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Abstract

The performance of a commonly employed linear array
of sonar sensors is assessed for point-obstacle localiza-
tion intended for robotics applications. Two different
methods of combining time-of-flight information from
the sensors are described to estimate the range and az-
imuth of the obstacle: pairwise estimate method and
the maximum likelihood estimator. The variances of
the methods are compared to the Cramér-Rao Lower
Bound, and their biases are investigated. Simulation
studies indicate that in estimating range, both methods
perform comparably; in estimating azimuth, mazimum
likelthood estimate ts superior at a cost of extra com-
putation. The results are useful for target localization
in mobile robotics.

Introduction

In this paper, the performance of a commonly em-
ployed linear array of sonar sensors is assessed for
point-target localization. Characterizing point-target
response of a sensor has been important not only for its
application to point targets but also to assess its per-
formance on extended targets which can be modeled
using different approaches [1, 2, 3]. If the approach
is one of hypothesis testing or one of parametrizing
the extended target, then sensor performance may not
be easily related to its point-target response. On the
other hand, for extended targets of unknown shape
with possible roughness [4], or for small spherical tar-
gets, point target analysis can be extremely useful.
Aside from modelling extended targets, the point tar-
get analysis can be easily extended to spherical targets
of finite radius which may be of interest in robotics
applications. In this study, only point targets are con-
sidered. By implementing a multi-transducer system
that exploits the differences in the signal travel times
and combining information from the array elements,
the location of a point target can be accurately esti-
mated in two dimensions.

In the next section, the transducer model and
the linear array configuration are described. In Sec-
tion 3, two different approaches for point target lo-
calization are described and the Cramér Rao Lower

Bound (CRLB) is derived. The performances of the
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Figure 1: A linear array of N = 4 transducers for
localization.

two methods are discussed in terms of bias and vari-
ance, and their variances are compared to the CRLB
in Section 4. In the concluding section, the usefulness
of the methods is assessed for point-target localization.

2 The Sensor Model and the Array

Configuration

A single acoustic transducer can be employed both
as a transmitter and receiver. After the transmitted
pulse encounters an object, an echo is detected by the
same transducer acting as a receiver. In this study, the
excitation is chosen to be a gated Gaussian-modulated
sinusoid. Localization of a point target is performed in
the far-zone of the transducer where the propagating
pulse is considered to be a series of plane waves.

In this investigation, it is assumed that the point
target and all the transducers lie in the same plane as
illustrated in Figure 1 for N = 4 transducers. Uni-
formly spaced sensors in this array are modeled as



identical Polaroid sensors pointing in the same direc-
tion. Both of these assumptions can be relaxed with-
out significant change in the following development.

Suppose there is a point obstacle located at (z,y)
and that the 7’th transducer transmits a pulse whose
mathematical model will be provided in the next sec-
tion. The rectangular coordinates of the :’th and
J’th transducers, where 7,5 = 1,..., N, are (z;,0) and
(z;,0) respectively as shown in Figure 1 for N = 4.
The distance-of-flight (DOF) measured at transducer
i1is f;, and the corresponding DOF at j is f;. These
DOF’s at the two transducers define a circle and an
ellipse whose point of intersection with a positive y co-
ordinate corresponds to the obstacle location. Solving
for the intersection point:

2fi(fix fi) | ®mi+ux
Ty — Tj + 2 (1)

f-(e—m)? 2)

Y

One of the two roots z; o is chosen as = such that
f# — (z — 2;)? is positive. Using z and y, the polar
coordinates of the target can be found as

6 = sin“l(z) (3)

r

r =

3 Estimation of Point-Target Position
3.1 Description of the two Methods

Using the given array configuration, information
from the sensors can be combined in a number of ways.
In earlier work, finding the optimal receiver separa-
tion at a given range for plane-corner differentiation
was considered and the pair that best approximates
this separation in a linear array of N transducers was
chosen [5]. With the same configuration, fusing infor-
mation pairwise from all pairs of receivers symmetric
around the center of the array have been investigated
and the ‘optimal’ weighting factors for the estimates
from these pairs were found [5]. This method im-
proved the accuracy of the estimates approximately
by 10% although the processing time was increased
threefold for N = 6. This method will be referred as
the sub-array method since it does not make use of all
the received signals available in the system.

In the array configuration assumed here, every
transducer takes turn in transmitting, and after each
transmission, received waveforms are recorded at ev-
ery transducer. Hence, after a full cycle of transmis-
sion, there are N? received waveforms. This allows
us to extend the sub-array method to a more com-
plete one in which every available echo is used. In
total, there are N(IN — 1) such pairs from which both
# and r estimates can be obtained [5]. This method
will be referred as the pairwise estimaie (PE) method.
Although this extension makes more complete use of
the acquired data in localizing the point obstacle, a
single, robust location estimate needs to be extracted

from the data. From the geometry of Figure 1, r and 8
estimates (given by Equation 3) are obfained at each
receiver when one of the N transducers is used as a
transmitter. These N(N — 1) estimates are combined
by calculating their mean and excluding any estimate
not within two standard deviations of the mean while
doing so.

