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Abstract A low-cost, solid-state inertial navigation system
for robotics applications is described. Error models for
the inertial sensors are generated and included in an Extended
Kalman JAlter (EKF) for estimating the position and orienta-
tion of a moving robot vehicle. A solid-state gyroscope and an
accelerometer have been evaluated. Without error compensa-
tion, the error in orientation is between 5--15°/min, but can be
improved at least by a factor of § if an adequate error model
is supplied. Similar error models have been developed for each
axis of a solid-state triaxial accelerometer. Linear position esti-
mation with accelerometers and tilt sensors is more susceptible
to errors due to the double integration process involved in esti-
mating position, With the system described here, the position
drift rate is 1-§¢m/sam, depending on the frequency of acceler-
ation changes. The results show that with careful and detailed
modelling of error sources, low cost inertial sensing systems can
provide valuable position information.

1 Introduction

Inertial navigation systems (INS) have been widely used in
aerospace applications [2, 3, 4] but have not been exploited much
in the field of robotics. In [8], cooperation of inertial and visual
information is investigated. Methods of extracting the motion
and orientation of a robotic system from inertial information
are derived theoretically but not directly implemented in a real
system.

INS’s are self-contained, nonradiating, nonjammable, dead-
reckoning navigation systems which provide dynamic informa-
tion through direct measurements. Fundamentally, gyros pro-
vide angular rate and accelerometers provide velocity rate in-
formation. Although the rate information is reliable over long
periods of time, it must be integrated to provide orientation,
linear position and velocity information. Thus, even very small
errors in the rate information can cause an unbounded growth
in the error of integrated measurements. One way of overcoming
this problem is to use inertial sensors in conjunction with other
absolute sensing mechanisms to periodically reset them. The
approach taken in this work is to first incorporate in the system
aprior: information about the error characteristics to compen-
sate for the errors before supplementing the INS with absolute
sensing mechanisms.

In the following section, the hardware implementation of a
robotic INS and its components are described. Section 3 focuses
on generating error models for the sensors and testing them for
adequacy of representation. In Section 4, the error models are
cxploited in an EKF for error compensation. The performance
of the gyro is evaluated in Section 5 with and without an error
model incorporated in the system. In Section 6, results of linear
position estimation with the accelerometer are presented and
discussed. Concluding remarks are made in Section 7.
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Figure 1: Picture of the INS package.

2 Description of the INS

In the Oxford AGV laboratory, an INS is under current de-
velopment to aid in accomplishing the localization task in a
2-D environment which is not perfectly level. The system com-
prises three orthogonally-mounted rate gyros, a triaxial linear
accelerometer manufactured by ENTRAN Devices Ltd., and two
Electrolevel inclinometers (or tilt sensors) by TILT Measurement
Ltd. all pictured in Figure 1.

The ENV-05S Gyrostar manufactured by Murata [7] is a
small relatively inexpensive piezoelectric gyro developed for the
automobile market with a maximum rate limit of £90°/s. The
accelerometer measures the linear acceleration of the robot along
three mutually orthogonal axes on the robot frame. The mea-
sured value naturally incorporates the gravity vector that needs
to be compensated for. The maximum range of the accelerome-
ter along each axis is +2g = 19.62 m/s®. The device is centrally
mounted on the vehicle such that its = and y axes are level
with the vehicle platform and the = axis is orthogonal. Two
orthogonally mounted tilt sensors measure small deviations of
the vehicle platform up to £10° from the horizontal z — y plane
with a discrimination of 1 arc.sec. The tilt information provided
by these sensors is supplied to the accelerometer to cancel the
gravity component projecting on each axis of the accelerome-
ter. However, this can be accomplished only when the vehicle is
stationary since all tilt sensors are inherently sensitive to acceler-
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Figure 2: Hardware implementation of the INS.

ation as well. When the vehicle comes to a stop, integrated rate
from the gyros are reset the tilt sensors which directly provide
angle information.

