and error in orientation (bottom) are
illustrated. Both the true (thin, solid lines) and the estimated values (heavy,
solid lines) are shown.

are shown separately in Fig. 6(c) and (d) for the same data.
At the end of the experiment, the integrated rate output was
erroneous by —84.7° (the worst case) whereas the filtered
estimate had an error of +3.4°, indicating that the filter slightly
over-compensated for the bias in this particular case. During
the course of the experiment, however, the compensation was
not always as good, the worst-case error being 36.0°, due to
the large spiky errors in the measured angular rate at those
points when a new rate was suddenly applied to the gyro.
These errors can be seen in Fig. 6(d) more clearly. Both the
gyroscope rate output and the filtered rate output were accurate
within £2.5°/s at the end of the experiment.

VI. DISCUSSION AND CONCLUSION

The purpose of the research described in this paper was to
evaluate a low-cost sensor for orientation estimation in mobile
robot guidance problems. By developing a careful and accu-
rate error model of the device, substantial improvements in
performance can be made which make the application of low-
cost inertial navigation systems to mobile robot applications
a viable proposition.

The results demonstrate that the START gyroscope provides
accurate localization only if an adequate error model is gen-
erated and supplied to the KF model. The model reduces
the angular position error at least by a factor of 5 to 7.
With the resulting accuracy, it is still necessary to reset the
error with absolute sensing information at regular intervals,
approximately every 10 minutes. Since the filter provides an
estimate of the error in orientation, one way of determining
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how often to reset the system is to threshold the absolute
value of this estimate. The START gyroscope with the given
model would operate particularly well in environments where
the ambient temperature is controlled. Our experiments were
performed in a room where the thermostat was set to 25°C,
but +2° deviations were possible from the nominal value.
Hence, the model sometimes over- or under-compensated for
the errors.

The error model developed in this paper is valuable since it
is shown to be applicable to specimens of another rate gyro as
well as other inertial sensors with different parameter values
{13]. The results of integrating a solid-state gyroscope with
other inertial sensors, mentioned in Section II, and testing of
the system on an autonomous land vehicle are presented in
succeeding work [13].
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