In a second approach, all received waveforms are
considered at the same time and the best r and 6
which provide the most probable fit (the MLE) to the
acquired data are chosen as the final estimate. This
procedure requires the use of nonlinear iterative opti-
mization techniques. Since the cost function used in
this optimization procedure is observed to have mul-
tiple local minima, the choice of the starting point is
important in reaching the optimal values. One good
choice is the minimum of the cost function on a coarse
mesh centered around the PE -result. The minimum
so obtained is used as an initial estimate to find an
approximation to the MLE of r and # by minimizing
the cost function described below.

The following additive noise signal-observation
model is assumed:

rij(te, 8) = 8ij(t, ) + nij(tr) (4)

for i, = 1,..,N and k& = 1,..., M. Here, ry;({;) is
the received waveform at time sample 5 at ti'le J’th
transducer when the ¢’th transducer is activated. The
vector z is the location parameter vector of the point-

target given by
zZ= [ g ] (5)

sij(ty, r,0) is modeled as follows:

sij(te,r,0) = A(zi,r,0) A(zy,r,0) G(zi,r, 0) G(z;,r(8)
Miti = t:(r, 8)= t;(r, 0)] cos {2 fultx — ti(r, 8) — t,(r, O)I}7)
where
Awi,7,0) 1 ®)
L, T, =
2y/7[r2cos? § + (rsin — x;)?]
2J; [ka (rsinf-wz;) :|
72 cos? §4(r sin §—x,;)2
G(z;,r,0) = % C sin9—(x.) ) 9)
a
\/r2 cos? §+(r sinf—x;)?
12 fot
M[t] = exp (—2—?‘—5) rect (?) (10)
Li(r0) = \/r2 cos? 8 +(§r sinf — z;)? (11)
where k = 27”, c is the speed of sound in air, and
fo = 50 kHz 1s the resonant frequency of the Polaroid
transducer with aperture radius a = 2 cm. Here,

A(zi,r,0) is the free-space attenuation factor of the
pressure amplitude, G&xi,r, 6) is the gain pattern of
the transducer, and M|[t] 1s the envelope of the wave-
form modeled as a gated Gaussian.
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Note that the received waveform has nonlinear de-
pendence on range and azimuth. It is desirable to have
unbiased r and 0 estimates based on the acquired ar-
ray data. In this type of nonlinear estimation prob-
lems, it is difficult to find an exact expression for the
variance of the estimate. In the following section, the
performance of any nonlinear unbiased estlmator will
be characterized by deriving a lower bound on its vari-
ance.

3.2 Derivation of the Cramér-Rao

Lower Bounds

Cramér-Rao Lower Bound (CRLB) defines a lower
bound on the variance of any unbiased estimator [6].
To find the CRLB in this particular case, an inde-
pendent identically distributed Gaussian noise model
is assumed with the following conditional probability
density function:

[T,'j(tk) — 84 (tk, Z)]2
207

NN Mo
r|z
priz(r|z) EEH s o
(12)

The MLE estimate given above chooses that value
of z which maximizes the conditional probability. By
taking the natural logarithm of both sides, we obtain
a simpler expression to be maximized:

In priz(r|z) = Z {ln (\/;W_UQ_> _
(13)

1,7,k
From above, the final form of the cost function to be
minimized for the MLE is

T [rij (te) — i (tr, 2)]*

L 202
1,5,k

[rij(tx) — si;(tx, 2)]°
202

(14)

Due to the nonlinearity of the expression in z, an ex-
act expression for the MLE is difficult to find, and an
iterative numeric method is used. From the above ex-
pression the CRLB can be derived by computing the
following partial derivatives of Equation 13

-2

_aln Prlz(I'|Z) _ ['ri](tk) — 8ij (tk,Z)] 8sij(tk,z)

Ozn o2 Ozn

4,7,k

_ Plprp(rlz) 3 [ris (tk) — 815 (15, 2)] 081, (th, 2)

02n02m T —~ o2 02n,02Zm

LI )
1 8si(tk,z) 085 (tk, 2)
il 5
o? dzn 0zZm (15)

2,7,k
where the righthandside for n,m = 1,2 defines the
entries of J, the Fisher Information Matrix [6]. Then
the expected value of J is:

E{J}=H (16)
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where
Osij (tk,z) 0545 (tr, 2)
H(n,m)= ZZJ: . n,m=12
(17)
Then, the CRLB becomes
B{(in = )%} 2 T (18)
=~ H 1(n,n)

Here, 7 is any unbiased estimate of the parameter vec-
tor elements r and 6.

To find the expressions in Equation 15, partial
derivatives of the amplitude and gain terms in Equa-
tion 8 were evaluated.
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Figure 2: Transducer beam pattern at the resonant

frequency f, = 50 kHz.
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Figure 3: Received waveforms at each transducer

when r=4 m.