The block diagram for the hardware implementation of the
inertial sensors is shown in Figure 2. Figure 3 illustrates the
configuration of inertial sensors.

3 Constructing Error Models

Building error models for inertial sensors is motivated by an
attempt to reduce the effect of unbounded position and orien-
tation errors. Depending on how successful these models are,
inertial sensors may possibly be used in an unaided mode or for
longer durations on their own. Drift at the outputs of inertial
sensors is the most important contributor to navigation system
errors, and is mainly dependent upon the device technology. A
detailed treatment of modelling aerospace INS’s can be found in
the first volume by Maybeck [6]. INS’s developed for aerospace
applications cannot be directly implemented on mobile ground
vehicles since the scale, nature and parameters of the localization
problem are different than in aerospace.

To develop an error model for the gyro, its output was recorded
over long periods of time when subjected to zero input, i.e. the
gyro was stationary on the laboratory bench. The result of this

cxperiment over a period of 12 hours is shown in Figure 4. Ide-
ally, the output for zero input would be a constant voltage level
corresponding to the digital output of 2048 for a 12-bit A/D con-
verter as shown by the thick solid horizontal line in the figure.
The real output data is at a lower level than ideal at start-up,
and the mean value gradually increases with timein an exponen-
tial fashion. The standard deviation of the output fluctuations
is approximately 0.24°/s. Repeatability of this result indicates
that an apparently small time-varying bias is characteristic of
this gyro. The time variation of the bias is attributed to ther-
mal effects based on the observation that the gyro unit gradually
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Figure 3: Geometric configuration of the INS and the mobile
robot equipped with it.
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Figure 4: Digitized angular rate output of Gyrostar when sub-
jected to zero input.

leats up during operation. Drift in the rate output of Gyrostar
is about 30mV (1.35%/s.) 10 minutes after switching on and,
provided there is no temperature change, about a further 10mV
(0.45° /sec.) during the next 24 hours [7].

The same experiment to assess the drift has also been per-
formed for each axis of the accelerometer. The error characteris-
tics of each axis are of similar form but with differing parameters
as shown in Figure 5. The error at the voltage output of each
axis is characterized by a considerably large negative bias that
drifts over time.

In the following, let €(t) be the bias error associated with
measuring the true value of a quantity of interest using inertial
sensors. A nonlinear parametric model of the following form was
fitted to the data from the gyros and the accelerometer using the
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Figure 5: Digitized output of x and y axes of the ENTRAN
accelerometer shown along with the fitted models of form

Cy(1 - e~ T) + Cs.

Levenberg-Marquardt iterative least-squares fit method [9]:

€model (8) = C1 (1 — e_%) + Co (1)

where €,04e1(t) is the fitted error model to the gyro output when
zero input was applied, with parameters C;, C,, T to be tuned.
Starting with reasonable initial guesses for the parameters, con-
vergence to a Jocal minimum is achieved within 5-10 iterations.
The best fitting parameter values to the experimental data are
tabulated in Table 1 for the inertial sensors which comply with
this model.

Table 1 Drift model parameters

sensor: Ci C, T

gyro 0.153°/s —0.264°/s 5.64min
acc-x  6.6cm/s? —148.7cm/s’ 16.3min
acc-y 2.7cm/s? —92.4cm/s* 4.45min
acc-z  21.2cm/s*  —56.9cm/s?  138.5min

In general, a model fitted to experimental data is regarded as
being adequate if the residuals from the fitted model constitute
a white, zero-mean process. Hence, one can start with any rea-
sonable model based on inspecting the original data and test its
residuals for whiteness. If the test fails, the model can be fur-
ther developed until the residuals pass the whiteness test. This
implies that the test for the validity of any model is basically re-
duced to a test for whiteness. Following this route, the sufficiency
of the above model in Equation 1 was tested for each sensor by
applying a whiteness test to the residuals in the autocorrelation
domain [1]. The positive outcome of this test demonstrates that

the model in Equation 1 adequately represents the slowly varying
bias errors. In the next section, the error models are exploited
in an EKF to improve the performance of these sensors.

