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Abstract

A novel method 1s described for surface profile ez-
traction based on morphological processing of multiple
range sensor data. The approach taken is extremely
flezible and robust, in addition to being simple and
straightforward. It can deal with arbitrary numbers
and configurations of range sensors as well as syn-
thetic arrays. The method has the intrinsic ability
to suppress spurious readings, crosstalk, and higher-
order reflections, and process mulliple reflections in-
formatwvely. The essential idea of this work—the use
of multiple range sensors combined with morphological
processing—can be applied to different physical modal-
ities of range sensing of vastly different scales and in
many different areas. These may include radar, sonar,
robotics, optical sensing and metrology, remote sens-
ing, ocean surface exploration, geophysical exploration,
and acoustic microscopy.

1. Introduction

An inexpensive, yet effective and reliable approach
to machine perception is to employ multiple simple
range sensors coupled with appropriate data process-
ing. This paper deals with the determination of arbi-
trary surface profiles, and is completely novel in that
morphological processing is applied to range data in the
form of an arc map, representing angular uncertainties.
The method is extremely flexible and can easily han-
dle arbitrary sensor configurations, as well as synthetic
arrays. In contrast, approaches based on geometrical
or analytical modeling are often limited to elementary
target types or simple sensor configurations [1, 2, 5].
A commonly noted disadvantage of range sensors is the
difficulty associated with interpreting spurious read-
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ings, crosstalk, higher-order, and multiple reflections.
The proposed method is capable of effectively suppress-
ing the first three of these, and informatively process-
ing echoes returning from surface features further away
than the nearest (i.e. multiple reflections).
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Figure 1. Transmitter and receiver are (a) the
same device, (b) separate devices.

Despite the generality of the method, for concrete-
ness, we consider simple range sensors that measure
time-of-flight (TOF) ¢,, which is the round-trip travel
time of the pulse between the sensor and the object.
Given the speed of transmission ¢, the range r can be
easily calculated from r = cto/2. Although such de-
vices return accurate range data, typically they can-
not, provide direct information on the angular position
of the object from which the reflection was obtained.
Thus, all that is known is that the reflection point lies
on a circular arc of radius r (Fig. 1(a)). More gener-
ally, when one sensor transmits and another receives,
it is known that the reflection point lies on the arc of
an ellipse whose focal points are the transmitting and
receiving elements (Fig. 1(b)). The arcs are tangential
to the surface at the actual point(s) of reflection.

Most commonly, the wide beamwidth of the sensor
is accepted as a device limitation that determines the



angular resolving power of the system, and the reflec-
tion point is assumed to be along the line-of-sight. In
our method, circular or elliptical arcs, representing the
uncertainty of the object location, are drawn. By com-
bining the information inherent in a large number of
such arcs, angular resolution far better than that im-
plied by the beamwidth is obtained.

2. Morphological profile extraction

Structured sensor configurations such as linear and
circular arrays as well as irregularly configured sensors
have been considered in [3], where the method is also
generalized to moving sensors and synthetic arrays.

To illustrate the method, Fig. 2(a) shows a surface
whose profile is to be determined by using an irregu-
lar sensor configuration. A large number of arcs can be
obtained with a reasonably small number of sensors be-
cause each sensor can receive pulses transmitted from
all the others, provided a reflection point lies in the
joint sensitivity region for that sensor pair. Fig. 2(b)
shows the arcs obtained. Although each arc represents
considerable uncertainty as to the angular position of
the reflection point, nevertheless one can almost ex-
tract the actual curve shown in Fig. 2(a) by visually
examining the arc map in Fig. 2(b). Each arc drawn is
expected to be tangential to the surface at least at one
point. At these actual reflection point(s), several arcs
will intersect with small angles at nearby points on the
surface. The many small segments of the arcs superim-
posed in this manner coincide with and cover the actual
surface, creating the darker features in Fig. 2(b) that
reveal the surface profile. The remaining parts of the
arcs, not actually corresponding to any reflections and
simply representing the angular uncertainty of the sen-
sors, remain more sparse and isolated. Similarly, those
arcs caused by higher-order reflections, crosstalk, and
noise also remain sparse and lack much reinforcement.