In the next section, performances of both of the
PE and MLE for point-obstacle localization will be
investigated and compared to the CRLB over some
synthetic test cases.



4 Results and Discussion

The results presented in this section are obtained
from a simulation study for an array of N = 4 trans-
ducers of Polaroid sensors with resonant frequency
fo = b0 kHz and separation 6 cm. Neglecting the
narrow bandwidth around f,, the beam pattern of the
transducer is a first-order Bessel function of the first
kind as illustrated in Figure 2.

Figure 3 displays received waveforms at each trans-
ducer when the leftmost one transmits. The point
obstacle is located at a range of » = 4m and an az-
imuth of § = 4°. The standard deviation of the added
Gaussian noise is chosen to be 5% of the maximum
signal amplitude at a range of 1 m.

In this simulation study, statistical performances of
the two methods (PE and MLE) are compared with
each other as well as with the CRLB derived previ-
ously. Each of the N(N — 1) pairs provides a single
range and azimuth estimate. The mean values and
standard deviations of these estimates are computed
based on ten different realizations for a given range
and azimuth. Figure 4, shows the standard error of
the range and azimuth estimates that are obtained
from PE when the azimuth is kept constant at § = 0°,
and the range r is changed between 1-4 m with 25 cm
increments. The standard error is found by summing
the squares of standard deviation and the bias of the
estimate and then taking the square root. The corre-
sponding results for the MLE are given in Figure 5.
Both of these approaches indicate similar trends. The
standard deviation of MLE in r is slightly more than
that of PE. The slight increase in the standard de-
viations as » increases is due to the decrease in the
signal-to-noise ratio because of the free-space atten-
uation factor. For comparison purposes, the CRLB
for unbiased estimators has also been included in each
figure. It is not possible to make a comparison to the
CRLB for biased estimators since an analytic expres-
sion for the bias is not available. The estimation bias
partially derives from that one already present in the
raw DOF measurements since these measurements are
obtained by thresholding [7]. Although these standard
deviations have an increasing trend as a function of r,
even at r =4 m, their values are of the order of 1 cm
in r and approximately 0.1° in 6. These values are
acceptable in practice.

The results obtained when r is kept constant at 2
m and 6 is varied between 0 — 4° with increments of
1° is illustrated in Figures 8 and 9. All of the above
observations apply to these two cases as well. In this
case, the increasing trend with 8 is due to the reduced
transducer gain as a function of increasing |0].

Biases of these estimates have also been investi-
gated based on the same set of simulations. The re-
sults are shown in Figures 6, 7, 10 and 11. In the
first two figures, biases of PE and MLE as function
of r have been displayed when @ is kept constant at
0°. For a better display, the data points have been
fitted with a spline. The bias in estimating range as a
function of r in both cases is acceptable, at worst 5.9
mm. Corresponding biases in the azimuth estimates
are also within the acceptable range of +0.14° for PE
and +0.055° for MLE. In the last two figures, biases
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as functions of § are investigated at a constant range
of r = 2 m. Again, the available data has been in-
terpolated by a spline fit. All of these biases are also
within acceptable levels.

Based on this simulation study, it has been observed
that although in estimating range, both PE and MLE
perform comparably, MLE is superior in estimating
the azimuth of the point target.

5 Conclusion

Two different methods of fusing information from a
linear array of N acoustic transducers for estimating
the position of a point target have been described.
The methods are characterized by small biases, and
standard errors larger than the CRLB by an order
of 2-4. Although the PE and MLE methods provide
similar range estimation accuracy, MLE outperforms
the PE in estimating azimuth.

This study is useful for characterizing the point-
target response of acoustic sensors and forms a basis
to find their response to rough surfaces which can be
modeled as a random collection of point targets. The
system is being implemented in hardware and the ob-
tained experimental results will be compared with the
analytical and simulation results. The results are use-
ful for target localization in mobile robotics.
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Figure 4: RMS error of PE in range and azimuth as a
function of range when 6 = 0° in dashed line. CRLB
in solid line.
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Figure 5: RMS error of MLE in range and azimuth as
a function of range when ¢ = 0° in dashed line. CRLB
in solid line.
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Figure 6: Bias of PE and MLE in range as a function
of range when 6 = 0°.
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Figure 7: Bias of PE and MLE in azimuth as a func-
tion of range when § = 0°.
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Figure 8: RMS error of PE in range and azimuth as
a function of azimuth when » = 2 m in dashed line.

CRLB in solid line.
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Figure 9: RMS error of MLE in range and azimuth as
a function of azimuth when r» = 2 m in dashed line.
CRILB 1n solid line.
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Figure 10: Bias of PE and MLE in range as a function
of azimuth when r = 2 m.
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Figure 11: Bias of PE and MLE in azimuth as a func-
tion of azimuth when r = 2 m.
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