4 Implementing Error Models

The parametrized model of Equation 1 for the bias error can
be represented by the following differential equation:

=191 2)

with initial conditions €(0)=C, and é(0)=%. After discretiza-
tion, Equation 2 becomes

T,
=TT e(k) + T1T (Cr+Cy) 3)

with €(0)=C,. Due to its recursive nature, this difference equa-
tion is independent of start-up time but relies on a good estimate
of the initial bias. The observations are

e(k+1)

zi(k) = O(k)+ €;(k) + v (k)

z2(k) = (k) + (k) + va(k)

a(t) = D)+ ey(h) + s(h)

z4(k) = cosi.cos ®.a.(k) + cosp.sin B.a,(k)
—sing.g(k) + €q, (k) + va(k) (4)

z5(k) = (sinf.sint.cos ® — cosf.sin )a. (k)
+(sin6.sin1p.sin ® + cos 8. cos D)a, (k)
+sin . cos .g(k) + eay(k) + vs(k)

z6(k) = (cosd.sinv.cos® + sin0.sin §)a, (k)
+(cos8.sintp.sin @ — sinf. cos )a, (k)
+cos 0. cos .g(k) + €, (k) + ve(k)

Here, a,, a, and g are the accelerations of the robot in the world
coordinate frame, related to the measured accelerations by a
rotational transformation through 8,1, ® around z,y and z axes
respectively [5]. Equation 4 can be rewritten in matrix notation

as:

z(k) = hix(k)] + v(¥) (5)
where x(k) is the state vector and v(k) is a white measurement
noise process vector.

Given the observations, the states that need to be estimated
are the true values of orientation, angular rate, linear acceler-
ation, velocity, position and the errors associated with them.
Hence, the states of interest are augmented by Equation 3 for
the sensors involved to estimate and compensate for the time-
varying bias errors. The resulting state equations of the EKF in

block matrix form are as follows:

ch(k+1) ¢, O 0 0 0 0 Xcz(k) ug,
XGy(k-{'-l) 0 FG!, 0 0 0 0 ch(k) ug,
Xcz(k—}-l) 0 0 Fg, O 0 0 X(;z(k) ug,
xi(k+1)| |0 0 0 Fa 0 0 |xa (k)T ua
XAy(k-f-l) 0 0 0 0 FAy 0 XAy(k) uga,
x4, (k+1) 0 0 0 0 0 Fu | |xa(k) Uy,
+w(k)
(6)

| T, 172173 0

0 1 T, 377 0
with Fg, A10 0 1 T 0 y (7)

00 0 1 0

T.

0 0 0 0 -th-f-

2245



>

(el
—
[e)
=

1
0
FAI 0
0

o(k)

?(k) z(k)

d(k) L a | ve(R)

sw |0 P w0 O
colk) € ()

eg(k)

Il

xg. (k)

0

0
4 = 0 (10)
T TelCrap+C2az)

5(C14+Co5) Taz+Ts
Te+Ts

Ug, = and u

li>
oo oo

The remaining block matrices and vectors in Equation 6 have
very similar definitions to those in Equations 7- 10 but with the
corresponding error model parameters substituted [10]. More
compactly, Equation 6 can be rewritten as:

x(k+1) = Fx(k) + u + w(k) (11)

Note that the state transition is linear unlike the nonlinear mea-
surements described by Equation 5. The first four states are the
irue values of the orientation and its derivatives, and the next
two states constitute the error model for the gyroscope. This
part of the filter has a constant ¢ (k) structure augmented by
the error model. Lower-order filters have been implemented but
shown to have a delay and much ringing in their unit-step re-
sponse. With this higher-order model, the filter is able to track
abrupt changes in angular velocity very closely as will be shown
in the next section. The remaining states of the filter corre-
spond to the true values of position, velocity and acceleration in
the world frame, plus the error states for measuring acceleration.
One interesting point to note is that for each different sensor, the
error states are coupled to their relevant true states only through
the observation equations and not by the structure of the state
transition matrix F.