In this study, morphological operators are used to
eliminate the sparse and isolated segments in the arc
map, leaving behind the mutually reinforcing segments
that reveal the solid structure of the original surface.
Erosion, dilation, opening, closing, and thinning are
widely used morphological operations to accomplish
tasks such as edge detection, skeletonization, segmen-
tation, texture analysis, enhancement, and noise re-
moval in image processing [4]. Most applications in-
volve processing of conventional binary or gray-scale
images, or range images where the range information
is coded in the gray-levels of the image [7]. The present
approach is completely novel in that morphological pro-
cessing is applied to range measurements in the form
of an arc map, representing angular uncertainties.
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Figure 2. (a) The actual surface and the sen-
sors, (b) the arc map obtained with 17 sen-
sors, each of 45° beamwidth, (c) the result of
n = 6 thinning, (d) the fitted curve (solid line)
and the original surface (dashed line).
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Morphological operations basically consist of a set
of simple rules to modify images. A simple algorithm
for erosion is as follows: If all eight neighbors of a pixel
with value one equal one, that pixel preserves its value,
otherwise its value is set equal to zero. This way, the
image will be eroded or shrunk in all directions by one
pixel. On the other hand, dilation is used to fatten an
image: all eight neighbors of those image pixels which
originally equal one are set equal to one.

Thinning is a generalization of erosion with a pa-
rameter n varying in the range 1 < n < 8. In this case,
it 1s sufficient for any n neighbors of a pixel to equal
one in order for that pixel to preserve its value of one.
The flexibility that comes with this parameter enables
one to make more efficient use of the information con-
tained in the arc map. Thus, pruning and erosion are
the two extremes of thinning with n = 1 and n = 8.

The result of applying n = 6 thinning to the arc
map shown in Fig. 2(b) is presented in Fig. 2(c). As
a last step, a least-squares polynomial fit is obtained
to compactly represent the surface profile. The curve
fitted to the thinned map in Fig. 2(c) is displayed in
Fig. 2(d). A a root-mean-square absolute error mea-
\/JLV Zf\;l [p(2;) — y(z;)]? is introduced, com-
paring the final polynomial fit with the actual curve.
Here N is the total number of columns in the map ma-
trix, p(z;) are the samples of the fitted polynomial, and

05 = -]%,- Eﬁ__l[y(a:,') - % 5= y(xi))? is the variance of

sure £ =



the actual surface profile y(z;). The result of apply-
ing various morphological operators to the arc map in

Fig. 2(b) are summarized in Table 1.

| morphological operation E(pixels) | topu(s)
thinning (n = 1 : pruning) 20.59 1.21
thinning (n = 3) 12.53 1.07
thinning (n = 5) 9.19 0.99
thinning (n = 6) 2.75 0.98
thinning (n = 7) 5.29 0.97
thinning (n = 8 : erosion) 11.75 0.96
closing & erosion 11.50 5.64

Table 1. Results of various morphological op-
erations.

A detailed study of the performance of different sen-
sor configurations and morphological operations has
been performed. Structured arrays are often preferred
in theoretical work for simplicity and ease of analysis,
whereas the method presented here can handle irreg-
ular arrays equally easily. Although the problem of
optimal sensor placement is a subject for future re-
search, the large number of simulations performed in-
dicate that it is preferable to work with irregular ar-
rays, since the randomized vantage points of the sensors
tend to complement each other better than structured
ones. In a typical robotics application, these sensors
may constitute an array on the same robot, or may
correspond to sensors onboard different robots explor-
ing the environment.

morphological operation | € (pixels) | tcpy (8) |

thinning (n = 1 : pruning) 4.98 1.91
thinning (n = 2) 4.84 1.88
thinning (n = 3) 107 173
thinning (n = 4) 3.28 1.82
thinning (n = 5) 2.58 1.66
thinning (n = 6) 1.96 1.72
thinning (n = 7) 1.63 1.80
thinning (n = 8§ : erosion) 1.42 1.77
erosion & pruning (n = 1) 1.41 1.89
erosion & thinning (n = 2) 1.50 1.93

Table 2. Experimental results for the surface

in Fig. 3(a).

The method has been tested with real sonar data,
experimentally obtained from a Nomad 200 mobile
robot, initially using smooth cardboard surfaces. An
example is shown in Fig. 3 for which additional results
are provided in Table 2. Even though the method
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Figure 3. (a) The actual surface. (b) The arc
map and the sensors. (c) Result of erosion
(n = 8) followed by pruning (n = 1). (d) Part
(a) superimposed with the fitted curve.

was 1nitially developed and demonstrated for specu-
larly reflecting surfaces, subsequent tests with Lamber-
tian surfaces of varying roughness have indicated that
the method also works for rough surfaces, with errors
slightly increasing with roughness.

3. Performance of the method

Although the method is applicable to arbitrary sur-
faces [3], to investigate the performance of the method,
sinusoidal surfaces have been considered whose param-
eters can be systematically varied. Simulations have
been undertaken on sinusoidal surfaces of varying am-
plitude and periodicity, located at varying distances
from the sensor array. These parameters are illustrated
in Fig. 4(a). The elements of the sensor array are dis-
tributed in the box [—~35,440] x [0, 90], with their av-
erage distance from y = 0 being 32.7 pixels.