The EKF structure in Equations 5 and 11 has been imple-
mented in real time on an INMOS-T805 transputer network
where a minimum sampling interval of T,=90 ms. is achieved.
The gyro has been mounted on a rotating platform whose an-
gular velocity and orientation can be accurately controlled and
measured. For comparison purposes, the platform velocity and
orientation are taken to be the “true” values of these quantities.
Initial estimates of the bias errors are made to initialize the fil-
ter by averaging the output of each inertial sensor over a large
number of samples when the robot is not in motion. As data
is collected by the inertial sensors, the EKF running in parallel
filters the measurements and provides estimates of the quantities
of interest for the mobile robot.

5 Performance of the Gyro

To determine the adequacy of the error models, the system
performance with no assumed error model is compared to the
performance when the error model in Equation 1 is incorporated
in the EKF for the gyro. The results when zero-input was ap-
plied to the Gyrostar are shown in Figure 6 over a duration of
five minutes. At the end of the experiment, the integrated gyro
rate output was —57.1°/s., whereas the compensated and filtered
output was +3.72°, having had an overall maximum deviation
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Figure 6: Angular rate and orientation of Gyrostar for zero-input
case.

of +7.40° from the true value. The improvement was by a factor
of 7.7. Figure 7 illustrates the angular rate and position of the
Gyrostar when non-zero input was applied for a total duration of
five minutes. A new angular rate —25 < & < 25°/s. is randomly
generated every 30 s. and applied to the gyro. The true values
and the erroneous observations are displayed along with the filter
results. At the end of the experiment, the integrated rate output
cxhibited an error of —42.5° whereas the filtered estimate was
+10.7°. Both the gyro rate output and the filtered rate output
were accurate within £1.5%/s. at the end of the experiment.
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6 Accelerometer Evaluation

To evaluate the accelerometer for position estimation, a sim-
ple experiment was designed: The robot platform was acceler-
ated and decelerated over a distance of 30 cm. along its z axis
in the forward and backward directions. The results from the
accelerometer is illustrated in Figure 8. In Figure 8(a), real data
{rom the accelerometer is shown in dotted line, EKF estimate is
in solid line.

The dashed line corresponds to the output of the tilt sensor
z functioning as an accelerometer for comparison purposes. In
Figures 8(b) and (c), solid lines indicate EKF estimates of veloc-
ity and position along the z axis. The dashed lines correspond to
the numerical integration of the tilt sensor output. At the end of
the experiment, position estimation using the accelerometer was
erroneous by -15.3 cm. Although this example is a case where
the drift on the accelerometer was relatively small, the position
estimation error can easily exceed 60-80 cm. over a duration of
10 sec. Position estimation with information from accelerometers
and tilt sensors is more susceptible to errors due to the double
integration process. With the system described here, the posi-
tion drift rate is between 1-8 cm/sec., necessitating the fusion
of information from absolute sensing mechanisms.
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Figure 8: Position estimation with the accelerometer and tilt
SEISOrs.

7 Conclusion

The results demonstrate that the Gyrostar provides accurate
localization of a mobile robot only if an adequate error model
is generated and supplied to the EKF. The model reduces the
angular position error at least by a factor of 5. With the re-
sulting accuracy, it is still necessary to reset the error with ab-
solute sensing information at regular intervals. The gyro with
the given mode] would operate particularly well in environments
where the ambient temperature is controlled. Linear position es-
timation with information from accelerometers and tilt sensors
was performed. The results show that with careful and detailed



modelling of error sources, low cost inertial sensing systems can
provide valuable position information. The error analysis and
fusion of information for this system is under further develop-
ment. Current research also involves integrating this INS with
other sensing mechanisms.
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