We investigate the dependence of the error on ampli-
tude, period, surface distance, sensor beamwidth, and
measurement uncertainty. For this purpose, the sinu-
soid shown in Fig. 4(a), with A = 30, T" = 125, and
L = 200 pixels, is taken as a reference and these pa-
rameters are individually varied around the reference
values. The arc map generated is shown in part (b) of
the same figure. The result of n = 3 thinning, which
gives the minimum error for this example, is given in



part (c). The resulting error when various morpho-
logical operators are applied to the same arc map are
summarized in Table 3. Finally, the result of curve fit-
ting, and the comparison with the actual surface are
given in part (d).

First, the period is varied by keeping the amplitude
and the surface distance constant at the reference val-
ues given above. & increases with decreasing period as
expected (Fig. 5(a)). For periods shorter than 100 pix-
els, the error increases significantly. The minimum ra-
dius of curvature Rpyj, is a useful indicator of the dif-
ficulty of extracting the profile: features with smaller
radii of curvature are more difficult to accurately deter-
mine. For this reason, the relation between Rpy;, and
the period of the sinusoid is also plotted in Fig. 5(b).

In the next step, the amplitude is varied while keep-
ing the period and the distance constant at the ref-
erence values. & increases with increasing amplitude
(Fig. 5(c)), since increasing A reduces Rmin. Rmin 18
plotted as a function of the amplitude in Fig. 5(d).
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Figure 4. (a) The actual surface and the pa-
rameters A, T, and L, (b) the arc map ob-
tained with an array of 35 sensors, each of
30° beamwidth, (c) the result of n = 3 thin-
ning, (d) the fitted curve (solid line) and the
original surface (dashed line).

To get a better understanding of the relation be-
tween the error and curvature, the results in Fig. 5 are
rearranged to generate a plot of £ versus Rmin (Fig. 6).
As expected, decreasing the curvature (or increasing
Rpmin) results in lower £. The fact that the solid and
dashed lines (which represent varying 7" and A respec-
tively) follow each other closely, suggests that what
really matters is not the individual values of 7" and A,
but the value of Rpyip.
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morphological operation & (pixels)
thinning (n = 1 : pruning) 2.41
thinning (n = 2) 2.21
thinning (n = 3) 2.03
thinning (n = 4) 2.09
thinning (n = 5) 2.46

closing & pruning (n = 1) 2.61
closing & thinning (n = 3) 3.02
closing & erosion (n = 8) 3.63

Table 3. Results of various morphological op-
erations.
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Figure 6. £ vs. R,,;,. Solid dots connected
by solid lines are produced by eliminating T
from Fig. 5(a) and (b). Triangles connected by
dashed lines are produced by eliminating A
from Fig. 5(c) and (d).
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Figure 7. (a) £ vs. L, (b) £ vs. beamwidth.

Next, the distance to the surface is varied while A
and T are kept constant at their reference values. &
increases as L increases beyond 250 pixels (Fig. 7(a)).
Because the surface shape does not change, the cur-
vature remains constant. Details about the process-
ing involved to generate Fig. 7(a) are presented in
Table 4. Since the number of arc points obtained
strongly depends on L, and the most suitable mor-
phological operation depends strongly on the density
of arc points, the morphological procedure best suited
to each value of L has been employed in constructing
Fig. 7(a). (In addition to the alternatives shown in Ta-
ble 3, n = 6,7,8 thinning, and the application of no
morphological processing at all have been considered.)
For a given beamwidth, when the surface is located
further, the arcs become larger and uncertainty in the
position of the reflection point(s) increases. In a way,
the “effective” curvature of the surface increases with
increasing L, resulting in larger errors. Geometrically,
this is the same effect as perceiving a curved object to
be flatter when we are very close to it, and more curved
when further away. A distinct issue arises when the dis-
tances are very small: the arcs become very short in
length and less in number, since now sensors can de-
tect a smaller portion of the surface and there is less
overlap between their sensitivity patterns. As a result,
the arc map cannot cover the whole surface.

Another important parameter is the sensor
beamwidth. To investigate the effect of the sensor
beamwidth, the surface parameters are kept con-
stant while the beamwidth is varied. Increasing the
beamwidth results in arcs longer in length, causing a
larger portion of each arc to be redundant. In other
words, there is more uncertainty in the position of
the reflection point(s) as compared to the case of a
narrower beamwidth. As a result, the error increases
as shown in Fig. 7(b). The arcs also increase in
number, and these factors make it necessary to apply
higher-n thinning to extract the useful information.
On the other hand, when the beamwidth is very small,
the arcs become very short and fewer in number,
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L morphological &
(pixels) operation (pixels)
100 thinning (n = 1) 2.43
150 thinning (n = 1) 2.29
200 thinning (n = 3) 2.03
250 thinning (n = 3) 6.22
300 thinning (n = 4) 22.71

Table 4. Results corresponding to Fig. 7(a).

beamwidth | morphological £

operation (pixels)

5° none 3.41
10° none 2.65
15° none 2.43
30° thinning (n = 3) 2.03
45° thinning (n = b) 3.51
60° thinning (n = 5) 9.19
75° thinning (n = 6) 10.07
90° thinning (n = 7) 14.82
105° thinning (n = 8) 20.21

Table 5. Results corresponding to Fig. 7(b).

leading to a similar situation as when L was very
small. Below a beamwidth of 15°, directly fitting a
polynomial to whatever few points are available in the
arc map, without applying morphological processing,
becomes the best choice. This customization of the
applied morphological rule enables a fair comparison
of the results at all beamwidth values. Smaller
beamwidths result in fewer arc points and thus less
reliable curve fits, leading to a slight increase in the
error for very small beamwidths. Best results are
obtained for a particular beamwidth (about 30° in
our example). The different morphological operations
applied and the resulting error values are tabulated
in Table 5. Choosing beamwidths smaller than 30°
does not increase the error appreciably, however using
sensors with smaller beamwidths may not be desirable
anyhow, since these are usually more difficult to
manufacture, expensive, or entail a trade-off with
some other quantity. For instance, in the case of
acoustic sensors, narrower beamwidth devices must
have higher operating frequencies, which imply greater
attenuation in air and shorter operating range.

Now, we discuss the issue of choice of sampling res-
olution or pixel size: There are a couple of factors that
determine the accuracy of TOF readings in a range
measurement system. One of these factors is the oper-
ating wavelength of the ranging system: a TOF mea-
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surement with accuracy better than the wavelength
cannot be normally achieved. Other sources of uncer-
tainty in the range measurement could be effects such
as the thermal noise in the receiving circuitry or the
ambient noise. Given these, it is not meaningful to
choose the pixel size much smaller than the resolving
limit determined by these factors, since it would in-
crease the computational burden without resulting in
a more accurate profile determination. Thus, the pixel
size should be chosen comparable to the TOF measure-
ment accuracy. Nevertheless, since the TOF accuracy
may not be known beforehand, we have examined the
cases where the noise or uncertainty is both smaller
and larger than one pixel.

To investigate the robustness of the method to noise,
zero-mean white Gaussian noise has been added to the
TOF readings. The noise standard deviation o, is var-
ied logarithmically to cover a broad range of noise lev-
els. As expected, for o, smaller than one pixel, the per-
formance is approximately the same as for the noiseless
case. This performance can be further improved by re-
ducing the pixel size until it becomes comparable to
the TOF measurement accuracy, at the cost of greater
computation time.

The error increases significantly as the noise level
increases beyond one pixel (Fig. 8). Since the method
relies on the mutual reinforcement of several arcs to re-
veal the surface, larger amounts of noise are expected to
have a destructive effect on this process by moving the
various arc segments out of their reinforcing positions.
Consequently, the arc segments which now lack each
other’s mutual reinforcement tend to be eliminated by
the morphological operations. A larger proportion of
the arcs is eliminated, resulting in a loss of information
characterizing the original curve. Nevertheless, the er-
ror growth rate is not as high as might be suggested by
these arguments, and the method seems to be reason-
ably robust to measurement uncertainty. In Fig. 8, the
performance is comparable to the noiseless case up to
o, = 10 pixels. This is partly because the least-squares
polynomial fit helps eliminate some of the noise.

4. Conclusions

A novel method is described for determining arbi-
trary surface profiles by applying morphological pro-
cessing to data acquired by simple range sensors. The
method is extremely flexible, versatile, and robust, as
well as being simple and straightforward. It can deal
with arbitrary numbers and configurations of sensors,
including synthetic arrays. Accuracy improves with the
number of sensors used and can be as low as a few pixels
except when the radius of the curvature is very small.
The method is robust in many aspects: it has the inher-
ent ability to eliminate undesired TOF readings arising
from higher-order reflections, crosstalk, and noise, as
well as processing multiple echoes informatively.

The CPU times for the morphological operations
(when implemented in the C programming language
and run on a 200 MHz Pentium Pro PC) are gener-
ally about a quarter of a second {3], indicating that
the method is viable for real-time applications. The
method can be readily generalized to 3-D environments
with the arcs replaced by spherical or elliptical caps
and the morphological rules extended to 3-D [6]. In
certain problems, it may be preferable to reformulate
the method in polar or spherical coordinates. Some
applications may involve an inhomogeneous and/or
anisotropic medium of propagation. It is envisioned
that the method could be generalized in such cases by
constructing broken or non-ellipsoidal arcs.
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